JPH1161319A - Composite sintered alloy for molten nonferrous metal, and its production - Google Patents

Composite sintered alloy for molten nonferrous metal, and its production

Info

Publication number
JPH1161319A
JPH1161319A JP21689597A JP21689597A JPH1161319A JP H1161319 A JPH1161319 A JP H1161319A JP 21689597 A JP21689597 A JP 21689597A JP 21689597 A JP21689597 A JP 21689597A JP H1161319 A JPH1161319 A JP H1161319A
Authority
JP
Japan
Prior art keywords
titanium
tungsten
alloy
sintering
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21689597A
Other languages
Japanese (ja)
Other versions
JP3396800B2 (en
Inventor
Takahiro Gama
隆弘 蒲
Takeshi Mihashi
剛 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21689597A priority Critical patent/JP3396800B2/en
Publication of JPH1161319A publication Critical patent/JPH1161319A/en
Application granted granted Critical
Publication of JP3396800B2 publication Critical patent/JP3396800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal-ceramics composite sintered alloy useful as a component material for a nonferrous metal caster such as a die casting machine and excellent in wear resistance, corrosion resistance, etc. SOLUTION: This sintered alloy is produced by sintering a powder mixture having a composition consisting of, by weight, 20-40% tungsten carbide and the balance titanium and has a composite structure where titanium carbide grains (or titanium carbide grains and tungsten grains) are finely and uniformly dispersed in a Ti-W alloy matrix. This composite structure is formed by causing, in the course of sintering, a reaction between tungsten carbide and titanium [Ti+WC→TiC+W]. It is preferable to perform sintering treatment by means of hot isostatic pressing at about 1000 to 1200 deg.C under about 80 to 120 MPa pressurizing force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム等の
非鉄金属溶湯と接触するダイカストマシンの射出部構成
材料等として有用な耐腐食溶損性,耐摩耗性等にすぐれ
た、金属−セラミックス複合焼結合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite sintering excellent in corrosion-erosion resistance, abrasion resistance, etc. useful as a material for forming an injection portion of a die casting machine which comes into contact with a molten non-ferrous metal such as aluminum. Concerning bond money.

【0002】[0002]

【従来の技術】ダイカストマシンは、アルミニウム,亜
鉛,銅,鉛,錫、またはこれらを主体とする非鉄金属製
品を高速・高精度で鋳造することができ、自動車,産業
機械,家電製品等における各種構成部材の製造法として
重要な地位を占めている。ダイカストマシンの射出部を
構成するプランジャースリーブ,ピストン,チップ,湯
口スリーブ等の部材料として、従来よりSKD61に代
表される熱間金型用合金工具鋼(JIS G4404)
が使用されてきた。しかし、溶融金属に対する腐食溶損
抵抗性が十分でなく、プランジャースリーブでは、腐食
溶損とピストンの摺動に伴う摩耗作用が重畳して摩耗損
傷が進み易く、メンテナンスに多大のコスト・労力を必
要とする。部材の腐食・摩耗等の表面損傷は、鋳造金属
溶湯を汚染し、ダイカスト鋳造製品の品質に悪影響を及
ぼすことにもなる。この対策として、緻密質窒化珪素等
のエンジニアリングセラミックス製品、あるいはチタン
合金粉末とセラミックス粉末の混合物を焼結処理して製
造される、金属−セラミックス複合焼結品などを適用す
ること等が提案されている(特開平2-280953号公報, 特
開平5-140692号公報, 特公平7-84601 号公報等)。
2. Description of the Related Art Die casting machines are capable of casting aluminum, zinc, copper, lead, tin, or non-ferrous metal products based on these materials at high speed and high precision. It occupies an important position as a method of manufacturing components. Alloy tool steel for hot dies (JIS G4404) conventionally represented by SKD61 as a component material for a plunger sleeve, a piston, a tip, a sprue sleeve, etc. constituting an injection portion of a die casting machine.
Has been used. However, corrosion and corrosion resistance to molten metal is not sufficient, and in the plunger sleeve, corrosion and corrosion are superimposed on the wear effect due to the sliding of the piston, and wear damage is likely to progress. I need. Surface damage such as corrosion and abrasion of the member contaminates the molten cast metal and adversely affects the quality of the die cast product. As a countermeasure, it has been proposed to apply engineering ceramic products such as dense silicon nitride, or a metal-ceramic composite sintered product manufactured by sintering a mixture of a titanium alloy powder and a ceramic powder. (JP-A-2-80953, JP-A-5-140692, JP-B-7-84601, etc.).

【0003】[0003]

【発明が解決しようとする課題】窒化珪素等のセラミッ
クス焼結製品は、溶融アルミニウム等に対する卓抜した
腐食抵抗性を有し、耐摩耗性にもすぐれている反面、靱
性に乏しく、プランジャースリーブ等のように機械衝撃
の負荷が大きい部材では安定な使用を期し難い。チタン
合金とセラミックスからなる複合焼結合金は、2材種の
複合効果として、セラミックス単体材料の欠点を回避し
つつ、耐腐食溶損性,耐摩耗性等を改善しようとするも
のである。本発明は、非鉄金属溶湯用部材として使用さ
れる複合焼結合金の材料特性を向上安定化することを目
的としてなされたものである。
A ceramic sintered product such as silicon nitride has excellent corrosion resistance to molten aluminum and the like, and is excellent in wear resistance, but has poor toughness and has a plunger sleeve and the like. It is difficult to ensure stable use of a member having a large mechanical impact load as described above. A composite sintered alloy composed of a titanium alloy and a ceramic is intended to improve the corrosion erosion resistance, abrasion resistance, and the like as a composite effect of the two materials while avoiding the drawbacks of the ceramic single material. An object of the present invention is to improve and stabilize the material properties of a composite sintered alloy used as a member for a non-ferrous metal melt.

【0004】[0004]

【課題を解決するための手段】本発明の複合焼結合金
は、炭化タングステン20〜40重量%,残部チタンか
らなる粉末混合物を焼結することにより製造される、Ti
-W合金からなるマトリックスに炭化チタン粒子、または
炭化チタン粒子とタングステン粒子が分散した複合組織
を有する焼結体であることを特徴としている。
The composite sintered alloy of the present invention is manufactured by sintering a powder mixture comprising 20 to 40% by weight of tungsten carbide and the balance of titanium.
The sintered body has a composite structure in which titanium carbide particles or titanium carbide particles and tungsten particles are dispersed in a matrix made of a -W alloy.

【0005】本発明の複合焼結合金は、Ti-W合金のマト
リックスに、炭化チタン粒子、または炭化チタン粒子と
タングステン粒子が分散した組織を有する。この複合組
織は、焼結処理中に生じる下記の反応: Ti+WC→TiC+W …〔1〕 により形成される。すなわち、焼結原料中の炭化タング
ステンは、その全量をチタンとの反応に消費され、反応
生成物として析出する炭化チタンが、製品焼結体の分散
相粒子となる。また、生成するタングステンはチタンに
固溶してTi-W合金のマトリックスを形成する。チタンに
対する固溶限を超える比較的多量のタングステンを生成
する場合は、余剰のタングステンは微細粒子のままTi-W
合金マトリックス中に残留して分散相の一部となる。
[0005] The composite sintered alloy of the present invention has a structure in which titanium carbide particles or titanium carbide particles and tungsten particles are dispersed in a matrix of a Ti-W alloy. This composite structure is formed by the following reaction occurring during the sintering process: Ti + WC → TiC + W (1) That is, the entire amount of tungsten carbide in the sintering raw material is consumed by the reaction with titanium, and the titanium carbide precipitated as a reaction product becomes dispersed phase particles of the sintered product. In addition, the generated tungsten forms a solid solution in titanium to form a matrix of a Ti-W alloy. If a relatively large amount of tungsten exceeding the solid solubility limit for titanium is to be produced, the excess tungsten will remain as fine particles in Ti-W
It remains in the alloy matrix and becomes part of the dispersed phase.

【0006】上記Ti-W合金のマトリックスは、チタンに
よる優れた耐食性と、タングステンの固溶効果による高
耐摩耗性を有し、炭化チタン粒子(およびタングステン
粒子)は分散効果として焼結合金の硬度・耐摩耗性を更
に高める。Ti-W 合金マトリックスのタングステン含有
量は約20〜30重量%である。複合組織中の分散相粒子量
は、マトリックス金属100 重量部に対して、炭化チタン
粒子は約6.5 〜16.8重量部であり、タングステン粒子
(チタンへの固溶限を超えるタグステンを生成した場合
の分散相となるタングステン粒子)の最大量比は約22重
量部である。
[0006] The matrix of the Ti-W alloy has excellent corrosion resistance due to titanium and high wear resistance due to the effect of solid solution of tungsten.・ Further enhance wear resistance. The tungsten content of the Ti-W alloy matrix is about 20-30% by weight. The amount of dispersed phase particles in the composite structure is about 6.5 to 16.8 parts by weight of titanium carbide particles with respect to 100 parts by weight of matrix metal. The maximum amount ratio of tungsten particles to be a phase) is about 22 parts by weight.

【0007】前記反応で生成する炭化チタンは、極微細
粒子としてマトリックスに分散析出し、またタングステ
ンの一部がチタンに固溶されずに残留する場合のタング
ステン粒子の分散も著しく微細均一である。この混相組
織は、焼結原料中のセラミックス粉末の粒子を製品焼結
体の分散相粒子とする従来の複合焼結合金に比し微細均
一である。微細均一な混相組織が形成されることは、複
合焼結合金の高硬度化・高耐摩耗化に付随する延靱性の
低下を抑制し、構造部材としての適性を保持するのに有
効である。
[0007] The titanium carbide produced by the above reaction is dispersed and precipitated as very fine particles in the matrix, and when a part of tungsten remains without being dissolved in titanium, the dispersion of tungsten particles is extremely fine and uniform. This mixed phase structure is finer and more uniform than a conventional composite sintered alloy in which ceramic powder particles in a sintering raw material are dispersed phase particles of a product sintered body. The formation of a fine and uniform mixed phase structure is effective in suppressing a decrease in ductility accompanying the increase in hardness and wear resistance of the composite sintered alloy, and maintaining the suitability as a structural member.

【0008】[0008]

【発明の実施の形態】焼結原料中の炭化タングステンの
配合量を20重量%以上としているのは、それより少な
い配合量では、製品焼結体の分散相となる炭化チタン,
およびマトリックス合金(Ti-W合金)の形成に必要なタ
ングステンの生成量が不足し、製品焼結体の硬度・耐摩
耗性の改善効果が不十分となるからである。炭化タング
ステン粉末の増量に伴つて,炭化チタンおよびタングス
テンの生成量が増加し、配合量を約30重量%以上とす
る場合は、チタンの固溶限を超えるタングステンを生成
し、余剰のタングステンは分散相粒子となる。配合量の
上限を40重量%としたのは、それを超えると、タング
ステンおよび炭化チタンの過剰生成により、製品焼結体
が脆弱化し、構造部材料としての適性を損うからであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reason why the blending amount of tungsten carbide in a sintering raw material is set to 20% by weight or more is that if the blending amount is smaller than that, titanium carbide, which is a dispersed phase of a product sintered body,
In addition, the amount of tungsten required for forming the matrix alloy (Ti-W alloy) is insufficient, and the effect of improving the hardness and wear resistance of the sintered product is insufficient. When the amount of titanium carbide and tungsten increases with the increase in the amount of tungsten carbide powder, and when the blending amount is about 30% by weight or more, tungsten exceeding the solid solubility limit of titanium is generated, and excess tungsten is dispersed. It becomes phase particles. The reason why the upper limit of the compounding amount is set to 40% by weight is that if it exceeds that, excessive production of tungsten and titanium carbide weakens the product sintered body and impairs its suitability as a structural part material.

【0009】炭化タングステンとチタンからなる粉末混
合物の焼結は、加圧下の加熱処理により行われる。その
焼結手法として、熱間静水圧加圧処理(HIP処理)が
好適である。HIP処理によれば、高加圧力の均一な作
用下に、製品焼結体の形状・サイズの如何を問わず、高
緻密質の複合焼結体を製造する得ることができる。その
HIP処理は、温度: 約1000〜1200℃,加圧力: 80〜12
0 MPaの条件下に前記反応を効率的に達成することが
できる。
The sintering of the powder mixture comprising tungsten carbide and titanium is performed by a heat treatment under pressure. As a sintering method, hot isostatic pressing (HIP) is suitable. According to the HIP treatment, a high-density composite sintered body can be produced regardless of the shape and size of the product sintered body under a uniform action of a high pressing force. The HIP process is performed at a temperature of about 1000 to 1200 ° C and a pressure of 80 to 12
The above reaction can be efficiently achieved under the condition of 0 MPa.

【0010】[0010]

【実施例】チタン粉末(粒度 350メッシュアンダ) と炭
化タングステン(平均粒径 3μm)の混合物を金属カプ
セルに充填し、脱気密封してHIP処理する(温度:110
0℃,加圧力:100MPa,処理時間:2Hr)。得られた焼
結体から試験片を採取して機械性質および耐食性を測定
する。
EXAMPLE A metal capsule was filled with a mixture of titanium powder (particle size 350 mesh under) and tungsten carbide (average particle size 3 μm), degassed and sealed, and HIPed (temperature: 110).
0 ° C, pressure: 100MPa, treatment time: 2Hr). A test piece is collected from the obtained sintered body, and the mechanical properties and corrosion resistance are measured.

【0011】〔曲げ強度の測定〕三点曲げ試験(JIS R
1601)による。 試験片サイズ: 3 × 4× 50 (mm) スパン距離: 30 mm 試験温度: 常温
[Measurement of bending strength] Three-point bending test (JIS R
1601). Specimen size: 3 x 4 x 50 (mm) Span distance: 30 mm Test temperature: normal temperature

【0012】〔耐摩耗性試験〕理研−大越式迅速摩耗試
験機により、試験片を相手材(回転輪)に押付け一定時
間後の摩擦面の比摩耗量(x10 -8mm3 / kg・ mm )を測
定。 試験片サイズ: 40×20×10 (mm) 相手材: SUJ 鋼製リング 摩擦速度: 1.93 m/ 秒 摩擦距離: 600 m 最終荷重: 6.2 kgf
[Abrasion resistance test] The specific wear amount of the friction surface after a certain period of time (x10 -8 mm 3 / kg · mm) by pressing the test piece against the counterpart material (rotating wheel) using a RIKEN-Ogoshi rapid wear tester ) Measured. Specimen size: 40 × 20 × 10 (mm) Material: SUJ steel ring Friction speed: 1.93 m / s Friction distance: 600 m Final load: 6.2 kgf

【0013】〔耐食性試験〕アルミ合金溶浴中に試験片
を所定時間浸漬した後、試験片表面の溶損層厚(mm)を
測定し、SKD61合金工具鋼の溶損層厚を1とする比
率を算出する。 試験片サイズ: 40×17×5.5 (mm) 浴組成: Al-9.5Si-3.0Cu(JIS H 5202 AC 4B) 浴温度: 750 ℃ 浸漬時間: 24 Hr
[Corrosion Resistance Test] After immersing a test piece in an aluminum alloy bath for a predetermined time, the erosion layer thickness (mm) on the test piece surface is measured, and the erosion layer thickness of the SKD61 alloy tool steel is set to 1. Calculate the ratio. Specimen size: 40 × 17 × 5.5 (mm) Bath composition: Al-9.5Si-3.0Cu (JIS H 5202 AC 4B) Bath temperature: 750 ° C Immersion time: 24 Hr

【0014】表1に供試材の原料組成,製品焼結体の組
成および試験結果を示す。発明例No.1〜3 は、従来の代
表的な非鉄溶湯用材料である合金工具鋼(No.7)に比
し、非鉄金属溶湯に対する卓抜した腐食抵抗性と摩耗抵
抗性とを兼備している。比較例No.4〜No.6は、発明例と
同様に、炭化タングステンとチタンの混合粉末を使用
し、焼結過程で前記反応〔1〕を行わせて得られた複合
焼結合金であるが、No.4は、原料中の炭化タングステン
配合量の不足のため、製品焼結体の硬度・耐摩耗性の改
善効果が不足し、No.5およびNo.6では配合量が過剰であ
るために、靱性に乏しく、いずれも発明例に及ばない。
Table 1 shows the raw material composition of the test material, the composition of the sintered product, and the test results. Invention Examples Nos. 1 to 3 have outstanding corrosion resistance and wear resistance to nonferrous metal melts compared to alloy tool steel (No. 7), which is a conventional representative nonferrous metal material. I have. Comparative Examples No. 4 to No. 6 are composite sintered alloys obtained by performing the above reaction [1] in the sintering process using a mixed powder of tungsten carbide and titanium, similarly to the invention examples. However, No. 4 lacks the effect of improving the hardness and wear resistance of the sintered product due to the lack of the amount of tungsten carbide in the raw material, and the amounts of No. 5 and No. 6 are excessive. Therefore, the toughness is poor and none of them is equal to the invention examples.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明の複合焼結合金は、焼結過程の反
応により形成されたTi-W合金マトリックスと微細な析出
生成物である炭化チタン粒子(およびタングステン粒
子)からなる複合組織を有することにより、ダイカスト
マシンの射出部構成材等として必要な非鉄金属溶湯に対
する高い腐食抵抗性,耐摩耗性等を有し、部材の耐用寿
命の向上・メンテナンスの軽減、鋳造操業の効率化、溶
湯の汚染低減・鋳造品質の向上等に寄与するものであ
る。
The composite sintered alloy of the present invention has a composite structure composed of a Ti-W alloy matrix formed by a reaction in the sintering process and titanium carbide particles (and tungsten particles) as fine precipitation products. As a result, it has high corrosion resistance and abrasion resistance to the non-ferrous metal melt required as a constituent material of the injection part of the die casting machine, etc., improving the service life of the member, reducing maintenance, improving the efficiency of casting operation, It contributes to the reduction of contamination and improvement of casting quality.

フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 14/00 B22F 3/10 G Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 14/00 B22F 3/10 G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン20〜40重量%,残
部チタンからなる粉末混合物を焼結することにより製造
される、Ti-W合金からなるマトリックスに炭化チタン粒
子、または炭化チタン粒子とタングステン粒子が分散し
た複合組織を有する焼結体であることを特徴とする非鉄
金属溶湯用複合焼結合金。
1. A titanium carbide particle or a mixture of titanium carbide particles and tungsten particles dispersed in a matrix made of a Ti—W alloy, which is produced by sintering a powder mixture consisting of 20 to 40% by weight of tungsten carbide and the balance titanium. A composite sintered alloy for a non-ferrous metal melt, characterized in that it is a sintered body having a composite structure.
【請求項2】 炭化タングステン20〜40重量%,残
部チタンからなる粉末混合物を焼結原料とし、焼結処理
において次式: Ti+WC→TiC+W の反応を行わせることにより、Ti-W合金からなるマトリ
ックスに、炭化チタン粒子、または炭化チタン粒子とタ
ングステン粒子が分散した複合組織を有する焼結体を形
成することを特徴とする非鉄金属溶湯用複合焼結合金の
製造方法。
2. A matrix composed of a Ti-W alloy by using a powder mixture of 20 to 40% by weight of tungsten carbide and a balance of titanium as a sintering material and performing a reaction of the following formula in the sintering process: Ti + WC → TiC + W. A method for producing a composite sintered alloy for molten non-ferrous metal, wherein a sintered body having titanium carbide particles or a composite structure in which titanium carbide particles and tungsten particles are dispersed is formed.
JP21689597A 1997-08-12 1997-08-12 Composite sintered alloy for non-ferrous metal melt and method for producing the same Expired - Fee Related JP3396800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21689597A JP3396800B2 (en) 1997-08-12 1997-08-12 Composite sintered alloy for non-ferrous metal melt and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21689597A JP3396800B2 (en) 1997-08-12 1997-08-12 Composite sintered alloy for non-ferrous metal melt and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1161319A true JPH1161319A (en) 1999-03-05
JP3396800B2 JP3396800B2 (en) 2003-04-14

Family

ID=16695606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21689597A Expired - Fee Related JP3396800B2 (en) 1997-08-12 1997-08-12 Composite sintered alloy for non-ferrous metal melt and method for producing the same

Country Status (1)

Country Link
JP (1) JP3396800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174681A (en) * 2010-12-31 2011-09-07 陕西科技大学 High-purity Ti2AlNxC1-x solid solution material and preparation method thereof
CN105506378A (en) * 2016-02-23 2016-04-20 桐乡市搏腾贸易有限公司 Tungsten carbide reinforced titanium-based composite material for mechanical use and preparation method of tungsten carbide reinforced titanium-based composite material for mechanical use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174681A (en) * 2010-12-31 2011-09-07 陕西科技大学 High-purity Ti2AlNxC1-x solid solution material and preparation method thereof
CN105506378A (en) * 2016-02-23 2016-04-20 桐乡市搏腾贸易有限公司 Tungsten carbide reinforced titanium-based composite material for mechanical use and preparation method of tungsten carbide reinforced titanium-based composite material for mechanical use

Also Published As

Publication number Publication date
JP3396800B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
Kumar et al. Synthesis and characterization of TiB 2 reinforced aluminium matrix composites: a review
Hossain et al. Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites
US4029000A (en) Injection pump for injecting molten metal
JP2012505971A (en) Metal powder
JP4397425B1 (en) Method for producing Ti particle-dispersed magnesium-based composite material
JP2796917B2 (en) Composite sintered alloy for non-ferrous metal melts with excellent corrosion resistance and wear resistance
Gupta et al. Structure Property Correlation of In Situ Reinforced Al–Based Metal Matrix Composite via Stir Casting
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP3396800B2 (en) Composite sintered alloy for non-ferrous metal melt and method for producing the same
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JP3368181B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPH0649581A (en) Metal-ceramics composite excellent in corrosion resistance and wear resistance and its production
JPH06330214A (en) Aluminum power alloy having high hardness and wear resistnce and its production
Karthick et al. Investigation on Mechanical Properties of Aluminum Metal Matrix Composites–A Review
JP3260210B2 (en) Die casting injection sleeve and method of casting aluminum or aluminum alloy member
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
JPH06145856A (en) Corrosion and wear resistant cobalt-based alloy
JPH10121184A (en) Composite sintered alloy for member for molten nonferrous metal
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
Hassan Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method
JP3891890B2 (en) Plunger tip for die casting machine and method for manufacturing the same
JP2001032001A (en) Self-lubricating metal and its production
JP2936296B2 (en) Corrosion and wear resistant alloy for non-ferrous molten metal
JPS5831061A (en) Superhard tungsten carbide alloy with high strength and high oxidation resistance
JP2800082B2 (en) Corrosion and wear resistant alloy for non-ferrous molten metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees