JPH06145856A - Corrosion and wear resistant cobalt-based alloy - Google Patents

Corrosion and wear resistant cobalt-based alloy

Info

Publication number
JPH06145856A
JPH06145856A JP32247092A JP32247092A JPH06145856A JP H06145856 A JPH06145856 A JP H06145856A JP 32247092 A JP32247092 A JP 32247092A JP 32247092 A JP32247092 A JP 32247092A JP H06145856 A JPH06145856 A JP H06145856A
Authority
JP
Japan
Prior art keywords
alloy
wear
corrosion resistance
resistance
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32247092A
Other languages
Japanese (ja)
Inventor
Tsutomu Shimizu
勉 清水
Akira Onishi
杲 大西
Isamu Otsuka
勇 大塚
Hiroaki Okano
宏昭 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP32247092A priority Critical patent/JPH06145856A/en
Publication of JPH06145856A publication Critical patent/JPH06145856A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Co-based alloy having excellent resistance to impact wear by imparting a compsn. consisting of a specified % each of Cr, Mo, B, Si, C, Fe and Ni and the balance Co. CONSTITUTION:A compsn. consisting of 21-29% Cr, 15-24% Mo, 0.5-2% B, >=0.1% Si and the balance essentially Co is imparted to a Co alloy. The resulting objective alloy has high corrosion resistance useful for the constituent members of a kneader and molding machine for plastics. Thus corrosion and wear are suppressed and the damage of such members such as cracking or chipping can be inhibited or prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチツクの混練機
や成形機の部材構成材料等として有用な耐食性、耐摩耗
性等にすぐれたコバルト(Co)基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cobalt (Co) -based alloy having excellent corrosion resistance, wear resistance and the like, which is useful as a material constituting a plastic kneader or a molding machine.

【0002】[0002]

【従来の技術】プラスチツク成形機や、プラスチツク成
形に供される原料ペレツトの混練機の構成部材、例えば
円筒状シリンダとして従来より専ら窒化鋼製シリンダが
使用されてきた。近年、プラスチツク成形品に対する難
燃性や高強度化等の要請に対し、ハロゲン化合物等の難
燃剤や、強化繊維としてセラミツク等の硬質繊維を樹脂
中に混練することが行われている。このため、原料ペレ
ツトの混練機や、射出成形、押出成形等の成形機を構成
するシリンダ、スクリユー、ノズル等は、難燃剤による
腐食および硬質繊維による摩耗の重量作用を受け、従来
に比べ損耗が激しく、耐用寿命が低下する傾向にある。
この対策として、耐食性および耐摩耗性を有する合金を
ライニング材料として所謂遠心被覆法、または粉末冶金
の手法を適用し、シリンダ内面を耐食・耐摩耗合金で被
覆保護することが行われ、そのライニング用合金とし
て、例えば、Cr:25〜32%,W:4〜25%,
C:1〜3.5%,残部Coと不純物からなる合金、ま
たはCr:6〜12%,Mo:25〜30%,Si:2
〜3.5%,残部Coと不純物からなる合金が使用され
ている。
2. Description of the Related Art Conventionally, a nitride steel cylinder has been used as a constituent member of a plastic molding machine or a kneading machine for raw material pellets used for plastic molding, for example, a cylindrical cylinder. In recent years, in response to demands for flame retardancy and high strength of plastic molded products, flame retardants such as halogen compounds and hard fibers such as ceramics as reinforcing fibers have been kneaded in a resin. For this reason, the kneading machine for raw material pellets, cylinders, screws, nozzles, etc., which compose molding machines such as injection molding and extrusion molding, are subject to the weight effect of corrosion due to the flame retardant and wear due to the hard fibers, and are thus worn out compared to conventional ones. Severely, the service life tends to be shortened.
As a countermeasure for this, a so-called centrifugal coating method or powder metallurgy method is applied with an alloy having corrosion resistance and wear resistance as a lining material to coat and protect the inner surface of the cylinder with a corrosion- and wear-resistant alloy. As the alloy, for example, Cr: 25 to 32%, W: 4 to 25%,
C: 1 to 3.5%, alloy consisting of balance Co and impurities, or Cr: 6 to 12%, Mo: 25 to 30%, Si: 2
An alloy consisting of ~ 3.5% and the balance Co and impurities is used.

【0003】[0003]

【発明が解決しようとする課題】従来のライニング用合
金は、各種の酸に対し良好な腐食抵抗性を有し、かつ靱
性にすぐれているものの、硬度が低く、耐摩耗性が十分
でない。特にプラスチツク成形機におけるシリンダとス
クリユーなどの金属部材同士の接触による衝撃摩耗時に
亀裂や欠損を生じ易い、という問題がある。本発明は、
上記に鑑み、プラスチツクの混練機や成形機を構成する
シリンダ、スクリユー、ノズル、その他のこれに関連す
る部材(例えば金型等)の耐久性の向上・安定化に有効
な改良された耐食性・耐摩耗性等を兼ね備え、特に金属
部材同士の耐衝撃摩耗性にすぐれたCo基合金を提供す
るものである。
Conventional lining alloys have good corrosion resistance to various acids and excellent toughness, but have low hardness and insufficient wear resistance. In particular, there is a problem that cracks and defects are likely to occur during impact wear due to contact between metal members such as a cylinder and a screw in a plastic molding machine. The present invention is
In view of the above, improved corrosion resistance and corrosion resistance effective for improving and stabilizing the durability of cylinders, screws, nozzles, and other related members (such as molds) that constitute a plastic kneader or molding machine. It is intended to provide a Co-based alloy having excellent wear resistance and the like, and particularly excellent in impact wear resistance between metal members.

【0004】[0004]

【課題を解決するための手段】本発明のCo基合金は、
Cr:21〜29%,Mo:15〜24%,B:0.5
〜2%,Si:0.1%以上,0.5%未満,C:1%
以下,Fe:2%以下,Ni:2%以下,残部実質的に
Coからなる化学組成を有している。
The Co-based alloy of the present invention comprises:
Cr: 21-29%, Mo: 15-24%, B: 0.5
~ 2%, Si: 0.1% or more, less than 0.5%, C: 1%
Hereinafter, it has a chemical composition of Fe: 2% or less, Ni: 2% or less, and the balance being substantially Co.

【0005】[0005]

【作用】上記成分構成を有する本発明のCo基合金は、
Co,Cr,Mo,Siの4元系合金相にモリブデン硼
化物およびクロム炭化物が比較的微細に分散した複合組
織を有し、高度の耐食性、耐摩耗性、耐衝撃摩耗性、高
温強度等を備えている。マトリツクス中のCr,Mo等
の固溶により高耐食性がもたらされ、またマトリツクス
に分散する硼化物の自己潤滑性により耐食性・耐衝撃摩
耗性が高められ、更にクロム炭化物の分散効果として高
硬度および高温強度が付与されているものと考えられ
る。また、本発明合金は、溶融状態における流動性が良
好で、溶湯の噴霧造粉、および鋳造のいずれも可能であ
り、プラスチツク成形機等の構成部材に適用するに当つ
ては、その粉末を原料とする焼結法、または溶湯による
遠心被覆法等を部材の形状、その他の都合に応じて自由
に選択することができる。
The Co-based alloy of the present invention having the above composition is
It has a complex structure in which molybdenum boride and chromium carbide are relatively finely dispersed in a quaternary alloy phase of Co, Cr, Mo, Si, and has high corrosion resistance, wear resistance, impact wear resistance, high temperature strength, etc. I have it. The solid solution of Cr, Mo, etc. in the matrix provides high corrosion resistance, and the self-lubricating property of the boride dispersed in the matrix enhances the corrosion resistance / impact wear resistance. It is considered that high temperature strength is imparted. Further, the alloy of the present invention has good fluidity in a molten state, can be both spray-milled of molten metal, and cast, and when applied to a constituent member such as a plastic molding machine, the powder is a raw material. Can be freely selected according to the shape of the member and other conveniences.

【0006】本発明合金の成分限定理由は次のとおりで
ある。 Cr:21〜29% CrはCo,Mo,B,Si等と共に前記合金相を形成
する。Crの添加により硬度、耐食性が高められる。添
加量を21%以上としたのは、それより少ないと耐食性
の不足をきたし、また硬度、靱性の改善効果も不十分と
なるからである。添加増量により効果の増加をみるが、
反面靱性の低下をきたすので、29%を上限とした。
The reasons for limiting the components of the alloy of the present invention are as follows. Cr: 21-29% Cr forms the alloy phase together with Co, Mo, B, Si and the like. Hardness and corrosion resistance are enhanced by the addition of Cr. The amount of addition is 21% or more because if it is less than that, corrosion resistance becomes insufficient and the effect of improving hardness and toughness becomes insufficient. The effect increases with the addition amount, but
On the other hand, since it lowers the toughness, 29% was made the upper limit.

【0007】Mo:15〜24% MoはCo,Cr,B,Si等と共に前記合金相を形成
する。Moの添加により、硬度、耐食性が高められる。
添加量の下限を15%としたのは、それに満たないと耐
食性の改善効果が不足するからであり、その増量により
効果を高めることができるが、24%までで十分であ
り、それをこえる添加は経済性を損なうので、これを上
限とした。
Mo: 15-24% Mo forms the alloy phase together with Co, Cr, B, Si and the like. The addition of Mo improves hardness and corrosion resistance.
The lower limit of the amount added is set to 15%, because if it is less than that, the effect of improving corrosion resistance is insufficient, and the effect can be enhanced by increasing the amount, but up to 24% is sufficient, Limits the economic efficiency, so the upper limit is set.

【0008】B:0.5〜2% Bは、Moと結合し自己潤滑性を有するモリブデン硼化
物を形成する。マトリツクス中におけるモリブデン硼化
物の均一分散により、その自己潤滑効果として耐摩耗
性、耐衝撃摩耗性が高められる。この効果を十分なもの
とするため、添加量の下限を0.5%とした。添加増量
により効果を増すが、あまり多くすると、酸化性酸に対
する腐食抵抗性が損なわれるので、2%を上限とした。
B: 0.5-2% B combines with Mo to form a molybdenum boride having self-lubricating properties. The uniform dispersion of molybdenum boride in the matrix enhances its wear resistance and impact wear resistance as a self-lubricating effect. In order to make this effect sufficient, the lower limit of the amount added was set to 0.5%. The effect is increased by increasing the amount added, but if it is too large, the corrosion resistance to oxidizing acids is impaired, so 2% was made the upper limit.

【0009】Si:0.1%以上,0.5%未満 Siは合金の融点を下げ、溶湯の流動性を高めることに
より、その噴霧・造粉性や鋳造性を良好なものとし、ま
た合金粉末の焼結性を改善する。この効果を得るために
0.1%以上を必要とする。しかし、その添加量は0.
5%までで十分であり、それ以上の添加はCo−Mo−
Si相の生成・増加による合金の脆化および耐食性の低
下を招く。このため0.5%未満に制限することが必要
である。
Si: 0.1% or more and less than 0.5% Si lowers the melting point of the alloy and enhances the fluidity of the molten metal, thereby improving its spraying / powdering properties and castability. Improves powder sinterability. To obtain this effect, 0.1% or more is required. However, the addition amount was 0.
Up to 5% is sufficient, and if it is added more than Co-Mo-
This causes embrittlement of the alloy and deterioration of corrosion resistance due to generation and increase of Si phase. Therefore, it is necessary to limit it to less than 0.5%.

【0010】C:1%以下 Cはクロム炭化物を形成しその微細分散効果として合金
の硬度、耐摩耗性を高め、また高温強度の向上に寄与す
る。しかし、C量が多くなるにつれ、Cr,Moの炭化
物生成量が過剰となり合金の脆化を招き、またマトリツ
クス中のCr,Moの有効量の減少に伴い耐食性の不足
をきたす。このため、1%を上限とする。好ましくは、
0.04〜1%である。
C: 1% or less C forms chromium carbides, and as a fine dispersion effect thereof, enhances hardness and wear resistance of the alloy and contributes to improvement of high temperature strength. However, as the amount of C increases, the amount of carbides of Cr and Mo becomes excessive, which causes embrittlement of the alloy, and the corrosion resistance becomes insufficient as the effective amount of Cr and Mo in the matrix decreases. Therefore, the upper limit is 1%. Preferably,
It is 0.04 to 1%.

【0011】Co:バランス成分 Coは、上記諸元素と共に、高耐食性・耐摩耗性を兼備
し、かつ高靱性の本発明合金を形成するための基本元素
である。
Co: Balance component Co is a basic element for forming the alloy of the present invention having high corrosion resistance and wear resistance and high toughness in addition to the above elements.

【0012】Fe:2%以下,Ni:2%以下 FeおよびNiは不純分元素であり、これらの混在は耐
食性低下の原因となるので、混在量は少ない程良いが、
それぞれ2%までの範囲であれば本発明の趣旨は損なわ
れない。このため2%以下の混在が許容される。
Fe: 2% or less, Ni: 2% or less Fe and Ni are impurity elements, and their mixing causes reduction in corrosion resistance. Therefore, the smaller the mixing amount, the better.
Within the range of up to 2%, the gist of the present invention is not impaired. Therefore, a mixture of 2% or less is allowed.

【0013】本発明合金を適用して形成されるプラスチ
ツク混練機・成形機の構成部材であるシリンダやスクリ
ユー、ノズルおよびその他の部品は、必ずしもその全肉
厚を本発明合金とする必要はなく、目的とする部材に応
じた所要形状の構造用鋼等からなる金属ブロツクを母材
とし、耐食性・耐摩耗性等を必要とする領域の表面に本
発明合金をライニング材として適用すればよい。本発明
合金は、例えば遠心噴霧法により造粉し、適当な粒度に
分級した粉末を焼結原料として母材表面を被覆する焼結
合金層を形成するようにしてもよく、また目的とする部
材が単軸シリンダ等である場合には、遠心被覆法を適用
し、円筒形状の母材を水平軸心を中心に回転させなが
ら、その中空孔内に本発明合金の溶湯を注入し、遠心力
の作用下に母材円筒体の内周面に合金層を形成するよう
にしてもよい。その被覆合金層厚さは、例えば1〜10
mm程度であつてよい。
Cylinders, screens, nozzles and other parts which are constituent members of a plastic kneader / molding machine formed by applying the alloy of the present invention do not necessarily have to have the entire thickness of the alloy of the present invention. A metal block made of structural steel or the like having a required shape corresponding to a target member may be used as a base material, and the alloy of the present invention may be applied as a lining material on the surface of a region where corrosion resistance, wear resistance and the like are required. The alloy of the present invention may be powdered by, for example, a centrifugal atomization method, and a powder obtained by classifying to an appropriate particle size may be used as a sintering raw material to form a sintered alloy layer covering the surface of the base material. Is a uniaxial cylinder or the like, the centrifugal coating method is applied, while the cylindrical base material is rotated about the horizontal axis, the molten alloy of the present invention is injected into the hollow hole, and centrifugal force is applied. Under the action of, an alloy layer may be formed on the inner peripheral surface of the base material cylindrical body. The thickness of the coating alloy layer is, for example, 1 to 10
It may be about mm.

【0014】[0014]

【実施例】【Example】

(I)供試材の製作造粉 高周波溶解炉(Ar雰囲気)で溶製した合金溶湯を遠心
噴霧造粉機により粉末化し、分級処理して焼結原料粉末
とする。粒径:44〜250μm。焼結 鋼製の缶(内寸法:φ60×60,mm)と蓋をキヤニ
ング材とし、上記粉末を入れ、真空中で施蓋すると共に
溶接で密封したのち、熱間等方圧加圧焼結に付した。処
理温度:1100℃±10℃、加圧力:1100kgf
/cm2 、時間:2Hr。処理完了後、キヤニング材を
機械加工により除去し、円盤形状の焼結合金ブロツクを
採取した。
(I) Manufacture of test material Powdering The molten alloy melted in a high-frequency melting furnace (Ar atmosphere) is pulverized by a centrifugal spraying granulator and classified to obtain a sintering raw material powder. Particle size: 44-250 μm. A can made of sintered steel (internal size: φ60 × 60, mm) is used as a canning material, the above powder is put into it, and the powder is placed in a vacuum and sealed by welding, and then hot isostatic pressing is performed. Attached to. Treatment temperature: 1100 ° C ± 10 ° C, Pressure: 1100kgf
/ Cm 2 , time: 2 Hr. After the treatment was completed, the canning material was removed by machining, and a disc-shaped sintered alloy block was collected.

【0015】表1に供試焼結合金の化学組成を示す。N
o.1〜3は発明例、No.11〜19は比較例であ
り、比較例のうち、No.11およびNo.12は従来
材の例、No.13〜19は発明例と類似する組成を有
しているが、いずれかの元素の含有量(表中、下線)が
本発明の規定からはずれている例である。表2は、各供
試材について得られた下記試験の結果を示している。
Table 1 shows the chemical composition of the test sintered alloys. N
o. Nos. 1 to 3 are invention examples. Nos. 11 to 19 are comparative examples. 11 and No. No. 12 is an example of a conventional material, No. 12 13 to 19 have compositions similar to those of the inventive examples, but the contents of any element (underlined in the table) deviate from the definition of the present invention. Table 2 shows the results of the following tests obtained for each test material.

【0016】(II)材質特性 (i)硬さ 焼結合金ブロツクの盤面の5個所をロツクウエル Cス
ケールで測定。表中「硬さ」欄の数値は、5個所の平均
値を示している。
(II) Material characteristics (i) Hardness Five points on the board surface of the sintered alloy block were measured with a Rockwell C scale. The numerical value in the "hardness" column in the table indicates the average value of 5 points.

【0017】(ii)耐摩耗性 理研−大越式迅速摩耗試験機により比摩耗量(mm2
kgf)を測定。この摩耗試験の原理は、回転円板を平
面試験片に押し付け、試験片表面に生じた摩耗痕の深さ
・幅等から摩耗抵抗性を評価するものである。試験条件 相手材:SUJ−2(HRc 60) 摩耗距離:400mm 最終荷重:6.2kgf 摩耗速度:1.05m/秒
(Ii) Abrasion resistance A specific amount of abrasion (mm 2 / mm 2 / Rikken-Okoshi type rapid abrasion tester
kgf) is measured. The principle of this wear test is to press a rotating disk against a flat test piece and evaluate the wear resistance from the depth, width, etc. of wear marks produced on the surface of the test piece. Test conditions Counterpart material: SUJ-2 (HRc 60) Wear distance: 400 mm Final load: 6.2 kgf Wear speed: 1.05 m / sec

【0018】(iii)耐衝撃摩耗特性試験機(図1参照) 旋盤1と、試験片取付台2とを有し、試験片取付台2に
ロードセル3を介して試験片Aが設置され、旋盤1には
相手材として金属のリングBが偏心装着される。旋盤1
に装着したリング(相手材)Bを回転駆動して一定のト
ルクおよび荷重のもとに、試験片Aの表面に衝撃摩耗を
繰り返し作用させる。リングBによる試験片Aに対する
押付け荷重は、ロードセル3で検出され一定の値に調節
される。試験片表面に対し衝撃摩耗を所定時間、反復作
用させたのち、試験片表面の摩耗痕部におけるクラツク
の発生の有無をカラーチエツクにより判定する。この試
験方法は、プラスチツクの混練・成形の実機操業におけ
るシリンダとスクリユー等の金属部材同士の接触(衝撃
摩耗)に伴うクラツクや欠損の発生現象を再現し、その
試験結果は、実機操業における衝撃摩耗抵抗性について
信頼性のある評価を可能とするものである。試験条件 相手材リング:合金工具鋼SKD11(HRc 60)
(プラスチツク成形機のスクリユー相当材) 荷重:150kgf,200kgf,260kgfの3
水準 回転速度:0.46m/秒 試験時間:200秒,3サイクル(試験片表面にリング
による衝撃摩耗を200秒間作用させた後、一旦停止
し、試験片を常温まで降下させる操作を1サイクルと
し、3回繰り返す) 試験片表面に対する衝撃摩耗の各サイクル終了毎に摩耗
痕部にカラーチエツクを実施した。表2中、「衝撃摩耗
特性」欄の「I」「II」および「III」は、それぞ
れ1,2および3サイクルの衝撃摩耗終了後におけるカ
ラーチエツク判定結果であり、「○」は、クラツクな
し、「×」はクラツク発生、を意味している(クラツク
発生後のサイクルは省略)。
(Iii) Impact wear resistance tester (see FIG. 1) A lathe 1 and a test piece mounting base 2 are provided, and a test piece A is installed on the test piece mounting base 2 via a load cell 3, A metal ring B is eccentrically attached to the first member as a mating member. Lathe 1
The ring (counterpart material) B mounted on the test piece A is rotatably driven, and impact wear is repeatedly applied to the surface of the test piece A under constant torque and load. The pressing load applied to the test piece A by the ring B is detected by the load cell 3 and adjusted to a constant value. After repeatedly subjecting the surface of the test piece to impact wear for a predetermined time, the presence or absence of cracks in the wear mark on the surface of the test piece is determined by a color check. This test method reproduces the phenomenon of cracks and defects caused by contact (impact wear) between metal members such as cylinders and screws in the actual machine operation of plastic kneading and molding, and the test results show the impact wear in the actual machine operation. It enables reliable evaluation of resistance. Test condition Counterpart material ring: Alloy tool steel SKD11 (HRc 60)
(Material equivalent to plastic of plastic molding machine) Load: 150kgf, 200kgf, 260kgf 3
Level Rotational speed: 0.46 m / sec Test time: 200 sec, 3 cycles (After applying impact wear due to the ring on the surface of the test piece for 200 seconds, stop it once and let the test piece fall to room temperature as one cycle Repeated 3 times) A color check was performed on the wear mark after each cycle of impact wear on the surface of the test piece. In Table 2, "I", "II" and "III" in the "Impact Wear Characteristics" column are the color check judgment results after the impact wear of 1, 2 and 3 cycles, respectively, and "○" indicates no crack. , "X" means that a crack has occurred (the cycle after the occurrence of a crack is omitted).

【0019】(iv)腐食抵抗性 非酸化性酸として24%塩酸水溶液、酸化性酸として2
0%硫酸水溶液(いずれも液温は50℃)を試験液と
し、柱状試験片(10×10×10,mm)を試験液中
に懸吊浸漬し、24時間経過後の腐食減量(mg)を測
定した。
(Iv) Corrosion resistance 24% hydrochloric acid aqueous solution as a non-oxidizing acid, 2 as an oxidizing acid
A 0% sulfuric acid aqueous solution (both of which has a liquid temperature of 50 ° C.) was used as a test solution, and a columnar test piece (10 × 10 × 10, mm) was suspended and immersed in the test solution, and corrosion loss after 24 hours (mg) Was measured.

【0020】(v)組織観察 供試材No.2の試験片を荒研磨(ダイヤモンド微粒子
による)とバフ研磨により鏡面仕上げしたのち、走査型
電子顕微鏡のコンポ像により析出物の析出状態を観察し
た。図2は、そのコンポ像を示している。図中、マトリ
ツクス中の白い析出物はモリブデン硼化物、黒い析出物
はクロム炭化物である。(モリブデン硼化物:粒径 約
0.3〜3μm、面積率 約25%,クロム炭化物:粒
径 約0.3〜1.5μm,面積率 約20%)。モリ
ブデン硼化物およびクロム炭化物が均一に微細分散した
組織を有することが観察される。
(V) Microstructure observation Specimen No. The test piece of No. 2 was mirror-finished by rough polishing (using diamond fine particles) and buffing, and then the deposition state of the deposit was observed by a component image of a scanning electron microscope. FIG. 2 shows the component image. In the figure, the white precipitate in the matrix is molybdenum boride, and the black precipitate is chromium carbide. (Molybdenum boride: particle size about 0.3 to 3 μm, area ratio about 25%, chromium carbide: particle size about 0.3 to 1.5 μm, area ratio about 20%). It is observed that the molybdenum boride and chromium carbide have a uniformly finely dispersed structure.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表2に示したように、発明例No.1〜3
を、従来材であるNo.11およびNo.12と比較す
ると、従来材のNo.11は、硬度および摩耗抵抗性が
低く、非酸化性酸に対する腐食抵抗性も乏しい。また、
衝撃摩耗特性についても荷重200kgf以上でクラツ
クが発生している。No.12は、硬度および耐摩耗性
にすぐれ、また耐食性も非酸化性酸に対するそれは良好
であるが、酸化性酸に対する腐食抵抗性は低く、しかも
衝撃摩耗試験では荷重150kgfの条件ですでにクラ
ツクが発生している。これに対し、発明例1〜3は、非
酸化性酸および酸化性酸のいずれに対しても高度の腐食
抵抗性を有すると共に、硬度および耐摩耗性が高く、し
かもその高硬度に拘らず、衝撃摩耗試験では、荷重26
0kgfの苛酷な条件においてもクラツクの発生はな
く、靱性も良好で卓抜した耐衝撃摩耗性を具備してい
る。
As shown in Table 2, Invention Example No. 1-3
Is a conventional material. 11 and No. Compared with No. 12, the conventional material No. No. 11 has low hardness and abrasion resistance, and poor corrosion resistance to non-oxidizing acid. Also,
Regarding impact and wear characteristics, cracks also occur at a load of 200 kgf or more. No. No. 12 has excellent hardness and wear resistance, and also has good corrosion resistance to non-oxidizing acids, but has low corrosion resistance to oxidizing acids, and cracks have already occurred in the impact wear test under a load of 150 kgf. is doing. On the other hand, Invention Examples 1 to 3 have a high degree of corrosion resistance with respect to both non-oxidizing acids and oxidizing acids, and have high hardness and wear resistance, and despite their high hardness, In the impact wear test, a load of 26
No cracking occurs even under a severe condition of 0 kgf, toughness is excellent, and excellent impact wear resistance is provided.

【0024】また、比較例No.13〜19は、発明例
と類似する組成を有しているが、構成元素の一部に過不
足があるため、耐食性、耐摩耗性、衝撃摩耗特性のいず
れかに欠け、発明例に及ばない。すなわち、No.13
(C量過剰)は、発明例に極めて近似した組成を有し、
高硬度・高耐摩耗性を有すると共に、非酸化性酸および
酸化性酸に対する腐食抵抗性にもすぐれてはいるが、C
量が過剰のため、耐衝撃摩耗性が十分でなく、荷重20
0kgfの衝撃摩耗条件でクラツクが発生している。こ
れは、炭化物の過剰析出により靱性の低下をきたしたこ
とによる。No.14(Si量過剰)は、極めて硬質・
高耐摩耗性を有しているものの、耐食性に乏しく、また
耐衝撃摩耗特性も発明例のそれに及ばない。これは、S
i量が過剰のため、Co−Mo−Si相が多量に生成し
たことによるものである。No.15(Cr量不足,S
i量不足)は、衝撃摩耗特性は比較的良好ではあるが、
硬度、耐摩耗性が十分でなく、かつ腐食抵抗性にも劣つ
ている。No.16(Cr量過剰,Si量過剰)は、高
硬度・高耐摩耗性を有し、耐食性も十分であるが、靱性
に乏しく、衝撃摩耗特性に劣つている。No.17(M
o量不足,Si量過剰)は、硬度・耐摩耗性にすぐれて
いるが、非酸化性酸に対する耐食性に乏しい。No.1
8(B量過剰,Si量過剰)は、硬度・耐摩耗性にすぐ
れているが、酸化性酸に対する腐食抵抗性が低く、かつ
衝撃摩耗性も悪い。No.19(B量不足,Si量過
剰)は、硬度・耐摩耗性は十分であるが、耐食性が低
く、また靱性が不足し衝撃摩耗特性は低いレベルにとど
まつている。これらのことから、耐食性、硬度・耐摩耗
性、および衝撃摩耗特性の諸物性について十分な改善効
果を得るためには本発明の成分構成を満たすことが必要
なことがわかる。
Further, in Comparative Example No. Nos. 13 to 19 have compositions similar to those of the invention examples, but lack some of corrosion resistance, wear resistance, and impact wear characteristics because some of the constituent elements are excessive or deficient, and do not reach the invention examples. . That is, No. Thirteen
(Excess amount of C) has a composition extremely similar to that of the invention example,
It has high hardness and high wear resistance, and has excellent corrosion resistance to non-oxidizing acids and oxidizing acids, but C
Since the amount is excessive, the impact wear resistance is not sufficient and the load is 20
Cracks are generated under the impact wear condition of 0 kgf. This is because the over-precipitation of carbide caused a decrease in toughness. No. 14 (Si excess) is extremely hard
Although it has high wear resistance, it is poor in corrosion resistance, and its impact wear resistance does not reach that of the invention examples. This is S
This is because a large amount of Co-Mo-Si phase was generated because the amount of i was excessive. No. 15 (Cr shortage, S
i) is insufficient, the impact wear characteristics are relatively good,
The hardness and wear resistance are not sufficient, and the corrosion resistance is also poor. No. No. 16 (excess Cr content, excess Si content) has high hardness and high wear resistance and sufficient corrosion resistance, but has poor toughness and poor impact wear characteristics. No. 17 (M
Insufficient amount of o and excess amount of Si) has excellent hardness and wear resistance, but poor corrosion resistance to non-oxidizing acid. No. 1
No. 8 (excess B amount, excess Si amount) has excellent hardness and wear resistance, but has low corrosion resistance to oxidizing acids and poor impact wear resistance. No. No. 19 (insufficient amount of B, excessive amount of Si) has sufficient hardness and wear resistance, but has low corrosion resistance and insufficient toughness, and the impact wear property remains at a low level. From these facts, it is understood that it is necessary to satisfy the component constitution of the present invention in order to obtain a sufficient improvement effect on various properties such as corrosion resistance, hardness / wear resistance, and impact wear characteristics.

【0025】[0025]

【発明の効果】本発明のコバルト基合金は、プラスチツ
クの混練機・成形機の構成部材料として有用な高度の耐
食性、耐摩耗性を有している。また、高硬度でありなが
ら靱性も良好で、金属部材同士、例えばシリンダとスク
リユーの接触に伴う衝撃摩耗に対する卓抜した抵抗性を
備えている。従つて本発明合金をこれらの部材に適用す
ることにより、腐食、摩耗が軽減されると共に、クラツ
クや欠け等の部材の損傷が抑制防止され、耐用寿命の向
上、メンテナンスの軽減等の効果が得られる。なお、本
発明合金は上記の用途に限定されず、耐食性、耐摩耗
性、靱性等が要求される各種の装置・機器の構成部材料
としても有用である。
Industrial Applicability The cobalt-based alloy of the present invention has a high degree of corrosion resistance and wear resistance useful as a material for the components of a plastic kneader / molding machine. Further, it has high hardness and good toughness, and has outstanding resistance to impact wear caused by contact between metal members, for example, a cylinder and a screw. Therefore, by applying the alloy of the present invention to these members, corrosion and wear are reduced, and damage to the members such as cracks and chips is prevented and prevented, and the effects of improving the service life and reducing maintenance are obtained. To be The alloy of the present invention is not limited to the above-mentioned applications, and is also useful as a material for constituting parts of various apparatuses and devices that require corrosion resistance, wear resistance, toughness and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】衝撃摩耗試験機の模式的説明図である。FIG. 1 is a schematic explanatory view of an impact wear tester.

【図2】金属組織を示す図面代用顕微鏡写真である。FIG. 2 is a drawing-substituting micrograph showing a metal structure.

【符号の説明】[Explanation of symbols]

1:旋盤、2:試験片取付台、3:荷重検出器、A:試
験片、B:相手材(リング)。
1: Lathe, 2: Test piece mount, 3: Load detector, A: Test piece, B: Counterpart material (ring).

フロントページの続き (72)発明者 岡野 宏昭 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開研究所内Front Page Continuation (72) Inventor Hiroaki Okano 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Cr:21〜29%,Mo:15〜24
%,B:0.5〜2%,Si:0.1%以上,0.5%
未満,C:1%以下,Fe:2%以下,Ni:2%以
下,残部実質的にCoからなる耐食・耐摩耗性コバルト
合金。
1. Cr: 21-29%, Mo: 15-24
%, B: 0.5 to 2%, Si: 0.1% or more, 0.5%
Less than, C: 1% or less, Fe: 2% or less, Ni: 2% or less, the balance is a corrosion- and wear-resistant cobalt alloy consisting essentially of Co.
JP32247092A 1992-11-05 1992-11-05 Corrosion and wear resistant cobalt-based alloy Pending JPH06145856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32247092A JPH06145856A (en) 1992-11-05 1992-11-05 Corrosion and wear resistant cobalt-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32247092A JPH06145856A (en) 1992-11-05 1992-11-05 Corrosion and wear resistant cobalt-based alloy

Publications (1)

Publication Number Publication Date
JPH06145856A true JPH06145856A (en) 1994-05-27

Family

ID=18144004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32247092A Pending JPH06145856A (en) 1992-11-05 1992-11-05 Corrosion and wear resistant cobalt-based alloy

Country Status (1)

Country Link
JP (1) JPH06145856A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920947A (en) * 1995-06-30 1997-01-21 Kubota Corp Composite sintered alloy excellent in wear resistance
JPH0920946A (en) * 1995-06-30 1997-01-21 Kubota Corp Composite sintered material excellent in wear resistance
JP2005290530A (en) * 2004-04-06 2005-10-20 Kubota Corp Metal boride-dispersed sintered compact
JP2014162069A (en) * 2013-02-22 2014-09-08 Mitsubishi Heavy Industries Machinery Technology Corp Kneader and member for the kneader
JP2016008313A (en) * 2014-06-23 2016-01-18 山陽特殊製鋼株式会社 High hardness high toughness powder excellent in producibility by atomization method and method for producing the same
US11155904B2 (en) 2019-07-11 2021-10-26 L.E. Jones Company Cobalt-rich wear resistant alloy and method of making and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254541A (en) * 1991-02-06 1992-09-09 Kubota Corp Cobalt-base alloy having corrosion resistance and wear resistance
JPH04254543A (en) * 1991-02-06 1992-09-09 Kubota Corp Cobalt-base alloy having corrosion resistance and wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254541A (en) * 1991-02-06 1992-09-09 Kubota Corp Cobalt-base alloy having corrosion resistance and wear resistance
JPH04254543A (en) * 1991-02-06 1992-09-09 Kubota Corp Cobalt-base alloy having corrosion resistance and wear resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920947A (en) * 1995-06-30 1997-01-21 Kubota Corp Composite sintered alloy excellent in wear resistance
JPH0920946A (en) * 1995-06-30 1997-01-21 Kubota Corp Composite sintered material excellent in wear resistance
JP2005290530A (en) * 2004-04-06 2005-10-20 Kubota Corp Metal boride-dispersed sintered compact
JP2014162069A (en) * 2013-02-22 2014-09-08 Mitsubishi Heavy Industries Machinery Technology Corp Kneader and member for the kneader
JP2016008313A (en) * 2014-06-23 2016-01-18 山陽特殊製鋼株式会社 High hardness high toughness powder excellent in producibility by atomization method and method for producing the same
US11155904B2 (en) 2019-07-11 2021-10-26 L.E. Jones Company Cobalt-rich wear resistant alloy and method of making and use thereof

Similar Documents

Publication Publication Date Title
EP1227169B1 (en) Spray powder and method for its production
CN101037566B (en) Wear resistant low friction coating composition, coated components, and method for coating thereof
JP4900806B2 (en) Cylinder for molding machine
CN1224731C (en) Cobalt based bonding phase material for refractory antistick tungsten carbide alloy
JP4226656B2 (en) Powder metallurgy cobalt based article with high wear and corrosion resistance in semi-solid metal
Wu et al. Wear characteristics of Fe-based diamond composites with cerium oxide (CeO2) reinforcements
JPH07290186A (en) Tungsten carbide composite lining material and layer for centrifugal casting
CN101466857A (en) Ni-base wear and corrosion resistant alloy
Liu et al. Influence of WC ceramic particles on structures and properties of laser cladding Ni50-WC coatings
JPH06145856A (en) Corrosion and wear resistant cobalt-based alloy
JPH0649581A (en) Metal-ceramics composite excellent in corrosion resistance and wear resistance and its production
JP2800076B2 (en) Corrosion and wear resistant cobalt based alloy
JP2800074B2 (en) Corrosion and wear resistant cobalt based alloy
CN114790521A (en) High-temperature-resistant wear-resistant metal part and preparation method thereof
Radhika et al. Experimental Studies on Mechanical and Wear Behaviour of TiC Reinforced Cu-Sn-Ni Functionally Graded Composite.
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
Wang et al. Effects of in situ NbC on the microstructure and high-temperature friction wear properties of 4Cr5MoSiV1 steel
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
Surzhenkov et al. Optimization of hardmetal reinforcement content in Fe-based hardfacings for abrasive-impact wear conditions
JP2800075B2 (en) Corrosion and wear resistant cobalt based alloy
CN110331399B (en) Method for inhibiting decomposition of cBN particles in chromium-containing nickel-based alloy-cBN composite coating prepared by laser cladding
JPH0718350A (en) Production of co-based sintered alloy
Saravanakumar et al. Development of empirical relationships for preDiction of mechanical anD Wear Behavior of copper matrix surface composite By friction stir processing technique
JP3396800B2 (en) Composite sintered alloy for non-ferrous metal melt and method for producing the same
JP2006089823A (en) Die made of high-speed tool steel