JPH1157878A - Manufacturing method for molding product of ceramic fiber reinforced metal base compound material - Google Patents

Manufacturing method for molding product of ceramic fiber reinforced metal base compound material

Info

Publication number
JPH1157878A
JPH1157878A JP9228994A JP22899497A JPH1157878A JP H1157878 A JPH1157878 A JP H1157878A JP 9228994 A JP9228994 A JP 9228994A JP 22899497 A JP22899497 A JP 22899497A JP H1157878 A JPH1157878 A JP H1157878A
Authority
JP
Japan
Prior art keywords
ceramic fiber
frm
compound material
molding
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9228994A
Other languages
Japanese (ja)
Inventor
Takeshi Yamada
毅 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9228994A priority Critical patent/JPH1157878A/en
Publication of JPH1157878A publication Critical patent/JPH1157878A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate the heat molding and prevent the deterioration of the ceramic fiber due to the reaction against the air by vacuum filling the ceramic fiber reinforced metal base compound material into the coating material with a high workability and by plastic processing it. SOLUTION: When the molding product is made of a flat plate compound material comprising the ceramic fiber such as silicon carbide, alumina and the like, and the metallic foil such as aluminum, titanium and the like, the flat plate compound material is coated with the metal plate having the Plastic workability same as or higher than that of the matrix metal; for example, SP700 alloy, SUS304 and the like. Then, after the flat plate compound material is vacuum filled and heat-molded into a desired shape together with the coating material, the coating material is removed. Further, the molding can be any method of pressing, HIP, gas pressing and the like. Since the compound material is fixed to the inside with the coating material, the desired shape can be stably provided without changing the position from the die during molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属系複合材料成形
品、さらに詳しくは各種金属マトリックスをセラミック
繊維で強化したいわゆるセラミックス繊維強化金属系複
合材料成形品の製造方法に関する。
The present invention relates to a metal-based composite material molded article, and more particularly to a method for producing a so-called ceramic fiber-reinforced metal-based composite material molded article in which various metal matrices are reinforced with ceramic fibers.

【0002】[0002]

【従来の技術】各種マトリックス金属とセラミック繊維
とを組み合わせたセラミック繊維強化金属系複合材料
(以下、FRMと称する)は強度、剛性、耐熱性などの
面で優れた性能を有し各分野で注目されている材料であ
る。FRMとしては多種多様のものが知られておりその
製造方法も多岐にわたっている。例えば薄板状金属とセ
ラミック繊維を交互に積層させ拡散結合により複合化さ
せる方法、セラミック繊維の表面にマトリックス金属を
コーティングした繊維を用いて、これを束ねて拡散結合
により複合化させる方法及びセラミック繊維をドラム等
に巻きつけ、その上に溶射等の方法によりマトリックス
金属を固着させ複合化する方法などがある。
2. Description of the Related Art Ceramic fiber-reinforced metal-based composite materials (hereinafter referred to as FRMs) in which various matrix metals and ceramic fibers are combined have excellent performances in terms of strength, rigidity, heat resistance, etc. and have attracted attention in various fields. Is the material that is being used. A wide variety of FRMs are known, and their production methods are also diverse. For example, a method of laminating a sheet metal and a ceramic fiber alternately to form a composite by diffusion bonding, a method of using a fiber coated with a matrix metal on the surface of the ceramic fiber, a method of bundling this and forming a composite by diffusion bonding, and a method of forming the ceramic fiber. There is a method of winding around a drum or the like, and bonding a matrix metal thereon by a method such as thermal spraying to form a composite.

【0003】これらの方法で製造されたFRMに対し
て、塑性加工を加えてFRMの成形品を製造する場合、
図5に示すような方法が採られていた。すなわち、図5
(a)に示すように、前記したような方法で得られたF
RM平板4を直接上下の金型7,8間にセットして圧力
をかけて成形してFRM成形品5を製造する方法、図5
(b)に示すように、FRM平板4を金型9の所定の位
置にセットし、その上から補助板10でふたをし、補助
板10と金型9の周囲を溶接するなどしてFRM平板4
を真空封入したのち、HIP処理により熱と圧力をかけ
て補助板10と内部のFRM平板4を成形し、FRM成
形品5を得る方法及び図5(C)に示すように、金型1
1中にFRM平板4をセットし、上にのせたダミーシー
ト12のみを上下から金型11ではさみ、ダミーシート
12にガス圧を付加することにより、FRM平板4をダ
ミーシート12とともに成形してFRM成形品5を得る
方法がある。
[0003] When a FRM molded article is manufactured by plastically processing the FRM manufactured by these methods,
The method as shown in FIG. 5 has been adopted. That is, FIG.
As shown in (a), the F obtained by the method as described above is used.
Method of manufacturing the FRM molded product 5 by directly setting the RM flat plate 4 between the upper and lower molds 7 and 8 and molding by applying pressure, FIG.
As shown in (b), the FRM flat plate 4 is set at a predetermined position of the mold 9, the top plate is covered with an auxiliary plate 10, and the periphery of the auxiliary plate 10 and the mold 9 are welded or the like. Flat plate 4
After vacuum sealing, the auxiliary plate 10 and the internal FRM flat plate 4 are formed by applying heat and pressure by HIP processing to obtain a FRM molded product 5 and, as shown in FIG.
The FRM flat plate 4 is molded together with the dummy sheet 12 by setting the FRM flat plate 4 in 1, sandwiching only the dummy sheet 12 placed thereon with the mold 11 from above and below, and applying gas pressure to the dummy sheet 12. There is a method for obtaining the FRM molded product 5.

【0004】[0004]

【発明が解決しようとする課題】前記のようにFRM成
形品の製造に際し、FRMを直接金型に接触させて塑性
加工を行う場合には次のような問題点があった。その第
1はFRMの端部で表面に出ているセラミック繊維が、
熱間での塑性加工の場合、成形中に大気と反応をおこし
て劣化し、成形品の特性が著しく低下することである。
その第2は、FRMが曲面を有する下側の金型表面上に
不安定に置かれて、成形がなされるために、FRMが成
形中に動き易く位置決めが困難で、FRM成形品の形状
精度が悪いということである。
As described above, in the case of performing plastic working by directly contacting the FRM with a mold in the production of an FRM molded product, there are the following problems. The first is that the ceramic fibers protruding at the end of the FRM are
In the case of hot plastic working, it reacts with the atmosphere during the molding to cause deterioration, and the characteristics of the molded product are significantly reduced.
Secondly, since the FRM is placed on the lower mold surface having a curved surface in an unstable manner and molding is performed, the FRM easily moves during molding and positioning is difficult, and the shape accuracy of the FRM molded product is difficult. Is bad.

【0005】本発明は、前記従来技術の問題点を解決
し、簡便な装置及び操作で安定した高品質のFRM成形
品を得ることのできるFRM成形品の製造方法を提供す
ることを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method of manufacturing a FRM molded product capable of obtaining a stable high-quality FRM molded product with a simple apparatus and operation. .

【0006】[0006]

【課題を解決するための手段】本発明はセラミック繊維
強化金属系複合材料を、該複合材料と同等又はそれより
塑性加工性に優れた被覆材内に真空封入し、前記複合材
を該被覆材と共に塑性加工することを特徴とするセラミ
ック繊維強化金属系複合材料成形品の製造方法である。
SUMMARY OF THE INVENTION According to the present invention, a ceramic fiber reinforced metal-based composite material is vacuum-sealed in a coating material having a plastic workability equal to or better than that of the composite material, and the composite material is coated with the coating material. And a plastic working with a ceramic fiber reinforced metal-based composite material.

【0007】[0007]

【発明の実施の形態】本発明のFRM成形品の製造方法
は、金属箔や金属粉末を薄板状に焼結した板などの金属
薄板材と、長繊維状あるいは網状、織物状に加工したセ
ラミック繊維を積層し、焼結させて複合化する製法の場
合に有効である。本発明の方法においてマトリックス成
分として使用する金属の例としてはチタン、アルミニウ
ム、チタン合金、アルミニウム合金、ニッケル合金のよ
うな金属や合金、あるいはチタンアルミニウム、ニッケ
ルアルミニウムなどの金属間化合物が挙げられる。ま
た、セラミック繊維としては炭化ケイ素繊維、アルミナ
繊維、カーボン繊維、ボロン繊維、二ホウ化チタン繊維
などが使用できる。中でも金属として超塑性特性を示す
チタン合金(Ti−6Al−4V,Ti−6Al−2S
n−4Zr−2Moなど)やチタンアルミニウム金属間
化合物(Ti−25Al−10Nb−3V−1Moな
ど)など、セラミック繊維として炭化ケイ素繊維やアル
ミナ繊維などを組み合わせて使用したものが好ましい。
被覆材としては前記複合材のマトリックス金属と同等又
はそれより塑性加工性に優れた材料、例えばTi−15
V−3Al−3Cr−3Sn合金、Ti−4.5Al−
3V−2Fe−2Mo合金(SP700合金)、オース
テナイト系ステンレス鋼(SUS304,316)など
が使用される。
BEST MODE FOR CARRYING OUT THE INVENTION A method of manufacturing an FRM molded product according to the present invention comprises a metal sheet material such as a metal foil or a sheet obtained by sintering a metal powder into a thin sheet, and a ceramic fiber processed into a long fiber, mesh or woven form. This is effective in the case of a manufacturing method in which fibers are laminated, sintered and composited. Examples of metals used as the matrix component in the method of the present invention include metals and alloys such as titanium, aluminum, titanium alloys, aluminum alloys and nickel alloys, and intermetallic compounds such as titanium aluminum and nickel aluminum. Further, as the ceramic fiber, silicon carbide fiber, alumina fiber, carbon fiber, boron fiber, titanium diboride fiber and the like can be used. Among them, titanium alloys (Ti-6Al-4V, Ti-6Al-2S) exhibiting superplastic properties as a metal
Preferably, ceramic fibers such as silicon carbide fiber or alumina fiber are used in combination, such as n-4Zr-2Mo) or a titanium aluminum intermetallic compound (Ti-25Al-10Nb-3V-1Mo, etc.).
As the coating material, a material having the same or higher plastic workability than the matrix metal of the composite material, for example, Ti-15
V-3Al-3Cr-3Sn alloy, Ti-4.5Al-
3V-2Fe-2Mo alloy (SP700 alloy), austenitic stainless steel (SUS304, 316) or the like is used.

【0008】(作用)本発明の方法においては、FRM
を真空封入して塑性加工を行うため、熱間での成形の場
合、素材であるFRMが大気と反応し、劣化することを
防止することが可能である。またガス圧を利用した成形
では図5の(b)及び(c)に示すように、FRMを下
側の金型上に不安定に置いた状態で成形するのではな
く、後述の図2の(b)及び(c)に示すように、FR
M平板は真空封入されており、封入のために用いた被覆
材により固定されているために、成形中に金型との位置
関係が大きく変化することはなく(成形中にFRMが回
転したり、ずれたりしない)目的とする成形品形状を安
定的に得ることが可能である。
(Action) In the method of the present invention, the FRM
Is subjected to plastic working by vacuum encapsulation, so that in the case of hot forming, it is possible to prevent the FRM, which is a material, from reacting with the atmosphere and deteriorating. Also, in the molding using gas pressure, as shown in FIGS. 5B and 5C, the FRM is not molded in a state where the FRM is placed on the lower mold in an unstable manner. As shown in (b) and (c), FR
Since the M plate is sealed in vacuum and fixed by the covering material used for sealing, the positional relationship with the mold does not change significantly during molding (the FRM rotates during molding, etc.). (It does not shift.) It is possible to stably obtain a desired molded product shape.

【0009】[0009]

【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を明らかにする。図1は本発明のFRM成形品
の基本製造プロセスを示すもので、先ず炭化ケイ素(S
iC)やアルミナ(Al2 3 )などのセラミック繊維
1と、アルミニウム、チタンあるいはチタン合金のよう
な金属箔2を積層し、HIP又はHP(ホットプレス)
により複合化して複合材料平板4を製作する。次に、こ
の平板状FRMをそのマトリックス金属と同等以上の塑
性加工性を有する被覆金属板7{例えばTi−15V−
3Al−3Cr−3Sn合金、Ti−4.5Al−3V
−2Fe−2Mo合金(SP700合金)、オーステナ
イト系ステンレス鋼(SUS304、316)など}で
取り囲み、溶接等の方法により封入後、真空ポンプによ
り内部の空気を除去し、空気取り出し口を溶接等の方法
でふさぐことで真空封入を行う。次にこの真空封入した
FRMを金型6を用いて塑性加工により形状付与するこ
とにより、本発明の複合材料成形品(5)を得ることが
できる。
EXAMPLES Hereinafter, specific examples of the present invention will be described to clarify the effects of the present invention. FIG. 1 shows a basic manufacturing process of an FRM molded article of the present invention.
A ceramic fiber 1 such as iC) or alumina (Al 2 O 3 ) and a metal foil 2 such as aluminum, titanium or a titanium alloy are laminated and HIP or HP (hot press)
To produce a composite material flat plate 4. Next, this flat FRM is coated with a coated metal plate 7 (for example, Ti-15V-
3Al-3Cr-3Sn alloy, Ti-4.5Al-3V
-2Fe-2Mo alloy (SP700 alloy), austenitic stainless steel (SUS304, 316), etc. Surrounded by}, sealed by welding, etc., then the inside air is removed by a vacuum pump, and the air outlet is welded, etc. Vacuum sealing is performed by closing with. Then, the vacuum-filled FRM is shaped by plastic working using a mold 6 to obtain a composite material molded product (5) of the present invention.

【0010】塑性加工のための手段としては図2に示す
方法が代表的である。
As a means for plastic working, a method shown in FIG. 2 is typical.

【0011】(1)熱間プレスによる方法 通常の板金成形にも用いられる方法であり、図2(a)
に示すように、形状付与すべき真空封入したFRM平板
4を上、下の金型7,8の間に挟み、適当な条件でプレ
ス成形し、成形後被覆した金属を除去して、複合材料成
形品5とする。成形条件は主にマトリックスを構成する
金属及び被覆した金属の特性に依存するがチタン合金で
は700℃以上、アルミニウム合金では400℃以上の
温度でひずみ速度が1×10-3〜1×10-5/secと
いう低速で加工する。特にTi−6Al−4Vや747
5Al合金などの超塑性特性を示す材料をマトリックス
とする場合には、それぞれの材料が示す条件下で、加工
を実施すれば加工度を大きくとれ、かつ、得られる製品
の品質も良好である。
(1) Hot pressing method This method is also used for ordinary sheet metal forming.
As shown in the figure, a vacuum-enclosed FRM flat plate 4 to be provided with a shape is sandwiched between upper and lower molds 7 and 8 and press-molded under appropriate conditions. It is referred to as molded article 5. The forming conditions mainly depend on the properties of the metal constituting the matrix and the coated metal, but the strain rate is 1 × 10 −3 to 1 × 10 −5 at a temperature of 700 ° C. or more for titanium alloy and 400 ° C. for aluminum alloy. / Sec. Especially Ti-6Al-4V and 747
When a material having superplastic properties such as a 5Al alloy is used as a matrix, the degree of working can be increased by performing the working under the conditions indicated by each material, and the quality of the obtained product is good.

【0012】(2)HIPにする方法 図2(b)に示すような金型9と補助板10からなる構
造のカプセルの内側に真空封入したFRM平板4とセッ
ト(金型に真空封入したFRM平板4の端部を固定)し
てHIPにより熱と圧力を加えて成形する方法である。
この成形方法の場合、温度が前記(1)に記載した温度
に達した後、加圧成形するようにし、この温度に達する
前に加える圧力はHIP装置の許容する限り低い圧力と
する。また、加圧も成形される平板のひずみ速度が前記
(1)に記載した速度と同程度になるように加圧速度を
制御するのが望ましい。この方法はHIPを使用する点
では従来方法と同じであるが、真空封入したFRM平板
4を金型と固定することで金型との位置関係が変化しな
いようにできるという利点がある。
(2) HIPing Method A set of a FRM flat plate 4 vacuum-sealed inside a capsule having a structure composed of a mold 9 and an auxiliary plate 10 as shown in FIG. 2B (FRM vacuum-sealed in a mold) This is a method in which the end of the flat plate 4 is fixed) and heat and pressure are applied by HIP to form.
In the case of this molding method, after the temperature reaches the temperature described in the above (1), pressure molding is performed, and the pressure applied before reaching this temperature is as low as the HIP device allows. In addition, it is desirable to control the pressing speed so that the strain rate of the flat plate to be formed is substantially the same as the speed described in the above (1). This method is the same as the conventional method in that the HIP is used, but has an advantage that the positional relationship with the mold can be prevented by fixing the vacuum-sealed FRM flat plate 4 to the mold.

【0013】(3)ガス圧成形による方法 ホットプレス中に、図2(c)に示すような金型11を
セットし、ガス圧により、真空封入したFRM平板4
{SiC/Ti合金SP700(Ti−4.5Al−3
V−2Fe−2Mo)}を上、下の真空封入に用いた上
下の被覆材(Ti合金SP700板)とともに押さえつ
けて成形する。成形条件は前記(1)と同様とし、成形
時のひずみ速度はガス圧の付与の仕方により調整する。
(3) Method by gas pressure molding During hot pressing, the mold 11 as shown in FIG. 2C is set, and the FRM flat plate 4 is vacuum-sealed by gas pressure.
{SiC / Ti alloy SP700 (Ti-4.5Al-3
V-2Fe-2Mo)} together with the upper and lower coating materials (Ti alloy SP700 plate) used for the upper and lower vacuum sealing. The molding conditions are the same as in the above (1), and the strain rate at the time of molding is adjusted by the manner of applying the gas pressure.

【0014】これらの方法により製作した成形品例を図
3に示す。図3(a)はブレード面のように複曲面を有
する成形品であり図3(b)は3ヶ所のコーナー部を有
するストリンガー形状の成形品である。ここでは補強材
としてSiC長繊維(米国Texlrou社製SCS−
6)を使用し、繊維の方向に対する曲げ方向は様々であ
る。これ以外にも繊維と異なる方向に並べた層と何層か
積層したものあるいは織物状にしたものも、同様に成形
が可能である。
FIG. 3 shows an example of a molded product manufactured by these methods. FIG. 3A shows a molded product having a double curved surface like a blade surface, and FIG. 3B shows a molded product in a stringer shape having three corner portions. Here, as a reinforcing material, a SiC long fiber (SCS- manufactured by Texlrou, USA) is used.
6), the bending direction with respect to the direction of the fiber varies. In addition to this, it is also possible to form a laminate or a woven fabric in which several layers and layers arranged in different directions from the fibers are laminated.

【0015】また、図4に本発明の方法により製作した
FRM(SiC/Ti合金SP700)成形品{図3
(b)と同形状のもの}の引張り強さを成形前の平板状
FRM(SiC/Ti合金SP700)と比較して示
す。成形品の引張り強さは成形前の平板状FRM(Si
C/Ti合金SP700)に比べて同等の値となってお
り塑性加工後も特性の劣化がないことが確認されてい
る。
FIG. 4 shows an FRM (SiC / Ti alloy SP700) molded product manufactured by the method of the present invention.
The tensile strength of} having the same shape as (b) is shown in comparison with the flat FRM (SiC / Ti alloy SP700) before molding. The tensile strength of the molded product is the flat FRM (Si
(C / Ti alloy SP700), and it is confirmed that there is no deterioration in characteristics even after plastic working.

【0016】[0016]

【発明の効果】本発明の方法によれば、セラミック繊維
で強化した金属系複合材料を簡易なプロセスによりその
材料特性を損なうことなく形状付与して成形することが
でき、しかも高品質の成形品を安定的に得ることができ
る。このようにFRMへの形状付与を塑性加工により行
うことは、従来行われてなかったことであり、本発明方
法により高品質の成形品の製造を実施できたことは工業
的に大変価値があると考えられる。
According to the method of the present invention, a metal-based composite material reinforced with ceramic fibers can be formed and shaped by a simple process without impairing its material properties, and a high-quality molded product can be obtained. Can be obtained stably. Performing the shape imparting to the FRM by plastic working in this manner has not been conventionally performed, and it is industrially very valuable that a high quality molded product can be manufactured by the method of the present invention. it is conceivable that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のFRM成形品の基本製造プロセスの概
略説明図。
FIG. 1 is a schematic explanatory view of a basic manufacturing process of an FRM molded product of the present invention.

【図2】本発明塑性加工による形状付与手段の例を示す
概略説明図。
FIG. 2 is a schematic explanatory view showing an example of a shape imparting means by plastic working of the present invention.

【図3】本発明の方法により製作した成形品の外観図。FIG. 3 is an external view of a molded product manufactured by the method of the present invention.

【図4】本発明方法により製作した成形品の引張り強さ
を示す図表。
FIG. 4 is a table showing the tensile strength of a molded article manufactured by the method of the present invention.

【図5】従来方法でFRMを塑性加工による形状付与手
段の例を示す概略説明図。
FIG. 5 is a schematic explanatory view showing an example of a shape applying means by plastically processing an FRM by a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミック繊維強化金属系複合材料を、
該複合材料と同等又はそれより塑性加工性に優れた被覆
材内に真空封入し、前記複合材を該被覆材と共に塑性加
工することを特徴とするセラミック繊維強化金属系複合
材料成形品の製造方法。
1. A ceramic fiber-reinforced metal-based composite material,
A method for producing a molded article of a ceramic fiber reinforced metal-based composite material, comprising vacuum-encapsulating in a coating material having the same or better plastic workability than that of the composite material and plastically processing the composite material together with the coating material. .
JP9228994A 1997-08-26 1997-08-26 Manufacturing method for molding product of ceramic fiber reinforced metal base compound material Pending JPH1157878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9228994A JPH1157878A (en) 1997-08-26 1997-08-26 Manufacturing method for molding product of ceramic fiber reinforced metal base compound material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9228994A JPH1157878A (en) 1997-08-26 1997-08-26 Manufacturing method for molding product of ceramic fiber reinforced metal base compound material

Publications (1)

Publication Number Publication Date
JPH1157878A true JPH1157878A (en) 1999-03-02

Family

ID=16885107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9228994A Pending JPH1157878A (en) 1997-08-26 1997-08-26 Manufacturing method for molding product of ceramic fiber reinforced metal base compound material

Country Status (1)

Country Link
JP (1) JPH1157878A (en)

Similar Documents

Publication Publication Date Title
US4406393A (en) Method of making filamentary reinforced metallic structures
US8715439B2 (en) Method for making hybrid metal-ceramic matrix composite structures and structures made thereby
US6852273B2 (en) High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US5344063A (en) Method of making diffusion bonded/superplastically formed cellular structures with a metal matrix composite
JPS61195717A (en) Method of hot-molding at least one metal sheet consisting ofmaterial difficult to be deformed
US4733816A (en) Method to produce metal matrix composite articles from alpha-beta titanium alloys
US4762268A (en) Fabrication method for long-length or large-sized dense filamentary monotapes
US5015533A (en) Member of a refractory metal material of selected shape and method of making
WO1993014233A1 (en) Method of manufacturing compound materials of metal group
Taguchi et al. Near-net shape processing of TiAl intermetallic compounds via pseudoHIP-SHS route
JPH1157878A (en) Manufacturing method for molding product of ceramic fiber reinforced metal base compound material
JP4290850B2 (en) Press forming method of disk-shaped parts made of aluminum matrix composite
EP1306459B1 (en) Pretreatment of a metal matrix composite for hot isostatic pressing
US5564620A (en) Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions
WO2004052573A1 (en) Composite material member and method for producing the same
JPH07164592A (en) Hybrid composite material land its manufacture
EP0849020B1 (en) Tooling apparatus for composite fabrication
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPH07157374A (en) Production of metallic composite material molding
JPS6357734A (en) Fiber reinforced metal and its production
JPH0337472B2 (en)
JPH01301827A (en) Manufacture of hybrid material
JPH04339515A (en) Manufacture of metal matrix composite material
JPS58213844A (en) Manufacture of fiber reinforced metallic pipe
JPH073674U (en) Golf club head

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991026