JPH1157357A - Liquid drop separator - Google Patents

Liquid drop separator

Info

Publication number
JPH1157357A
JPH1157357A JP23066597A JP23066597A JPH1157357A JP H1157357 A JPH1157357 A JP H1157357A JP 23066597 A JP23066597 A JP 23066597A JP 23066597 A JP23066597 A JP 23066597A JP H1157357 A JPH1157357 A JP H1157357A
Authority
JP
Japan
Prior art keywords
shape
concave
convex
leeward
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23066597A
Other languages
Japanese (ja)
Inventor
Koji Morioka
宏次 森岡
Kiyokazu Nakamura
清和 中村
Kenji Kurata
健二 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP23066597A priority Critical patent/JPH1157357A/en
Publication of JPH1157357A publication Critical patent/JPH1157357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve liquid drop separation performance and to enhance the capability in dealing with a high-velocity gaseous stream. SOLUTION: This liquid drop separator is juxtaposed with plate materials 2 of a vertical posture having a V-shape in the cross sectional shape in a plane view apart a spacing disposed in a thickness direction in the posture of the V-shape heading the same direction and allows the passage of the horizontal facing gaseous stream A accompanied by the liquid drops in the spacings between the plate materials 2. The surfaces from the beginning end of the projecting side windward slopes (a) at the V-shape of the plate materials 2 to the beginning end of the projecting side leeward slopes (c) are continuously provided with multilayered structures S for liquid capturing and dropping guiding in which many grooves 4 extending in a vertical direction line up in a gas flow passage direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建物の外壁や外扉
に設けるガラリ、あるいは、空調機のエリミネータなど
に用いて、通過気流からその随伴液滴を分離する液滴分
離装置に関し、詳しくは、平面視における横断面形状が
「へ」の字状の縦姿勢の板材を、その「へ」の字形状が
同じ側を向く姿勢で板厚方向に間隔を設けて並設し、こ
れら板材どうしの間の間隙に横向きの液滴随伴気流を通
過させる液滴分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a droplet separating apparatus for separating accompanying liquid droplets from a passing airflow by using a slush provided on an outer wall or an outer door of a building or an eliminator of an air conditioner. , Plate members in a vertical position having a cross-sectional shape of “H” in plan view, and juxtaposed at intervals in the thickness direction with the “H” shape facing the same side, and these plate materials are connected to each other. The present invention relates to a droplet separation device for passing a horizontal droplet-associated airflow through a gap between the droplet separation devices.

【0002】[0002]

【従来の技術】この形式の液滴分離装置は、前後傾斜姿
勢で横方向に延びる板材を所定間隔で上下に並設して、
板材の各々に堰状の液返し(水返し)を設ける形式の液
滴分離装置に比べ、高い液滴分離効果を得ながらも、堰
状の液返しが不要なことから気流通過抵抗が小さくて通
気性が高く、また、板材が縦姿勢であることから捕捉液
の流下排出も縦姿勢の板材に沿わせてスムースに行える
利点を有するが、従来、この形式のものとしては、次の
(イ)または(ロ)の構造のものがあった。
2. Description of the Related Art In this type of droplet separating apparatus, plate members extending in a lateral direction in a forward and backward inclined posture are vertically arranged at predetermined intervals.
Compared to a liquid drop separator of the type in which a weir-shaped liquid return (water return) is provided on each of the plate materials, the air flow passage resistance is small because weir-shaped liquid return is unnecessary, while obtaining a high droplet separation effect. Since the air permeability is high and the plate material is in the vertical position, it has the advantage that the trapped liquid can be smoothly discharged and discharged along the plate material in the vertical position. However, conventionally, this type has the following (a). ) Or (b).

【0003】(イ)図8(平面図)に示すように、板材
2の「へ」の字形状における中央屈曲部2Yに空洞状の
分離室n1を設け、この分離室n1を凸側風上傾斜面a
の終端部において開口させる。また、「へ」の字形状に
おける風上側傾斜部2Xの途中箇所を局部的に屈曲させ
て、凸側風上傾斜面aの途中に一条の捕集溝n2(裏面
の凹側風上傾斜面dでは凸条)を形成し、かつ、風下側
傾斜部2Zの途中箇所を局部的に屈曲させて、凹側風下
傾斜面fの途中に一条の捕集溝n3(裏面の凸側風下傾
斜面cでは凸条)を形成し、さらに、凹側風下傾斜面f
の終端部に開口幅の大きい溝状の遮断室n4を設ける。
そして、これら分離室n1の開口、捕集溝n2,n3、
遮断室n4の開口を除いて、凸側板面及び凹側板面は滑
らかな面にし、また、中央屈曲部2Yの凹側弧面eの曲
率半径を、凸側弧面bの曲率半径よりも大きくする(実
公昭46−18532号公報参照)。
(A) As shown in FIG. 8 (plan view), a hollow separation chamber n1 is provided at a central bent portion 2Y of the plate material 2 in the shape of the "H", and this separation chamber n1 is located on the convex windward side. Slope a
At the end of the. In addition, the midway portion of the windward inclined portion 2X in the shape of “H” is locally bent, and a single trapping groove n2 (concave windward inclined surface on the back surface) is provided in the middle of the convex windward inclined surface a. d, a convex ridge) is formed, and an intermediate portion of the leeward inclined portion 2Z is locally bent, so that a collection groove n3 (a convex leeward inclined surface on the back surface) is formed in the concave leeward inclined surface f. c, a convex ridge) is formed, and further, the concave-side leeward inclined surface f
A groove-shaped shut-off chamber n4 having a large opening width is provided at the end of.
The openings of these separation chambers n1, the collection grooves n2, n3,
Except for the opening of the shut-off chamber n4, the convex side plate surface and the concave side plate surface are made smooth, and the radius of curvature of the concave arc surface e of the central bent portion 2Y is larger than the radius of curvature of the convex arc surface b. (See Japanese Utility Model Publication No. 46-18532).

【0004】(ロ)図9(平面図)に示すように、上下
方向に延びる溝4が気流通過方向に多数並ぶ捕液用及び
流下案内用の多溝構造Sを、板材2の「へ」の字形状に
おける凸側風上傾斜面aの始端部から終端部にかけての
面と、凸側風下傾斜面cの始端部から終端部にかけての
面と、凹側風下傾斜面fの始端部(ないしは凹側風上傾
斜面dの終端部)から凹側風下傾斜面fの終端部にかけ
ての面の各々に連続的に設ける。そして、中央屈曲部2
Yの凸側弧面bと、凹側風上傾斜面dの始端部から凹側
風下傾斜面fの始端部(ないしは凹側風上傾斜面dの終
端部)にかけての面の各々を、上記の多溝構造Sが不存
の一連の滑らかな面にする(実開昭53−115468
号公報参照)。
(B) As shown in FIG. 9 (plan view), a multi-groove structure S for liquid capture and flow-down guide, in which a number of vertically extending grooves 4 are arranged in the airflow passage direction, is formed by “heavy” , The surface from the beginning to the end of the convex leeward inclined surface a, the surface from the starting end to the terminal end of the convex leeward inclined surface c, and the starting end of the concave leeward inclined surface f (or It is provided continuously on each of the surfaces from the end of the concave leeward slope d) to the end of the concave leeward slope f. And the central bend 2
Each of the surfaces from the starting end of the convex-side arc surface b of Y and the concave-side leeward inclined surface f to the starting end of the concave-side leeward inclined surface f (or the terminal end of the concave-side leeward inclined surface d) is described above. Of the multi-groove structure S is a series of smooth surfaces that do not exist.
Reference).

【0005】[0005]

【発明が解決しようとする課題】しかし、(イ)の構造
では、板材間に対する気流Aの通過において随伴液滴が
凸側風上傾斜面aに一応は衝突するが、その衝突液が風
圧の為に凸側風上傾斜面aの捕集溝n2や分離室n1の
開口で確実に捕捉されないまま板面上を運ばれて、中央
屈曲部2Yの凸側弧面bを乗り越えてしまい、そして、
この乗り越えの際に気流中へ再飛散してしまう液や、こ
の乗り越えに続き凸側風下傾斜面cの面上を風下側へ運
ばれて、凸側風下傾斜面cの終端縁部から気流中へ再飛
散してしまう液が多く見られ、この点で液滴分離性能が
低い問題があった。
However, in the structure (a), when the airflow A passes between the plate materials, the accompanying liquid droplets collides with the convex windward inclined surface a for a time. Therefore, it is carried on the plate surface without being reliably captured by the collecting groove n2 of the convex windward inclined surface a and the opening of the separation chamber n1, and climbs over the convex arc surface b of the central bent portion 2Y, and ,
The liquid that re-spatters into the airflow at the time of this overcoming, and is carried to the leeward side on the surface of the convex-side leeward inclined surface c following this overcoming, and flows from the terminal edge of the convex-side leeward inclined surface c into the airflow. Many liquids are re-scattered to the liquid, and there is a problem that the droplet separation performance is low in this regard.

【0006】また、通過風速が大きいほど面上での液運
搬が助長されて、上記の如く再飛散する液の量が多くな
ることから、強制通気の場合では、分離性能の保証のた
めに風路断面積を大きくして通過風速を低下させること
が必要になり、このことで装置が大型化する問題もあっ
た。
[0006] Further, as the passing air velocity is higher, the transport of the liquid on the surface is promoted, and the amount of the liquid re-scattered increases as described above. It is necessary to increase the cross-sectional area of the road to reduce the passing wind speed, which causes a problem that the apparatus becomes large.

【0007】一方、(ロ)の構造では、凸側風上傾斜面
aの始端部から終端部にかけての面に設けた多溝構造S
において、1つの溝4で確実に捕捉できなかった衝突液
も次に続く溝4で捕捉できる(略言すれば、衝突液の捕
捉機会が多い)ことから、前記の(イ)の構造に比べ、
凸側風上傾斜面aでの捕液をより確実にして高い液滴分
離性能を得ることができる。しかし、この(ロ)の構造
にしても、より高い通過風速に対する対応性を考えた場
合、中央屈曲部2Yの凸側弧面bにおける液の乗り越え
や再飛散をさらに効果的に防止できて、液滴分離性能の
一層高いものが要望され、この点で未だ改善の余地があ
った。
On the other hand, in the structure (b), a multi-groove structure S provided on the surface from the start end to the end of the convex windward inclined surface a is provided.
In the above, the collision liquid that could not be reliably captured by one groove 4 can be captured by the following groove 4 (in short, there are many opportunities to capture the collision liquid). ,
High liquid separation performance can be obtained by more reliably collecting liquid on the convex windward inclined surface a. However, even in the structure of (b), in consideration of the correspondence to a higher passing wind speed, it is possible to more effectively prevent the liquid from climbing over and re-scattering on the convex side arc surface b of the central bent portion 2Y, There has been a demand for a higher droplet separation performance, and there is still room for improvement in this respect.

【0008】以上の実情に対し、本発明の主たる課題
は、前記の(ロ)の構造に対する改良により、液滴分離
性能をさらに効果的に高める点にある。
[0008] In view of the above situation, a main object of the present invention is to improve the droplet separation performance more effectively by improving the structure (b).

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

〔1〕請求項1記載の発明では(図1又は図6参照)、
上下方向に延びる溝4が気流通過方向に多数並ぶ多溝構
造Sを、縦姿勢板材2の平面視「へ」の字形状における
凸側風上傾斜面aの始端部から凸側風下傾斜面cの始端
部にかけての面に連続的に設けるから、凸側風上傾斜面
aにおける多溝構造Sにより、先述の如く衝突液を捕液
機会の多い状態で効果的に捕液できることに加え、風圧
により板面上を運ばれて中央屈曲部2Yの凸側弧面bを
越えようとする液を、その凸側弧面bにおける多溝構造
Sをもって同様に効果的に捕捉でき、これにより、中央
屈曲部2Yの凸側弧面bにおける衝突液の乗り越えを効
果的に防止できる。
[1] In the invention of claim 1, (see FIG. 1 or FIG. 6)
A multi-groove structure S in which a large number of grooves 4 extending in the vertical direction are arranged in the airflow passage direction is formed from the starting end of the convex windward inclined surface a in the shape of “H” in plan view of the vertical posture plate member 2 to the convex windward inclined surface c. Is provided continuously on the surface up to the start end of the slab, the multi-groove structure S on the convex windward inclined surface a allows the impinging liquid to be effectively trapped in a state where there is a lot of trapping liquid as described above. The liquid which is carried on the plate surface and tends to cross the convex side arc surface b of the central bent portion 2Y can be similarly effectively captured by the multi-groove structure S in the convex side arc surface b, whereby the center It is possible to effectively prevent the collision liquid from getting over the convex arc surface b of the bent portion 2Y.

【0010】また、中央屈曲部2Yにおける凸側弧面b
の頂部付近では剥離的な気流の乱れが生じ、これが液再
飛散の主因となるが、この凸側弧面bに対向する隣の板
材2の凹側風下傾斜面fによる気流案内で上記の気流乱
れを抑制する「へ」の字形状本来の機能と相まって、そ
の中央屈曲部2Yの凸側弧面bにおける多溝構造Sの保
液作用により、上記の気流乱れによる凸側弧面bでの液
再飛散を効果的に防止でき、これらのことから、先述の
(イ)の構造や(ロ)の構造に比べ、液滴分離性能を効
果的に高めることができる。また、高風速に対する対応
性が大幅に高まることから、強制通気の場合において風
路断面積の低減による通過風速の高速化で装置を小型化
することも効果的に達成できる。
Also, the convex side arc surface b at the central bent portion 2Y
In the vicinity of the top part, a turbulent peeling of the air flow occurs, which is the main cause of liquid re-scattering. However, the air flow is guided by the air flow guide by the concave leeward inclined surface f of the adjacent plate member 2 facing the convex arc surface b. In combination with the original function of the "H" shape for suppressing the turbulence, the liquid retaining action of the multi-groove structure S on the convex side arc surface b of the central bent portion 2Y causes the convex side arc surface b due to the airflow turbulence described above. Liquid re-splashing can be effectively prevented, and from these facts, the droplet separation performance can be effectively improved as compared with the above-described structure (a) or (b). In addition, since the responsiveness to a high wind speed is greatly increased, it is possible to effectively achieve downsizing of the apparatus by increasing the passing wind speed by reducing the cross-sectional area of the air passage in the case of forced ventilation.

【0011】〔2〕請求項2記載の発明では(同図1又
は図6参照)、前記の多溝構造Sを板材2の「へ」の字
形状における凸側風上傾斜面aの始端部から凸側風下傾
斜面cの終端部にかけての面に連続的に設けるから、前
述の乗り越え防止機能の向上により少量になるとは言
え、中央屈曲部2Yの凸側弧面bを乗り越えて凸側風下
傾斜面cに至る液も、その凸側風下傾斜面cにおける多
溝構造Sにより効果的に捕捉でき、これにより、液滴分
離性能を一層高めることができる。
[2] According to the second aspect of the present invention (see FIG. 1 or FIG. 6), the multi-groove structure S is formed at the beginning of the convex side windward inclined surface a of the plate material 2 in the shape of "H". Is continuously provided on the surface from the to the end of the convex leeward inclined surface c. Therefore, although the amount is reduced due to the improvement of the above-described overcoming prevention function, the convex leeward slope c of the central bent portion 2Y is overcome. The liquid reaching the inclined surface c can also be effectively captured by the multi-groove structure S on the leeward inclined surface c on the convex side, so that the droplet separation performance can be further improved.

【0012】〔3〕請求項3記載の発明では(同図1又
は図6参照)、板材2の「へ」の字形状における中央屈
曲部2Yの凹側弧面eの曲率半径を、その中央屈曲部2
Yの凸側弧面bの曲率半径よりも大きくするから、凸側
弧面bの板間気流経路に対する突出は大きくした状態
で、凸側弧面bにおける液の乗り越えが生じ難いように
しながらも、他方で板間気流経路に臨む凹側弧面eは緩
やかな弧面にして、その凹側弧面eにより形成される凹
空間部での気流滞留による渦流を効果的に抑止でき、こ
の渦流抑止により気流通過抵抗を低減できる。
[3] According to the third aspect of the present invention (see FIG. 1 or FIG. 6), the radius of curvature of the concave side arc surface e of the central bent portion 2Y in the "H" shape of the plate member 2 is determined by calculating Bending part 2
Since the radius of curvature of the convex-side arc surface b of Y is made larger than that of the convex-side arc surface b, the protrusion of the convex-side arc surface b with respect to the airflow path between the plates is increased. On the other hand, the concave arc surface e facing the air flow path between the plates is formed to be a gentle arc surface, and the eddy current due to air flow stagnation in the concave space formed by the concave arc surface e can be effectively suppressed. The suppression can reduce the airflow resistance.

【0013】また、上記凹空間部での渦流は、その凹空
間部に対向する隣の板材2の凸側弧面bの近傍気流を乱
す原因ともなるが、この渦流を上記の如く効果的に抑止
して凸側弧面bの近傍気流を安定化できることにより、
前述の如く凸側弧面bにおける多溝構造Sの保液作用に
より液再飛散を防止することと相まって、凸側弧面bで
の液再飛散を一層効果的に防止できる。
In addition, the eddy current in the concave space portion disturbs the air flow near the convex side arc surface b of the adjacent plate member 2 facing the concave space portion, but this eddy current is effectively reduced as described above. By suppressing and stabilizing the airflow near the convex side arc surface b,
As described above, liquid re-scattering on the convex side arc surface b can be more effectively prevented in combination with preventing liquid re-scattering by the liquid retaining action of the multi-groove structure S on the convex side arc surface b.

【0014】〔4〕請求項4記載の発明では(同図1又
は図6参照)、板材2の「へ」の字形状における中央屈
曲部2Yに、上下方向に延びる縦孔状の空洞5を設け、
この空洞5を中央屈曲部2Yの凹側弧面eにおいて上下
方向に延びるスリット状に開口させることにより、板材
間の気流通過に伴い空洞5の内部で極小さい渦流を生じ
させて、その空洞内渦流による微振動で板面の多溝構造
S(特に空洞5に近い凸側弧面bの多溝構造)における
捕捉液の板材下方への流下排出を促進することができ、
そして、この液排出の促進により捕捉液の板上滞留時間
を短くして液滴分離性能をさらに高めることができる。
[4] According to the fourth aspect of the present invention (see FIG. 1 or FIG. 6), a vertical hole-shaped cavity 5 extending in the up-down direction is provided in the central bent portion 2Y of the plate member 2 in the shape of the "H". Provided,
By opening the cavity 5 in a slit shape extending in the vertical direction on the concave arc surface e of the central bent portion 2Y, an extremely small vortex is generated inside the cavity 5 with the passage of the airflow between the plate members, and the inside of the cavity is formed. The micro-vibration caused by the eddy current can promote the discharge of trapped liquid in the multi-groove structure S of the plate surface (particularly, the multi-groove structure of the convex arc surface b close to the cavity 5) to the lower side of the plate material,
By promoting the liquid discharge, the retention time of the trapped liquid on the plate can be shortened to further enhance the droplet separation performance.

【0015】また、この空洞5は、液の存在が少ない凹
側弧面eおいてスリット状に開口させるから、空洞内へ
の液侵入により上記の微振動効果が低下することを防止
でき、しかも、空洞内で渦流を生じさせるから、その空
洞5の開口に対向する隣の板材2の凸側弧面bの近傍気
流が空洞内渦流の影響で乱されて、その凸側弧面bでの
液再飛散が助長されることもない。
Further, since the cavity 5 is opened in a slit shape on the concave arc surface e where there is little liquid, it is possible to prevent the above-mentioned micro-vibration effect from being reduced due to the intrusion of the liquid into the cavity. Since a vortex is generated in the cavity, the airflow near the convex arc surface b of the adjacent plate member 2 facing the opening of the cavity 5 is disturbed by the influence of the vortex in the cavity, and the air flow at the convex arc surface b Liquid re-dispersion is not promoted.

【0016】なお、空洞5の口径やそのスリット状開口
の幅などを適当に選定すれば、空洞内の渦流による微振
動を騒音問題に至らない程度のものに制限することは容
易である。
If the diameter of the cavity 5 and the width of the slit-like opening are appropriately selected, it is easy to limit the micro-vibration caused by the eddy current in the cavity to one that does not cause a noise problem.

【0017】〔5〕請求項5記載の発明では(同図1又
は図6、及び図5参照)、前記空洞5を、板材2の上下
方向端部と板材群の保持枠1とを連結する連結具6の止
め孔に兼用するから、その空洞5とは別に、連結具に対
する専用の止め孔を形成したり、他の専用の連結構造を
設けるに比べ、装置構造を簡単にして装置の製作を容易
にすることができる。
[5] In the fifth aspect of the present invention (see FIG. 1 or FIG. 6 and FIG. 5), the hollow 5 is connected to the vertical end of the plate 2 and the holding frame 1 of the plate group. Since it is also used as the stop hole of the connecting member 6, the device structure can be simplified and the device structure can be simplified as compared with forming a dedicated stopping hole for the connecting member separately from the cavity 5 or providing another dedicated connecting structure. Can be facilitated.

【0018】〔6〕請求項6記載の発明では(同図1又
は図6参照)、板材2の「へ」の字形状における凹側風
上傾斜面dの始端部から凹側風下傾斜面fの始端部にか
けての面を、前記の多溝構造Sが不存の一連の滑らかな
凹曲面、又は、前記空洞5のスリット状開口を除いて一
連状の滑らかの凹曲面にする。
[6] According to the sixth aspect of the present invention (see FIG. 1 or FIG. 6), the concave leeward inclined surface f from the start end of the concave leeward inclined surface d in the "H" shape of the plate member 2 is formed. Is formed as a series of smooth concave curved surfaces in which the multi-groove structure S is absent, or a series of smooth concave curved surfaces excluding the slit-shaped opening of the cavity 5.

【0019】つまり、板材間の気流通過において、凹側
風上傾斜面dの始端部から凹側風下傾斜面fの始端部に
かけての面は、気流随伴液滴の衝突がほとんど無いこと
から、この部分については、前記の多溝構造Sが不存の
一連の滑らかな凹曲面、又は、前記空洞5のスリット状
開口を除いて一連状の滑らかの凹曲面にすることで、液
滴分離性能には影響を及ぼすことなく、上記の凹曲面に
沿う気流をスムースにして全体としての気流通過抵抗を
低減できる。
That is, in the passage of the airflow between the plate members, the surface from the starting end of the concave-side leeward inclined surface d to the starting end of the concave-side leeward inclined surface f has almost no collision of the airflow-related droplets. With respect to the portion, the multi-groove structure S is formed into a series of smooth concave curved surfaces in the absence of, or a series of smooth concave curved surfaces excluding the slit-shaped openings of the cavities 5, thereby improving the droplet separation performance. The air flow along the concave surface can be made smooth without any influence, and the air flow resistance as a whole can be reduced.

【0020】〔7〕請求項7記載の発明では(同図1又
は図6参照)、前記の多溝構造Sを、板材2の「へ」の
字形状における凹側風下傾斜面fの始端部から終端部に
かけての面に連続的に設けるから、気流に乗ったままで
凹側風下傾斜面fに至って衝突する液滴や、前述の再飛
散防止機能の向上により少量になるとは言え、中央屈曲
部2Yの凸側弧面bで再飛散して凹側風下傾斜面fに衝
突する液滴を、その凹側風下傾斜面fにおける多溝構造
Sで効果的に捕捉でき、これにより、液滴分離性能を一
層高めることができる。
[7] According to the seventh aspect of the present invention (see FIG. 1 or FIG. 6), the multi-groove structure S is formed by forming the concave-side leeward inclined surface f of the plate material 2 in the shape of an "H". Since it is continuously provided on the surface from the end to the end portion, it can be said that the amount of droplets colliding with the concave leeward inclined surface f while riding on the airflow and the above-mentioned re-scattering prevention function is improved, Droplets that re-scatter on the convex side arc surface b of 2Y and collide with the concave leeward inclined surface f can be effectively captured by the multi-groove structure S on the concave leeward inclined surface f. The performance can be further enhanced.

【0021】〔8〕請求項8記載の発明では(同図1又
は図6参照)、前記の多溝構造Sにおける各溝4の風下
側の溝壁面4aを、その溝4の形成位置における板材姿
勢に対して垂直な壁面、又は、溝開口側ほど風上側に位
置する傾斜壁面にするから、溝内部の捕捉液が風圧で溝
内部から風下側へ持ち出されてしまうことを、上記の垂
直溝壁面又は傾斜溝壁面により効果的に阻止でき、これ
により、多溝構造Sの捕液性能を高めて、装置全体とし
ての液滴分離性能をさらに効果的に高めることができ
る。
[8] In the invention according to the eighth aspect (see FIG. 1 or FIG. 6), the leeward side groove wall surface 4a of each groove 4 in the multi-groove structure S is formed by a plate material at the position where the groove 4 is formed. Since the vertical wall surface or the inclined wall surface located closer to the windward side toward the groove opening side, the trapped liquid inside the groove is taken out from the inside of the groove to the leeward side by the wind pressure. This can be effectively prevented by the wall surface or the inclined groove wall surface, whereby the liquid collecting performance of the multi-groove structure S can be enhanced, and the droplet separation performance of the entire apparatus can be more effectively enhanced.

【0022】[0022]

〔9〕請求項9記載の発明では(同図1又
は図6参照)、板材2の「へ」の字形状における風下側
傾斜部2Zを、風上側傾斜部2Xよりも緩い傾斜姿勢に
するから、風上側傾斜部2Xの傾斜は大きくして液捕捉
の主体部である凸側風上傾斜面aでの液滴捕捉性を高く
確保しながら、また、凹側風下傾斜面fによる気流案内
で対向する隣の板材2における凸側弧面頂部付近の前述
の如き剥離的な気流の乱れを抑制する機能は保ちなが
ら、風上側傾斜部2Xよりも傾斜を緩くした風下側傾斜
部2Zの整風作用をもって全体としての気流通過をスム
ースにし、これにより、気流通過抵抗を低減できる。
[9] According to the ninth aspect of the present invention (see FIG. 1 or FIG. 6), the leeward inclined portion 2Z in the “H” shape of the plate member 2 is set to be a gentler inclined posture than the leeward inclined portion 2X. In addition, the inclination of the windward inclined portion 2X is increased to secure a high droplet catching property on the convex windward inclined surface a, which is a main portion of liquid capture, and the airflow is guided by the concave leeward inclined surface f. The wind regulating action of the leeward slope portion 2Z, which has a gentler slope than the windward slope portion 2X, while maintaining the above-mentioned function of suppressing the peeling turbulence of the airflow near the top of the convex side arc surface of the opposing adjacent plate member 2. Thus, the airflow as a whole can be made smooth, and thereby the airflow resistance can be reduced.

【0023】[0023]

【発明の実施の形態】図3〜図5は建物外壁Wにおける
通気用開口に設置するガラリGを示し、このガラリGに
対し建物内側から導風用のダクトDを接続する。
3 to 5 show a gallery G installed in a ventilation opening in a building outer wall W, and a duct D for guiding air is connected to the gallery G from the inside of the building.

【0024】このガラリGは、矩形状の保持枠1の内側
に、平面視における断面形状が「へ」の字状の縦姿勢の
板材2を、その「へ」の字形状が同じ側を向く姿勢で板
厚方向に所定ピッチPで並設した構造であり、板材2ど
うしの間の間隙に建物外部からの空気流Aを横向きに通
過させる過程で、その空気流Aに随伴する雨滴などの随
伴水滴を板材2により空気流Aから捕捉分離し、そし
て、その捕捉水を縦姿勢の板材2に沿わせ流下させて、
保持枠1の下辺部1aに至る流下水を建物の外側へ排出
する。
This gull G is formed by placing a plate member 2 having a vertical shape with a cross-sectional shape of "H" in a plan view inside a rectangular holding frame 1 and facing the same side with the "H" shape. It has a structure in which the air flow A from the outside of the building passes sideways in the gap between the plate materials 2 in the horizontal direction at a predetermined pitch P in the plate thickness direction. The entrained water droplets are captured and separated from the airflow A by the plate 2, and the captured water is caused to flow down along the plate 2 in the vertical position,
The drainage water reaching the lower side 1a of the holding frame 1 is discharged to the outside of the building.

【0025】保持枠下辺部1aの上面側は2重板構造に
してあり、流下水の受け止め板として機能させる下辺部
上板3の建物内側縁には、受け止め水の建物内側への侵
入を阻止する堰状の折曲部3aを形成してある。
The upper surface of the lower side 1a of the holding frame has a double-plate structure, and the lower side upper plate 3 which functions as a receiving plate for flowing water prevents the entrance of the receiving water into the inside of the building. A weir-shaped bent portion 3a is formed.

【0026】各板材2の具体的構造としては、図1に示
す如く、平面視「へ」の字形状における風下側傾斜部2
Zを風上側傾斜部2Xよりも緩い傾斜姿勢にし、かつ、
「へ」の字形状における中央屈曲部2Yの凹側弧面eの
曲率半径を、その中央屈曲部2Yの凸側弧面bの曲率半
径よりも大きくしてある。
As shown in FIG. 1, the specific structure of each of the plate members 2 is a leeward inclined portion 2 in a U-shape in plan view.
Z is set to a tilt position that is gentler than the windward tilt portion 2X, and
The radius of curvature of the concave-side arc surface e of the central bent portion 2Y in the shape of “H” is made larger than the radius of curvature of the convex-side arc surface b of the central bent portion 2Y.

【0027】そして、上下方向に延びる溝4が気流通過
方向に多数並ぶ捕液用及び流下案内用の多溝構造Sを、
「へ」の字形状における凸側風上傾斜面aの始端部から
凸側風下傾斜面cの終端部にかけての面、及び、凹側風
下傾斜面fの始端部から終端部にかけての面の夫々に連
続的に設け、これに対し、「へ」の字形状における凹側
風上傾斜面dの始端部から凹側風下傾斜面fの始端部に
かけての面を、多溝構造Sが不存の一連(後述空洞5の
スリット状開口を除いて一連状)の滑らかな凹曲面にし
てある。
A multi-groove structure S for liquid capture and flow-down guide in which a large number of vertically extending grooves 4 are arranged in the airflow passage direction,
Each of a surface from the starting end of the convex leeward inclined surface a to the terminal end of the convex leeward inclined surface c and a surface from the starting end to the terminal end of the concave leeward inclined surface f in the shape of “H”. In the meantime, the surface from the starting end of the concave-side leeward inclined surface d to the starting end of the concave-side leeward inclined surface f in the shape of the letter “H” is formed without the multi-groove structure S. It has a series of smooth concave curved surfaces (a series excluding a slit-shaped opening of the cavity 5 described later).

【0028】つまり、風下側傾斜部2Zの緩傾斜や、凹
側弧面eの大径化、また、凹側風上傾斜面dの始端部か
ら凹側風下傾斜面fの始端部にかけての滑らかな凹曲面
により、板材間の気流通過をスムースにして気流通過抵
抗を小さくしながらも、通過気流Aの随伴水滴を主には
凸側風上傾斜面aに衝突させて、その衝突水を凸側風上
傾斜面aから中央屈曲部2Yの凸側弧面bにかけての多
溝構造Sにより効果的に捕捉し、また、少量とは言え
ど、凸側弧面bを乗り越えて凸側風下傾斜面cに至る水
や、気流Aに乗ったままで(あるいは、凸側弧面bで再
飛散して)凹側風下傾斜面fに至り衝突する水滴も、こ
れら凸側風下傾斜面cや凹側風下傾斜面fにおける多溝
構造Sにより捕捉し、これにより、高い水滴分離性能を
得る。
That is, the leeward inclined portion 2Z is gently inclined, the concave arc surface e is increased in diameter, and the smoothness from the beginning of the concave leeward inclined surface d to the beginning of the concave leeward inclined surface f is obtained. While the air flow between the plate materials is smoothed by the concave surface and the air flow resistance is reduced, the accompanying water droplets of the passing air flow A mainly collide with the convex windward inclined surface a, and the impinging water is convex. The multi-groove structure S from the side windward inclined surface a to the convex side arc surface b of the central bent portion 2Y effectively captures, and although it is a small amount, it climbs over the convex side arc surface b and projects on the convex side leeward slope. The water reaching the surface c and the water droplets that ride on the airflow A (or re-scatter on the convex side arc surface b) and collide with the concave leeward inclined surface f are also affected by the convex leeward inclined surface c and the concave side. The water is captured by the multi-groove structure S on the leeward inclined surface f, thereby obtaining high water droplet separation performance.

【0029】上記の多溝構造Sにおける各溝4の風下側
の溝壁面4aは、その溝4の形成位置における板材姿勢
に対して垂直な壁面にしてあり、溝4の内部の捕捉水が
風圧で風下側へ持ち出されてしまうことを、この垂直溝
壁面4aにより効果的に阻止することで、多溝構造Sの
捕水性能を高く確保する。
The groove wall surface 4a on the leeward side of each groove 4 in the multi-groove structure S is a wall surface perpendicular to the plate material attitude at the position where the groove 4 is formed. The vertical groove wall surface 4a effectively prevents the water from being taken out to the leeward side, thereby ensuring high water capturing performance of the multi-groove structure S.

【0030】板材2の「へ」の字形状における中央屈曲
部2Yには、上下方向に延びる縦孔状の空洞5を設け、
そして、この空洞5を中央屈曲部2Yの凹側弧面eにお
いて上下方向に延びるスリット状に開口させてあり、こ
れにより、板材間の気流通過に伴い空洞5の内部で極小
さい渦流を生じさせて、その空洞内渦流による微振動で
板面の多溝構造Sにおける捕捉水の板材下方への流下排
出を促進するようにしてある。
A vertical hole-like cavity 5 extending in the vertical direction is provided in the central bent portion 2Y of the plate
The cavity 5 is opened in a slit shape extending in the vertical direction on the concave arc surface e of the central bent portion 2Y, whereby an extremely small vortex is generated inside the cavity 5 with the passage of the airflow between the plate members. Then, the small vibration caused by the eddy current in the cavity promotes the discharge of the trapped water in the multi-groove structure S on the plate surface to flow down the plate material.

【0031】また、空洞5の下端部及び上端部は、各板
材2の下端部と保持枠下辺部1aとを連結するビス6、
及び、各板材2の上端部と保持枠上辺部1bとを連結す
るビス6をねじ込む連結具用止め孔に兼用してある。
The lower end and the upper end of the cavity 5 are provided with screws 6 for connecting the lower end of each plate member 2 and the lower side 1a of the holding frame.
Further, it is also used as a stopper hole for a connector for screwing a screw 6 for connecting the upper end portion of each plate member 2 and the holding frame upper side portion 1b.

【0032】図1に示す板材2の各部寸法関係の好適例
としては(図2参照)、次の例を挙げることができ、こ
の例のものと平面視横断形状がほぼ相似の板材を並設板
材に用いて板材並設ピッチPをその相似比倍にすれば、
ほぼ同等の高い水滴(液滴)分離効果を得ることができ
る。
As a preferred example of the dimensional relationship of each part of the plate member 2 shown in FIG. 1 (see FIG. 2), the following example can be cited. If the sheet material side-to-side pitch P is used as a sheet material and the similar ratio is doubled,
Almost the same high water droplet (droplet) separation effect can be obtained.

【0033】L1=80.0mm L2=24.6mm L3=4.25mm L4=5.25mm L5=1.7mm L6=1.5mm L7=3.0mm L8=1.0mm L9=1.7mm L10=0.5mm L11=0.5mm L12=1.0mm L13=1.0mm L14=4.8mm L15=5.3mm R1=16.4mm R2=32.8mm R3=6.5mm R4=5.65mm R5=12.0mm R6=8.0mm θ1=52° θ2=45° θ3=93° θ4=31° 板材並設ピッチP=25.0mmL1 = 80.0 mm L2 = 24.6 mm L3 = 4.25 mm L4 = 5.25 mm L5 = 1.7 mm L6 = 1.5 mm L7 = 3.0 mm L8 = 1.0 mm L9 = 1.7 mm L10 = 0.5 mm L11 = 0.5 mm L12 = 1.0 mm L13 = 1.0 mm L14 = 4.8 mm L15 = 5.3 mm R1 = 16.4 mm R2 = 32.8 mm R3 = 6.5 mm R4 = 5.65 mm R5 = 12.0mm R6 = 8.0mm θ1 = 52 ° θ2 = 45 ° θ3 = 93 ° θ4 = 31 ° Pitch P = 25.0mm

【0034】〔別の実施形態〕次に別の実施形態を列記
する。 (1)図6は前述の実施形態とは形状が多少異なる板材
2を並設板材に用いた例を示し、このものにおいても前
述の実施形態のものと同等の高い水滴(液滴)分離効果
を得ることができる。
[Another Embodiment] Next, another embodiment will be described. (1) FIG. 6 shows an example in which a plate material 2 having a slightly different shape from the above-described embodiment is used for the side-by-side plate material, and in this case also, a high water droplet (droplet) separation effect equivalent to that of the above-described embodiment is shown. Can be obtained.

【0035】なお、図6に示す板材2の各部寸法関係の
好適例としては(図7参照)、次の例を挙げることがで
き、この例のものと平面視横断形状がほぼ相似の板材を
並設板材に用いて板材並設ピッチPをその相似比倍にす
れば、やはり、ほぼ同等の高い水滴(液滴)分離効果を
得ることができる。
As a preferred example of the dimensional relationship of each part of the plate 2 shown in FIG. 6 (see FIG. 7), the following example can be given. If the plate material side-by-side pitch P is used for the side-by-side plate material and the similar ratio is multiplied by the similar ratio, it is possible to obtain a substantially same high water droplet (droplet) separation effect.

【0036】L1’=50.0mm L2’=15.4mm L3’=2.98mm L4’=2.6mm L5’=1.4mm L6’=0.75mm L7’=1.5mm L8’=1.0mm L9’=1.4mm L10’=0.5mm L11’=0.5mm L12’=1.0mm L13’=1.0mm L14’=2.8mm L15’=2.55mm R1’=10.2mm R2’=20.5mm R3’=4.6mm R4’=3.9mm R5’=10.0mm R6’=4.95mm θ1’=52° θ2’=45° θ3’=93° θ4’=31° 板材並設ピッチP=15.0mmL1 ′ = 50.0 mm L2 ′ = 15.4 mm L3 ′ = 2.98 mm L4 ′ = 2.6 mm L5 ′ = 1.4 mm L6 ′ = 0.75 mm L7 ′ = 1.5 mm L8 ′ = 1. 0 mm L9 ′ = 1.4 mm L10 ′ = 0.5 mm L11 ′ = 0.5 mm L12 ′ = 1.0 mm L13 ′ = 1.0 mm L14 ′ = 2.8 mm L15 ′ = 2.55 mm R1 ′ = 10.2 mm R2 '= 20.5mm R3' = 4.6mm R4 '= 3.9mm R5' = 10.0mm R6 '= 4.95mm θ1' = 52 ° θ2 '= 45 ° θ3' = 93 ° θ4 '= 31 ° Parallel pitch P = 15.0mm

【0037】(2)前述の実施形態では空気流の随伴水
滴を捕捉対象とする例を示したが、捕捉対象は水滴に限
らず水以外の液滴であってもよく、また、通過対象の気
流も空気流に限らず空気以外の気流であってもよい。
(2) In the above-described embodiment, an example was described in which the accompanying water droplets of the air flow were targeted for capture. However, the captured targets are not limited to water droplets, and may be droplets other than water. The airflow is not limited to the airflow, and may be an airflow other than air.

【0038】(3)本発明の液滴分離装置は、建物外部
からの強制吸込空気流や建物外部からの吹き込み風の随
伴水滴を捕捉分離する目的で建物の外壁や外扉に設ける
吸気用や排気用のガラリ、あるいは、空調機に装備する
エリミネータなど、気流からの液滴分離が要求される種
々の用途に採用できる。
(3) The droplet separation apparatus of the present invention is provided for the purpose of air intake provided on an outer wall or an outer door of a building for the purpose of capturing and separating forced air flow from the outside of the building or accompanying water droplets of blowing wind from the outside of the building. It can be used for various applications that require separation of droplets from an airflow, such as an exhaust gutter or an eliminator provided in an air conditioner.

【0039】(4)前述の実施形態では多溝構造におけ
る各溝の風下側の溝壁面を、その溝の形成位置の板材姿
勢に対して垂直な壁面にしたが、これに代え、この溝壁
面を溝開口側ほど風上側に位置する傾斜壁面にしてもよ
い。
(4) In the above-described embodiment, the leeward side groove wall surface of each groove in the multi-groove structure is a wall surface perpendicular to the plate material attitude at the position where the groove is formed. May be an inclined wall surface located closer to the windward side toward the groove opening side.

【0040】(5)各請求項に記載の発明の実施にあた
り、板材の細部構造などは各請求項に記載の範囲におい
て種々の構成変更が可能である。
(5) In practicing the invention described in each claim, the detailed structure of the plate material can be variously changed within the scope described in each claim.

【0041】尚、〔課題を解決するための手段〕の項に
図面との対照を便利にするため符号を記すが、該記入に
より本発明は添付図面の構成に限定されるものではな
い。
Incidentally, in the section of [Means for Solving the Problems], reference numerals are written for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平面視拡大断面図FIG. 1 is an enlarged sectional view in plan view.

【図2】板材寸法諸元を説明するための拡大平面図FIG. 2 is an enlarged plan view for explaining plate material dimensions.

【図3】装置の全体構造を示す平面視断面図FIG. 3 is a cross-sectional plan view showing the entire structure of the device.

【図4】装置の全体構造を示す正面図FIG. 4 is a front view showing the entire structure of the apparatus.

【図5】装置の全体構造を示す側面視断面図FIG. 5 is a sectional side view showing the entire structure of the apparatus.

【図6】別実施形態を示す平面視拡大断面図FIG. 6 is an enlarged cross-sectional plan view showing another embodiment.

【図7】別実施形態における板材寸法諸元を説明するた
めの拡大平面図
FIG. 7 is an enlarged plan view for explaining plate dimensions in another embodiment.

【図8】従来構造を示す平面視断面図FIG. 8 is a plan sectional view showing a conventional structure.

【図9】他の従来構造を示す平面視断面図FIG. 9 is a plan sectional view showing another conventional structure.

【符号の説明】[Explanation of symbols]

2 板材 A 気流 4 溝 4a 溝壁面 S 多溝構造 2X 風上側傾斜部 2Y 中央屈曲部 2Z 風下側傾斜部 a 凸側風上傾斜面 b 凸側弧面 c 凸側風下傾斜面 d 凹側風上傾斜面 e 凹側弧面 f 凹側風下傾斜面 5 空洞 1 保持枠 6 連結具 2 Plate material A Air flow 4 Groove 4a Groove wall surface S Multi-groove structure 2X Windward inclined portion 2Y Center bent portion 2Z Downwind inclined portion a Convexed upwind inclined surface b Convexed arc surface c Convexed leeward inclined surface d Concave upwind Inclined surface e Concave arc surface f Concave leeward inclined surface 5 Cavity 1 Holding frame 6 Connecting tool

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 平面視における横断面形状が「へ」の字
状の縦姿勢の板材を、その「へ」の字形状が同じ側を向
く姿勢で板厚方向に間隔を設けて並設し、 これら板材どうしの間の間隙に横向きの液滴随伴気流を
通過させる液滴分離装置であって、 上下方向に延びる溝が気流通過方向に多数並ぶ捕液用及
び流下案内用の多溝構造を、前記板材の「へ」の字形状
における凸側風上傾斜面の始端部から凸側風下傾斜面の
始端部にかけての面に連続的に設けてある液滴分離装
置。
1. A plate member having a vertical shape having a cross-sectional shape of “H” in a plan view is provided side by side with an interval in the thickness direction so that the “H” shape faces the same side. A droplet separation device for passing a horizontal droplet-associated gas flow through a gap between these plate materials, comprising a multi-groove structure for liquid capture and flow-down guide in which a large number of vertically extending grooves are arranged in the gas flow passage direction. A droplet separating device continuously provided on a surface from a start end of the convex upwind slope to a start end of the convex downwind slope in the shape of the plate member having the shape of "H".
【請求項2】 前記多溝構造を、前記板材の「へ」の字
形状における凸側風上傾斜面の始端部から凸側風下傾斜
面の終端部にかけての面に連続的に設けてある請求項1
記載の液滴分離装置。
2. The multi-groove structure is provided continuously on a surface from the start end of the convex upwind slope to the end of the convex downwind slope in the “H” shape of the plate material. Item 1
The droplet separation device according to the above.
【請求項3】 前記板材の「へ」の字形状における中央
屈曲部の凹側弧面の曲率半径を、その中央屈曲部の凸側
弧面の曲率半径よりも大きくしてある請求項1又は2記
載の液滴分離装置。
3. The plate material according to claim 1, wherein the radius of curvature of the concave side arc surface of the central bent portion in the “H” shape is larger than the radius of curvature of the convex side arc surface of the central bent portion. 3. The droplet separation device according to 2.
【請求項4】 前記板材の「へ」の字形状における中央
屈曲部に、上下方向に延びる縦孔状の空洞を設け、 この空洞を、前記中央屈曲部の凹側弧面において上下方
向に延びるスリット状に開口させてある請求項1〜3の
いずれか1項に記載の液滴分離装置。
4. A vertical hole-shaped cavity extending in the vertical direction is provided in a central bent portion of the plate material in the shape of the "H", and this cavity extends vertically in a concave arc surface of the central bent portion. The droplet separation device according to any one of claims 1 to 3, wherein the droplet separation device is opened in a slit shape.
【請求項5】 前記空洞を、前記板材の上下方向端部と
板材群の保持枠とを連結する連結具の止め孔に兼用して
ある請求項4記載の液滴分離装置。
5. The droplet separating apparatus according to claim 4, wherein the cavity is also used as a stop hole of a connector for connecting a vertical end portion of the plate member and a holding frame of the plate group.
【請求項6】 前記板材の「へ」の字形状における凹側
風上傾斜面の始端部から凹側風下傾斜面の始端部にかけ
ての面を、前記多溝構造が不存の一連の滑らかな凹曲
面、又は、前記空洞のスリット状開口を除いて一連状の
滑らかな凹曲面にしてある請求項1〜5のいずれか1項
に記載の液滴分離装置。
6. A series of smooth surfaces in which the multi-groove structure is absent are formed on a surface from a start end of the concave upwind inclined surface to a start end of the concave leeward inclined surface in the “H” shape of the plate material. The droplet separation device according to any one of claims 1 to 5, wherein the device has a concave curved surface or a series of smooth concave curved surfaces excluding a slit-shaped opening of the cavity.
【請求項7】 前記多溝構造を、前記板材の「へ」の字
形状における凹側風下傾斜面の始端部から終端部にかけ
ての面に連続的に設けてある請求項1〜6のいずれか1
項に記載の液滴分離装置。
7. The multi-groove structure is provided continuously on the surface from the start end to the end of the concave leeward inclined surface of the plate material in the shape of the “H”. 1
Item 6. The droplet separation device according to Item 1.
【請求項8】 前記多溝構造における各溝の風下側の溝
壁面を、その溝の形成位置の板材姿勢に対して垂直な壁
面、又は、溝開口側ほど風上側に位置する傾斜壁面にし
てある請求項1〜7のいずれか1項に記載の液滴分離装
置。
8. The groove wall surface on the leeward side of each groove in the multi-groove structure may be a wall surface perpendicular to the plate material attitude at the position where the groove is formed, or an inclined wall surface located closer to the windward side as the groove opening side. The droplet separation device according to any one of claims 1 to 7.
【請求項9】 前記板材の「へ」の字形状における風下
側傾斜部を、風上側傾斜部よりも緩い傾斜姿勢にしてあ
る請求項1〜8のいずれか1項に記載の液滴分離装置。
9. The droplet separation device according to claim 1, wherein the leeward inclined portion of the plate member in the shape of the “H” has a gentler inclination than the leeward inclined portion. .
JP23066597A 1997-08-27 1997-08-27 Liquid drop separator Pending JPH1157357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23066597A JPH1157357A (en) 1997-08-27 1997-08-27 Liquid drop separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23066597A JPH1157357A (en) 1997-08-27 1997-08-27 Liquid drop separator

Publications (1)

Publication Number Publication Date
JPH1157357A true JPH1157357A (en) 1999-03-02

Family

ID=16911387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23066597A Pending JPH1157357A (en) 1997-08-27 1997-08-27 Liquid drop separator

Country Status (1)

Country Link
JP (1) JPH1157357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079379A1 (en) * 2005-01-25 2006-08-03 Rentschler Reven-Lüftungssysteme GmbH Profile rail for a separation element which is used to remove particles or liquids from a gas flow and separation element comprising said type of profile rails
JP2012223687A (en) * 2011-04-18 2012-11-15 Tlv Co Ltd Gas-liquid separator
JP2016155104A (en) * 2015-02-25 2016-09-01 三菱日立パワーシステムズ株式会社 Moisture separator
CN114570116A (en) * 2022-03-03 2022-06-03 中国石油化工股份有限公司 High-efficient baffling board and high-efficient baffling board defroster

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079379A1 (en) * 2005-01-25 2006-08-03 Rentschler Reven-Lüftungssysteme GmbH Profile rail for a separation element which is used to remove particles or liquids from a gas flow and separation element comprising said type of profile rails
JP2012223687A (en) * 2011-04-18 2012-11-15 Tlv Co Ltd Gas-liquid separator
JP2016155104A (en) * 2015-02-25 2016-09-01 三菱日立パワーシステムズ株式会社 Moisture separator
CN114570116A (en) * 2022-03-03 2022-06-03 中国石油化工股份有限公司 High-efficient baffling board and high-efficient baffling board defroster
CN114570116B (en) * 2022-03-03 2024-04-26 中国石油化工股份有限公司 Efficient baffle plate and efficient baffle plate demister

Similar Documents

Publication Publication Date Title
US5542224A (en) Louver
US10823451B2 (en) Louver assembly
CA1092425A (en) Drainable blade louver
US4064670A (en) Rainproof louver
US20200284466A1 (en) Air vent
JPH1157357A (en) Liquid drop separator
JP2007506599A (en) Deflection chamber for removing water in the outside air supply system of an automobile
JP2589634Y2 (en) Paint mist removal device
US5123224A (en) Drainable louver
JP3076426B2 (en) Paint mist removal device
JP2634145B2 (en) filter
JP3702173B2 (en) Galilean slats and galley
JP2019158223A (en) Vent hole member
JPH0246416Y2 (en)
JP2016195966A (en) Electrostatic precipitator
JP2004360357A (en) Louver blade and louver
JPS60199142A (en) Sound-proof ventilation apparatus
JP2001279894A (en) Ridge ventilation device
JPH0729161Y2 (en) Waterproof galleries
JP2002061466A (en) Vertical waterproof louver
JPS6062387A (en) Looper
EP3367013A1 (en) Air vent
JP2003193760A (en) Blade for louver, and louver
JPH0651748U (en) Exhaust top for outdoor water heaters
JPH0729012B2 (en) Trap gutter separator for separating solid particles from a gas stream