JPH1155871A - Battery charger for motor vehicle - Google Patents

Battery charger for motor vehicle

Info

Publication number
JPH1155871A
JPH1155871A JP9223039A JP22303997A JPH1155871A JP H1155871 A JPH1155871 A JP H1155871A JP 9223039 A JP9223039 A JP 9223039A JP 22303997 A JP22303997 A JP 22303997A JP H1155871 A JPH1155871 A JP H1155871A
Authority
JP
Japan
Prior art keywords
solar cell
battery
charging
solar
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9223039A
Other languages
Japanese (ja)
Inventor
Takeshi Watanabe
武 渡辺
Kazuyoshi Furuhashi
一能 古橋
Takahiro Chiku
孝弘 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP9223039A priority Critical patent/JPH1155871A/en
Publication of JPH1155871A publication Critical patent/JPH1155871A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To control the charging current depending on the charged state of a battery by providing more than one solar cell arrays of different output voltage comprising a plurality of solar cells connected in series, connecting a rectifier at least with a solar cell array having a low output voltage and then connecting these solar cell arrays in parallel when a specified battery is charged. SOLUTION: The charger comprises more than one solar cell arrays 3a, 3b of different output voltage comprising a plurality of solar cells A connected in series and a rectifier 2 is connected at least with a solar cell array 3a having a low output voltage. The solar cell arrays 3a, 3b are then connected in parallel before being connected with a specified battery. When a charging current I is supplied and the voltage of a battery 5 reaches the maximum output voltage level of the solar cell array 3a, the charging current I is supplied only from the solar cell array 3b. When the maximum output voltage level of the solar cell array 3b is reached, the charging current I goes zero. According to the arrangement, the battery 5 can be protected against overcharge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電動車用電池の充
電装置に係り、特に複数の太陽電池が接続された太陽電
池列を用いた電動車用電池の充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery charger for an electric vehicle, and more particularly, to a battery charger for an electric vehicle using a solar cell array to which a plurality of solar cells are connected.

【0002】[0002]

【従来の技術】従来より、電動車用電池の充電をする装
置としては、種々のものが提案されている。例えば、電
池を短時間で充電する方法として、通常の商用電源を用
いた定電流充電方式がある。これは、一定の電流を長時
間流す充電方式であり、大きな電流を流して充電をする
ほど、充電のための必要時間は短くなる。
2. Description of the Related Art Conventionally, various devices have been proposed for charging an electric vehicle battery. For example, as a method of charging a battery in a short time, there is a constant current charging method using a normal commercial power supply. This is a charging method in which a constant current flows for a long time, and the time required for charging is reduced as the charging is performed by flowing a large current.

【0003】また、上記した商用電源を用いる場合の
他、太陽電池を用いた充電装置も提案されている。太陽
電池は、太陽の光を電力に変換するものであり、この太
陽電池を直列接続して太陽電池列とすることにより所定
の電圧を得ることができる。
[0003] In addition to the above-described case of using a commercial power supply, a charging device using a solar cell has been proposed. A solar cell converts solar light into electric power, and a predetermined voltage can be obtained by connecting the solar cells in series to form a solar cell array.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例には以下のような不都合があった。即ち、定電流充
電方式によって長時間にわたって充電を行う場合には、
充電の終期には入力された電気エネルギが水の電気分解
や熱の発生のために消費されてしまう。また、電池内に
ガスが発生し、また、いわゆる過充電によって電池の変
形や電池の劣化を引き起こす、という不都合を生じてい
た。
However, the above conventional example has the following disadvantages. That is, when charging is performed for a long time by the constant current charging method,
At the end of charging, the input electric energy is consumed for electrolysis of water and generation of heat. In addition, gas is generated in the battery, and the battery is deformed and the battery is deteriorated by so-called overcharging.

【0005】また、太陽電池を用いた充電装置であって
も、電池に入力される電流の大きさは、太陽電池の配列
によって特定されるものであり、何らの工夫をしない場
合には、過充電を避けることは困難であった。
[0005] Further, even in a charging device using a solar cell, the magnitude of the current input to the battery is specified by the arrangement of the solar cells. It was difficult to avoid charging.

【0006】更に、充電を行う場合には、充電の終期以
前までは大電流を流し、充電の終期以降には、入力する
電流を小さくする等の制御が必要である。しかしなが
ら、このように電流の制御を行うためには、所定の制御
回路のほか、電池の電圧を検出するセンサ等が必要とな
って、装置全体が複雑化する、という不都合を生じてい
た。
Further, when performing charging, it is necessary to control such that a large current flows before the end of charging, and to reduce the input current after the end of charging. However, in order to control the current in this way, in addition to a predetermined control circuit, a sensor for detecting the voltage of the battery and the like are required, and there has been an inconvenience that the entire apparatus becomes complicated.

【0007】[0007]

【発明の目的】本発明は、かかる従来例の有する不都合
を改善し、特に、簡易な構造で電池の充電状態に応じた
電流の制御をすることができる電動車用電池の充電装置
を提供することを、その目的とする。
SUMMARY OF THE INVENTION The object of the present invention is to provide a battery charger for an electric vehicle which can solve the disadvantages of the prior art and can control the current in accordance with the state of charge of the battery with a simple structure. That is its purpose.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、請求項1記載の発明では、複数の太陽電池が直
列接続され出力電圧が相互に異なる太陽電池列を少なく
とも2列備えると共に、これら各太陽電池列のうち少な
くとも出力電圧の低い太陽電池列に所定の整流器を接続
し、これら各太陽電池列を並列接続すると共に、前記各
太陽電池列の電極を所定の電池に接続する、という構成
を採っている。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of solar cells are connected in series, and at least two solar cell arrays having different output voltages are provided. A predetermined rectifier is connected to at least a solar cell array having a low output voltage among these solar cell arrays, and the respective solar cell arrays are connected in parallel, and the electrodes of the respective solar cell arrays are connected to a predetermined battery. It has a configuration.

【0009】以上のように構成されたことで、電池の充
電が開始された初期状態では、各太陽電池列から電流が
供給される。このため、最大電流が電池に供給される。
そして、充電が進んで電池の電圧が上昇した場合には、
特定の太陽電池列の最大電圧に近づき、その太陽電池列
からは電流が流れなくなる。従って、残りの太陽電池列
からのみ電流が供給され、結果として電池に供給される
電流が減少する。
[0009] With the above configuration, in the initial state where charging of the battery is started, current is supplied from each solar cell array. Therefore, the maximum current is supplied to the battery.
And, when charging progresses and the voltage of the battery rises,
When the voltage approaches the maximum voltage of a specific solar cell string, current stops flowing from that solar cell string. Therefore, current is supplied only from the remaining solar cell rows, and as a result, the current supplied to the battery is reduced.

【0010】[0010]

【発明の実施の形態】本発明の一実施形態を図面に基づ
いて説明する。本実施形態にかかる電動車用電池の充電
装置では、図1に示すように、複数の太陽電池Aが直列
接続され出力電圧が相互に異なる太陽電池列3a,3b
を少なくとも2列備えると共に、これら各太陽電池列3
a,3bのうち少なくとも出力電圧の低い太陽電池列3
aに所定の整流器(例えばダイオード)2が接続されて
いる。また、これら各太陽電池列3a,3bは並列接続
されると共に、各太陽電池列3a,3bの電極が所定の
電池に接続される。以下詳細に説明する。
An embodiment of the present invention will be described with reference to the drawings. In the battery charger for an electric vehicle according to the present embodiment, as shown in FIG. 1, a plurality of solar cells A are connected in series and the output voltages of the solar cell arrays 3a and 3b are different from each other.
And at least two rows, and each of these solar cell rows 3
a, 3b, at least a solar cell array 3 having a low output voltage
A predetermined rectifier (for example, a diode) 2 is connected to a. The solar cell arrays 3a and 3b are connected in parallel, and the electrodes of the solar cell arrays 3a and 3b are connected to predetermined cells. This will be described in detail below.

【0011】図1に示す電動車用電池の充電装置1で
は、6枚の太陽電池Aが直列接続された太陽電池列3a
と、7枚の太陽電池Aが直列接続された太陽電池列3b
とが相互に並列接続されている。また、6枚の太陽電池
Aが直列接続された太陽電池列3aは、本実施形態では
3列接続されている。ここで用いられている太陽電池A
は、全て同じ特性を有するものである。各太陽電池列3
a,3bの正極側の端部には、所定のダイオード2が接
続されている。このダイオード2は、後述するように、
電池5側の電圧が大きくなった場合に、太陽電池列3a
への電流の逆流を防止するためのものである。尚、図1
においては、太陽電池列3bにもダイオード2を接続し
ているが、これは必ずしも必要なものではない。また、
ダイオード2の接続位置も、太陽電池列3a,3bの端
部に限らず、逆の電極側でもよいし、各太陽電池Aの途
中でもよい。
In the electric vehicle battery charger 1 shown in FIG. 1, a solar cell array 3a in which six solar cells A are connected in series.
And a solar cell array 3b in which seven solar cells A are connected in series
And are connected in parallel with each other. Further, in the present embodiment, three solar cell columns 3a in which six solar cells A are connected in series are connected. Solar cell A used here
Have the same characteristics. Each solar cell row 3
A predetermined diode 2 is connected to the positive ends of the terminals a and 3b. This diode 2 is, as described later,
When the voltage on the battery 5 side increases, the solar cell array 3a
This is to prevent the current from flowing back to the device. FIG.
In the above, the diode 2 is also connected to the solar cell column 3b, but this is not always necessary. Also,
The connection position of the diode 2 is not limited to the ends of the solar cell arrays 3a and 3b, but may be on the opposite electrode side or in the middle of each solar cell A.

【0012】各太陽電池列3a,3bは、上記したよう
に、相互に並列接続され、正極及び負極が電池5の正極
及び負極にそれぞれ接続されている。電池5は公称電圧
が120Vのものを用いている。
As described above, the solar cell arrays 3a and 3b are connected in parallel with each other, and the positive and negative electrodes are connected to the positive and negative electrodes of the battery 5, respectively. The battery 5 has a nominal voltage of 120V.

【0013】次に、上記のように構成された電動車用電
池の充電装置1の動作及び機能について説明する。ここ
で、各太陽電池Aによって生じる最大電圧をVA0とし、
各太陽電池列3a,3bによって出力される最大電流を
それぞれIA0とする。全ての太陽電池Aに充分な照度の
光が照射された場合には、各太陽電池列3a,3bから
は最大電流IA0が出力される。そして、このとき、電池
5に供給される充電電流Iは、太陽電池列3a,3bが
全部で4列装備されているので、 I=4・IA0 となる(図2(b)参照)。従って、電池の電圧Vは、
充電電流Iの供給に対応して徐々に上昇する(図2
(a)参照)。
Next, the operation and functions of the battery charger 1 for an electric vehicle configured as described above will be described. Here, the maximum voltage generated by each solar cell A is V A0 ,
The maximum current output by each of the solar cell arrays 3a and 3b is defined as IA0 . When all the solar cells A are irradiated with light of sufficient illuminance, the maximum current IA0 is output from each of the solar cell arrays 3a and 3b. Then, at this time, the charging current I supplied to the battery 5 is I = 4 · I A0 because the solar cell arrays 3a and 3b are all provided in four rows (see FIG. 2B). Therefore, the voltage V of the battery is
It gradually increases in response to the supply of the charging current I (see FIG. 2).
(A)).

【0014】充電電流Iの供給に伴って、電池の電圧V
は6VA0まで上昇する。これは、太陽電池列3aには最
大出力電圧がVA0である太陽電池Aが6枚直列接続され
ているからである。そして、電池5の電圧が6枚の太陽
電池Aを備えた太陽電池列3aの出力電圧の最大値であ
る6・VA0(=144V)以上となると、太陽電池列3
aからは充電電流Iが出力されなくなる。このため、電
池5に供給される充電電流Iは、7枚の太陽電池Aを備
えた太陽電池列3bからのみとなり、4・IA0からIA0
へと減少する(図2(b)参照)。従って、電池5の電
圧の上昇割合も減少する(図2(a)参照)。ここで、
電池5の電圧が6・VA0(=144V)を超えた場合で
も、電流は各太陽電池列3aに逆流しない。これは、各
太陽電池列3aにはダイオード2が接続されているから
である。
When the charging current I is supplied, the battery voltage V
Rises to 6V A0 . This is because six solar cells A whose maximum output voltage is VA0 are connected in series to the solar cell column 3a. When the voltage of the battery 5 becomes equal to or higher than 6 · V A0 (= 144 V), which is the maximum value of the output voltage of the solar cell array 3a including the six solar cells A, the solar cell array 3
The charging current I is not output from a. For this reason, the charging current I supplied to the battery 5 is only from the solar cell row 3b including the seven solar cells A, and from 4 · I A0 to I A0
(See FIG. 2B). Therefore, the rate of increase in the voltage of the battery 5 also decreases (see FIG. 2A). here,
Even when the voltage of the battery 5 exceeds 6 · V A0 (= 144 V), the current does not flow back to each solar cell row 3a. This is because the diode 2 is connected to each solar cell column 3a.

【0015】電池5の電圧Vが、7枚の太陽電池Aを備
えた太陽電池列3bの最大出力電圧7・VA0(=168
V)以上となった場合には、当該太陽電池列3bからも
充電電流が出力されなくなる。従って、充電の初期にお
いては4・IA0(=12A)流れていた充電電流Iは、
充電終期には、IA0(=3A)に抑えられ、最後は電流
が流れなくなる。このように、相互に枚数の異なる太陽
電池Aを直列接続した太陽電池列3a,3bを用い、こ
れらの太陽電池列3a,3bを並列接続することによ
り、電池5の電圧の上昇に伴って電池5に供給される電
流値が自動的に減少する。このことは、なんら複雑な制
御系を装備することなく、電池5に対する過充電を防止
することができることを意味する。
When the voltage V of the battery 5 is equal to the maximum output voltage 7 · V A0 (= 168) of the solar cell array 3b having seven solar cells A.
V) or more, no charging current is output from the solar cell column 3b. Therefore, the charging current I flowing at 4 · I A0 (= 12 A) at the beginning of charging is
At the end of charging, the current is suppressed to I A0 (= 3 A), and no current flows at the end. As described above, by using the solar cell arrays 3a and 3b in which the numbers of solar cells A different from each other are connected in series, and connecting the solar cell arrays 3a and 3b in parallel, the battery 5 5 automatically decreases. This means that overcharging of the battery 5 can be prevented without providing any complicated control system.

【0016】次に、他の実施形態について図面を参照し
て説明する。図3に示すように、当該実施形態にかかる
電動車用電池の充電装置21では、それぞれ枚数の異な
る太陽電池Aが直列接続された太陽電池列23a,23
b,23cが3種類用いられる。具体的には、5枚の太
陽電池Aが直列接続された太陽電池列23aが2列と、
6枚の太陽電池Aが直列接続された太陽電池列23bが
1列と、7枚の太陽電池Aが直列接続された太陽電池列
23cが1列設けられている。そして、これら各太陽電
池列23a,23b,23cが相互に並列接続されてい
る。また、各太陽電池列23a,23b,23cの端部
にダイオード2が接続されているのは、上記した実施形
態と同様である。
Next, another embodiment will be described with reference to the drawings. As shown in FIG. 3, in the electric vehicle battery charger 21 according to the present embodiment, solar cell arrays 23a and 23 in which different numbers of solar cells A are connected in series.
b and 23c are used. Specifically, there are two solar cell rows 23a in which five solar cells A are connected in series,
One solar cell row 23b in which six solar cells A are connected in series and one solar cell row 23c in which seven solar cells A are connected in series are provided. These solar cell arrays 23a, 23b, and 23c are connected to each other in parallel. Further, the diode 2 is connected to the end of each of the solar cell rows 23a, 23b, 23c as in the above-described embodiment.

【0017】以上のように構成された電動車用電池の充
電装置21の動作、機能を説明すると、充電の初期段階
では、電池5に供給される充電電流Iは、 I=4・IA0 となる(図4(b)参照)。従って、電池5の電圧V
は、充電電流の供給に対応して徐々に上昇する(図4
(a)参照)。
The operation and function of the electric vehicle battery charger 21 constructed as described above will be described. In the initial stage of charging, the charging current I supplied to the battery 5 is I = 4 · IA0 . (See FIG. 4B). Therefore, the voltage V of the battery 5
Gradually rises in response to the supply of the charging current (FIG. 4).
(A)).

【0018】充電電流Iの供給に伴って、電池5の電圧
Vは5・VA0まで上昇する。これは、太陽電池列23a
には最大出力電圧がVA0である太陽電池が5枚直列接続
されているからである。そして、電池5の電圧が5枚の
太陽電池Aを備えた太陽電池列23aの出力電圧の最大
値である5・VA0(=120V)以上となると、太陽電
池列23aからは電流が出力されなくなる。このため、
電池5に供給される充電電流Iは、6枚の太陽電池Aを
備えた太陽電池列23bと、7枚の太陽電池Aを備えた
太陽電池列23cからのみとなり、充電電流Iも4・I
A0から2・IA0へと減少する(図4(b)参照)。従っ
て、電池5の電圧Vの上昇割合も減少する(図4(a)
参照)。
With the supply of the charging current I, the voltage V of the battery 5 increases to 5 · V A0 . This is the solar cell row 23a
This is because five solar cells whose maximum output voltage is VA0 are connected in series. When the voltage of the battery 5 becomes equal to or higher than the maximum value of the output voltage of the solar cell array 23a including the five solar cells A, ie, 5 · V A0 (= 120V), a current is output from the solar cell array 23a. Disappears. For this reason,
The charging current I supplied to the battery 5 is only from the solar cell array 23b having six solar cells A and the solar cell array 23c having seven solar cells A, and the charging current I is also 4 · I.
It decreases from A0 to 2 · I A0 (see FIG. 4B). Therefore, the rate of increase of the voltage V of the battery 5 also decreases (FIG. 4A).
reference).

【0019】電池5の電圧Vが、6枚の太陽電池Aを備
えた太陽電池列23bの最大出力電圧6・VA0(=14
4V)以上となった場合には、当該太陽電池列23bか
らも充電電流Iが出力されなくなる。そして、電池5に
供給される充電電流Iは、7枚の太陽電池Aを備えた太
陽電池列23cからのみとなり、充電電流Iも2・I A0
からIA0(=3A)へと減少する。(図4(b)参
照)。従って、電池5の電圧Vの上昇割合も更に減少す
る(図4(a)参照)。
The voltage V of the battery 5 has six solar cells A.
The maximum output voltage of the solar cell array 23b, 6 VA0(= 14
4V) or more, the solar cell column 23b
Also, the charging current I is not output. And to the battery 5
The supplied charging current I is a thick current having seven solar cells A.
Only from the positive battery row 23c, the charging current I is 2 · I A0
To IA0(= 3A). (See FIG. 4 (b)
See). Therefore, the rate of increase of the voltage V of the battery 5 is further reduced.
(See FIG. 4A).

【0020】このように、相互に枚数の異なる太陽電池
Aを直列接続した太陽電池列23a,23b,23cを
3種類用い、これらの太陽電池列23a,23b,23
cを並列接続することにより、電池5の電圧Vの上昇に
伴って電池5に供給される電流値が自動的に減少する。
即ち、3種類の太陽電池列23a,23b,23cを用
いることで、充電電流Iの大きさを3段階に減少させる
ことができる。最終的に、電池5の電圧が7・VA0(=
168V)以上となった場合には、充電電流Iが流れな
くなる。
As described above, three types of solar cell arrays 23a, 23b, and 23c in which different numbers of solar cells A are connected in series are used, and these solar cell arrays 23a, 23b, and 23c are used.
By connecting c in parallel, the current value supplied to the battery 5 automatically decreases as the voltage V of the battery 5 increases.
That is, by using three types of solar cell arrays 23a, 23b, and 23c, the magnitude of the charging current I can be reduced in three stages. Finally, the voltage of the battery 5 becomes 7 · V A0 (=
168 V) or more, the charging current I stops flowing.

【0021】次に、更に他の実施形態について図面を参
照して説明する。図5に示すように、当該実施形態にか
かる電動車用電池の充電装置31では、それぞれ特性の
異なる太陽電池A,Bが直列接続された太陽電池列31
a,31b,31cが用いられている。即ち、太陽電池
Bが8枚直列接続された太陽電池列31aと、太陽電池
Aが6枚直列接続された太陽電池列31bと、更に太陽
電池Aが7枚直列接続された太陽電池列31cが装備さ
れている。また、太陽電池Bを用いた太陽電池列33a
は2列装備されている。そして、これら各太陽電池列3
1a,31b,31cが相互に並列接続されている。
Next, still another embodiment will be described with reference to the drawings. As shown in FIG. 5, in the electric vehicle battery charging apparatus 31 according to the present embodiment, a solar cell array 31 in which solar cells A and B having different characteristics are connected in series.
a, 31b and 31c are used. That is, a solar cell row 31a in which eight solar cells B are connected in series, a solar cell row 31b in which six solar cells A are connected in series, and a solar cell row 31c in which seven solar cells A are connected in series. Equipped. Also, a solar cell array 33a using the solar cell B
Is equipped with two rows. And each of these solar cell arrays 3
1a, 31b and 31c are mutually connected in parallel.

【0022】太陽電池Bの最大出力電圧VB0は、約17
V程度であり、これに対して、太陽電池Aの最大出力電
圧VA0は、約24V程度である。従って、太陽電池Bを
8枚直列接続した場合の最大出力電圧は、太陽電池Aを
6枚直列接続した場合の最大出力電圧より小さい。ま
た、各太陽電池列31a,31b,31cの端部にダイ
オード2が接続されているのは、上記した実施形態と同
様である。
The maximum output voltage V B0 of the solar cell B is about 17
V, whereas the maximum output voltage VA0 of the solar cell A is about 24V. Therefore, the maximum output voltage when eight solar cells B are connected in series is smaller than the maximum output voltage when six solar cells A are connected in series. Further, the diode 2 is connected to the end of each of the solar cell arrays 31a, 31b, 31c as in the above-described embodiment.

【0023】以上のように構成された電動車用電池の充
電装置31の動作、機能を説明すると、充電の初期段階
では、電池5に供給される充電電流Iは、 I=2・IA0+2・IB0 となる(図6(b)参照)。ここで、IB0は、太陽電池
Bが直列接続された太陽電池列33aの出力する最大電
流値である。従って、電池5の電圧Vは、充電電流Iの
供給に対応して徐々に上昇する(図6(a)参照)。
The operation and function of the electric vehicle battery charger 31 constructed as described above will be described. In the initial stage of charging, the charging current I supplied to the battery 5 is I = 2 · I A0 +2. • I B0 (see FIG. 6B). Here, IB0 is the maximum current value output from the solar cell array 33a in which the solar cells B are connected in series. Therefore, the voltage V of the battery 5 gradually increases in response to the supply of the charging current I (see FIG. 6A).

【0024】充電電流Iの供給に伴って、先ず、電池5
の電圧Vは8VB0(=136V)まで上昇する。これは
上記したように、太陽電池列33aには最大出力電圧が
B0である太陽電池が8枚直列接続されており、この電
圧値VB0は、太陽電池Aを6枚直列接続した場合の最大
出力電圧よりも小さいからである。そして、電池5の電
圧Vが8VB0を超えると、太陽電池列33aからは充電
電流Iが出力されなくなる。従って、電池5に供給され
る充電電流Iは減少する。具体的には、電流を出力する
のは、太陽電池Aからなる太陽電池列33b,33cだ
けになるので、供給される電流値は2・IA0となる(図
6(b)参照)。
With the supply of the charging current I, first, the battery 5
Rises to 8V B0 (= 136V). This is because, as described above, eight solar cells having a maximum output voltage of V B0 are connected in series to the solar cell array 33a, and this voltage value V B0 is obtained when six solar cells A are connected in series. This is because it is smaller than the maximum output voltage. Then, when the voltage V of the battery 5 exceeds 8V B0 , the charging current I is not output from the solar cell array 33a. Therefore, the charging current I supplied to the battery 5 decreases. Specifically, since only the solar cell rows 33b and 33c including the solar cell A output current, the supplied current value is 2 · IA0 (see FIG. 6B).

【0025】そして、太陽電池列31b,31cから充
電電流Iが供給されて、電池5の電圧Vが太陽電池Aを
6枚備えた太陽電池列33bの出力電圧の最大値である
6・VA0(=144V)以上となると、太陽電池列33
bからも充電電流Iが出力されなくなる。このため、電
池5に供給される充電電流Iは、7枚の太陽電池Aを備
えた太陽電池列33cからのみとなり、充電電流Iも2
・IA0からIA0へと減少する(図6(b)参照)。従っ
て、電池5の電圧Vの上昇割合も減少する(図6(a)
参照)。
Then, the charging current I is supplied from the solar cell arrays 31b and 31c, and the voltage V of the battery 5 is 6 · V A0 which is the maximum value of the output voltage of the solar cell array 33b having six solar cells A. (= 144V) or more, the solar cell array 33
The charging current I is no longer output from b. For this reason, the charging current I supplied to the battery 5 is only from the solar cell row 33c including the seven solar cells A, and the charging current I is 2
-It decreases from I A0 to I A0 (see FIG. 6B). Therefore, the rate of increase of the voltage V of the battery 5 also decreases (FIG. 6A).
reference).

【0026】更に、太陽電池列33cからの充電電流I
の供給によって電池5の電圧Vが上昇すると、最終的に
7枚の太陽電池Aを備えた太陽電池列33cの最大出力
電圧になり、この太陽電池列33cからも充電電流Iが
供給されなくなる。このように、相互に特性の異なる太
陽電池A,Bを直列接続した太陽電池列31a,31
b,31cを3種類用い、これらの太陽電池列31a,
31b,31cを並列接続することにより、電池5の電
圧Vの上昇に伴って電池5に供給される充電電流Iの値
の制御を自由に設定することが可能となる。即ち、3種
類の太陽電池列31a,31b,31cを用いること
で、充電電流Iの大きさを3段階に減少させることがで
きる。
Further, the charging current I from the solar cell column 33c
When the voltage V of the battery 5 is increased by the supply of the solar cell A, the voltage finally reaches the maximum output voltage of the solar cell array 33c including the seven solar cells A, and the charging current I is not supplied from the solar cell array 33c. As described above, solar cell arrays 31a and 31 in which solar cells A and B having different characteristics are connected in series.
b, 31c, these solar cell arrays 31a,
By connecting the batteries 31b and 31c in parallel, it becomes possible to freely set the control of the value of the charging current I supplied to the battery 5 as the voltage V of the battery 5 increases. That is, by using the three types of solar cell arrays 31a, 31b, and 31c, the magnitude of the charging current I can be reduced in three stages.

【0027】尚、以上に説明した太陽電池列の組み合わ
せ及び各太陽電池列の太陽電池の個数は一例である。即
ち、太陽電池の数や配列方法は、充電の対象となる電池
の特性を基に決定されるべきものである。従って、例え
ば1枚ずつ太陽電池の数が増加していく太陽電池列を並
列接続したり、同じ枚数の太陽電池を備えた太陽電池列
を2組ずつ装備したりすることも可能である。
The combination of the solar cell rows described above and the number of solar cells in each solar cell row are merely examples. That is, the number and arrangement method of the solar cells should be determined based on the characteristics of the battery to be charged. Therefore, for example, it is possible to connect solar cell arrays in which the number of solar cells increases one by one in parallel, or to equip two sets of solar cell arrays each having the same number of solar cells.

【0028】[0028]

【発明の効果】以上説明したように、本発明の電動車用
電池の充電装置は、複数の太陽電池が直列接続された太
陽電池列を少なくとも2列備えると共に、これら各太陽
電池列の端部に所定のダイオードを接続し、各太陽電池
列を相互に異なる枚数の太陽電池で構成すると共に、こ
れら各太陽電池列を並列接続し、各太陽電池列の電極を
所定の電池に接続した。このため、各太陽電池列からの
電流の供給に伴って電池の電圧が上昇することにより、
徐々に太陽電池列からの電流供給が停止する。この結
果、充電の進展に伴って電流値自動的に抑制され、いわ
ゆる過充電が有効に防止される、という優れた効果を生
じる。
As described above, the battery charging device for an electric vehicle according to the present invention includes at least two solar cell rows in which a plurality of solar cells are connected in series, and an end portion of each of these solar cell rows. , A predetermined diode was connected to each of the solar cell arrays, and each of the solar cell arrays was composed of a different number of solar cells. The respective solar cell arrays were connected in parallel, and the electrodes of each of the solar cell arrays were connected to a predetermined battery. For this reason, the voltage of the battery rises with the supply of current from each solar cell row,
The current supply from the solar cell array is gradually stopped. As a result, there is an excellent effect that the current value is automatically suppressed with the progress of charging, and so-called overcharging is effectively prevented.

【0029】また、本発明では太陽電池とダイオードと
の組み合わせだけの簡易な構成で目的を達成できるの
で、電動車用電池の充電装置を安価に構成することがで
きる、という優れた効果を生じる。
Further, in the present invention, since the object can be achieved with a simple configuration consisting only of a combination of a solar cell and a diode, an excellent effect that an inexpensive battery charger for an electric vehicle can be constructed can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】図1に開示した充電装置での充電状態を示す図
であり、図2(a)は充電時間と電池電圧の関係を示
し、図2(b)は充電時間と充電電流の関係を示す。
FIGS. 2A and 2B are diagrams showing a charging state in the charging device disclosed in FIG. 1, wherein FIG. 2A shows a relationship between charging time and battery voltage, and FIG. 2B shows a relationship between charging time and charging current. Is shown.

【図3】本発明の第2の実施形態を示すブロック図であ
る。
FIG. 3 is a block diagram showing a second embodiment of the present invention.

【図4】図3に開示した充電装置での充電状態を示す図
であり、図4(a)は充電時間と電池電圧の関係を示
し、図4(b)は充電時間と充電電流の関係を示す。
4A and 4B are diagrams showing a state of charge in the charging device disclosed in FIG. 3; FIG. 4A shows a relationship between a charging time and a battery voltage; and FIG. 4B shows a relationship between a charging time and a charging current. Is shown.

【図5】本発明の第3の実施形態を示すブロック図であ
る。
FIG. 5 is a block diagram showing a third embodiment of the present invention.

【図6】図5に開示した充電装置での充電状態を示す図
であり、図6(a)は充電時間と電池電圧の関係を示
し、図6(b)は充電時間と充電電流の関係を示す。
6 is a diagram showing a state of charge in the charging device disclosed in FIG. 5; FIG. 6 (a) shows a relationship between charging time and battery voltage; FIG. 6 (b) shows a relationship between charging time and charging current; Is shown.

【符号の説明】[Explanation of symbols]

1 電動車用電池の充電装置 2 整流器(ダイオード) 3a,3b 太陽電池列 5 電池 21 電動車用電池の充電装置 23a,23b,23c 太陽電池列 31 電動車用電池の充電装置 33a,33b,33c 太陽電池列 DESCRIPTION OF SYMBOLS 1 Electric vehicle battery charging device 2 Rectifier (diode) 3a, 3b Solar cell string 5 Battery 21 Electric vehicle battery charging device 23a, 23b, 23c Solar cell string 31 Electric vehicle battery charging device 33a, 33b, 33c Solar array

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の太陽電池が直列接続され出力電圧
が相互に異なる太陽電池列を少なくとも2列備えると共
に、これら各太陽電池列のうち少なくとも出力電圧の低
い太陽電池列に所定の整流器を接続し、 これら各太陽電池列を並列接続すると共に、前記各太陽
電池列の電極を所定の電池に接続したことを特徴とする
電動車用電池の充電装置。
A plurality of solar cells are connected in series and have at least two solar cell arrays having mutually different output voltages, and a predetermined rectifier is connected to at least a solar cell array having a low output voltage among these solar cell arrays. A battery charger for an electric vehicle battery, wherein the solar cell arrays are connected in parallel, and the electrodes of the solar cell arrays are connected to a predetermined battery.
JP9223039A 1997-08-05 1997-08-05 Battery charger for motor vehicle Withdrawn JPH1155871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9223039A JPH1155871A (en) 1997-08-05 1997-08-05 Battery charger for motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9223039A JPH1155871A (en) 1997-08-05 1997-08-05 Battery charger for motor vehicle

Publications (1)

Publication Number Publication Date
JPH1155871A true JPH1155871A (en) 1999-02-26

Family

ID=16791893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9223039A Withdrawn JPH1155871A (en) 1997-08-05 1997-08-05 Battery charger for motor vehicle

Country Status (1)

Country Link
JP (1) JPH1155871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046198A1 (en) * 2003-11-07 2005-05-19 Cherokee Europe Sa Method and apparatus for remote powering using multiple subscriber lines
WO2009131923A2 (en) * 2008-04-23 2009-10-29 Gm Global Technology Operations, Inc. A solar battery charging system and optional solar hydrogen production system for vehicle propulsion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046198A1 (en) * 2003-11-07 2005-05-19 Cherokee Europe Sa Method and apparatus for remote powering using multiple subscriber lines
AU2004307735B2 (en) * 2003-11-07 2009-06-11 MITRA Energy & Infrastructure S.A. Method and apparatus for remote powering using multiple subscriber lines
WO2009131923A2 (en) * 2008-04-23 2009-10-29 Gm Global Technology Operations, Inc. A solar battery charging system and optional solar hydrogen production system for vehicle propulsion
WO2009131923A3 (en) * 2008-04-23 2010-03-04 Gm Global Technology Operations, Inc. A solar battery charging system and optional solar hydrogen production system for vehicle propulsion

Similar Documents

Publication Publication Date Title
US6781343B1 (en) Hybrid power supply device
US6573687B2 (en) Charging/discharging control method for secondary battery
JP5601770B2 (en) Voltage equalization apparatus, method, program, and power storage system
JP5660130B2 (en) Storage unit, method for correcting capacity value of storage battery, and storage system
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US6353304B1 (en) Optimal management of batteries in electric systems
CN101325272B (en) Balance charging method and apparatus thereof
CN1201562A (en) System for equalizing level of charge in batteries
JP3267221B2 (en) Battery pack
US4651080A (en) High efficiency battery charging system
JPH0824050B2 (en) Operation method of fuel cell power generation system
EP1803203B1 (en) Apparatus and method for charging an accumulator
US11322947B2 (en) Energy storage apparatus
JPH1155871A (en) Battery charger for motor vehicle
EP3702878B1 (en) Solar control device
JP2021078236A (en) Solar charging system
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
JPH11113189A (en) Charging device
JPH11285168A (en) Charging circuit
JPH01318519A (en) Method of supplying power for controlling solar photovoltaic power generation system
JPS62126835A (en) Electric source apparatus
JPH0449334B2 (en)
JP2003284251A (en) Power supply device
JP2000228831A (en) Correction method for irregularity in set battery
JP2021151132A (en) Charger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005