JPH1154246A - Ceramic heating body - Google Patents

Ceramic heating body

Info

Publication number
JPH1154246A
JPH1154246A JP20502197A JP20502197A JPH1154246A JP H1154246 A JPH1154246 A JP H1154246A JP 20502197 A JP20502197 A JP 20502197A JP 20502197 A JP20502197 A JP 20502197A JP H1154246 A JPH1154246 A JP H1154246A
Authority
JP
Japan
Prior art keywords
heating
lead
ceramic
heating element
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20502197A
Other languages
Japanese (ja)
Inventor
Hiroyuki Arima
裕之 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20502197A priority Critical patent/JPH1154246A/en
Publication of JPH1154246A publication Critical patent/JPH1154246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the deterioration of electrical characteristics and improve high temperature durability by specifying a maximum difference of the resistance value at ordinary temperature of each heating part, including a lead part. SOLUTION: A ceramic heating body 1 is provided with a plurality of heating parts 2 composed of inorganic conductive material formed in layer shape with U-shape cross section and arranged at one end of an insulting member 5, a layered lead pattern part at least a part of it is overlapped in each end part of the heating part 2, a lead wire 7 connected to the other end of the lead pattern part 6, and an electrode unloading part 4 overlapped with the other end side of the lead wire 7 and exposed to the other end outer peripheral surface of the insulating member 5. Two sets of these parts in the electrically connected state are disposed in parallel in the insulating member 5. The largest difference between the respective resistance values including the lead parts of a plurality of heating parts 2 is within 30% of the maximum value of the resistance value, so that electrical load applied to each heating part 2 is uniformized to make the surface temperature uniform, and heating efficiency is improved without accelerating the change of insulating characteristic and heating characteristic due to difference of electrical or thermal change with the lapse of time nature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐熱衝撃性、高温安
定性に優れ、昇温特性及び耐久性の良好な内燃機関用グ
ロープラグや石油ファンヒータの燃料気化及び点火用ヒ
ータ、各種センサーの加熱用ヒータ、あるいは温水ヒー
タや半田ゴテ等の一般家庭用、電子部品用、産業機器用
等の各種加熱用ヒータに適用され、直流あるいは交流電
源で使用される高温用として最適なセラミック発熱体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel vaporization and ignition heater for glow plugs and oil fan heaters for internal combustion engines, which has excellent thermal shock resistance, high-temperature stability, good temperature rising characteristics and durability, and heaters for various sensors. For ceramic heaters that are applied to general heaters for household use, electronic components, industrial equipment, etc., such as heaters for hot water, soldering irons, etc., and are most suitable for high temperatures used with DC or AC power supplies It is.

【0002】[0002]

【従来の技術】従来より、デイーゼルエンジンの始動時
やアイドリング時に副燃焼室内を急速に予熱するために
用いられる内燃機関用グロープラグをはじめとする各種
点火用並びに加熱用ヒータとしては、耐熱金属製のシー
ス内に高融点金属線等から成る発熱抵抗体を耐熱絶縁粉
末と共に埋設した各種シーズヒータや、火花放電を利用
した各種点火装置等が多用されていた。
2. Description of the Related Art Conventionally, various ignition and heating heaters such as a glow plug for an internal combustion engine used for rapidly preheating the sub-combustion chamber at the time of starting or idling a diesel engine are made of heat-resistant metals. Various types of sheathed heaters in which a heat-generating resistor made of a high-melting metal wire or the like is embedded in a sheath together with heat-resistant insulating powder, and various ignition devices utilizing spark discharge have been frequently used.

【0003】しかし、それらはいずれも急速昇温が困難
であり、その上、耐摩耗性や耐熱性、耐食性等の耐久性
に劣り、とりわけ前記火花放電を利用した点火装置にお
いては、点火時に雑音等の電波障害が発生し易い他、確
実な点火という点からは信頼性に欠ける等の欠点があっ
た。
However, all of them are difficult to raise the temperature rapidly, and furthermore, they are inferior in durability such as abrasion resistance, heat resistance, corrosion resistance and the like. In particular, in an ignition device using the above-mentioned spark discharge, noise is generated at the time of ignition. In addition to the above, there are drawbacks such as easy occurrence of radio interference and lack of reliability in terms of reliable ignition.

【0004】そこで熱伝導効率が優れ、急速昇温が可能
で電波障害が発生せず、しかも確実に点火して安全性も
高く、耐摩耗性や耐熱性、耐食性等の耐久性に優れた信
頼性の高い発熱体として、熱伝導性が良好な電気絶縁性
セラミック焼結体に高融点金属やその化合物、及びそれ
らを主成分とする各種無機導電材の発熱抵抗体から成る
発熱部を担持または接合、あるいは埋設したりして一体
化したセラミック発熱体が、内燃機関のグロープラグを
はじめ、各種点火用及び加熱用ヒータとして広く利用さ
れるようになってきた。
[0004] Therefore, the heat conduction efficiency is excellent, rapid temperature rise is possible, no radio wave interference occurs, and reliable ignition and high safety, and excellent durability such as wear resistance, heat resistance, corrosion resistance, etc. As a highly heat-generating element, a heat-generating part consisting of a high-melting-point metal or its compound, and a heat-generating resistor of various inorganic conductive materials containing them as a main component is carried on an electrically insulating ceramic sintered body having good heat conductivity. A ceramic heating element integrated by bonding or burying has been widely used as various ignition and heating heaters, including glow plugs for internal combustion engines.

【0005】かかるセラミック発熱体の絶縁部材として
は、アルミナ(Al2 3 )を主成分とする酸化物系セ
ラミックスが多用されており、無機導電材としてはタン
グステン(W)やモリブデン(Mo)等の高融点金属か
ら成る発熱抵抗体を発熱部としたものが知られている
が、このようなセラミック発熱体は半田ごてやセンサー
加熱用等でも900℃程度までの比較的低温の用途に限
定されていた。
As an insulating member of such a ceramic heating element, an oxide ceramic mainly composed of alumina (Al 2 O 3 ) is frequently used, and as an inorganic conductive material, tungsten (W), molybdenum (Mo), or the like is used. It is known that a heating resistor made of a high-melting-point metal is used as the heating part. However, such a ceramic heating element is limited to applications at a relatively low temperature of up to about 900 ° C even for soldering irons and sensor heating. It had been.

【0006】そこで900℃を越える高温用のセラミッ
ク発熱体として、窒化珪素(Si34 )に代表される
非酸化物系セラミックスを絶縁部材とし、無機導電材と
して前記高融点金属の他に、炭化タングステン(WC)
や珪化モリブデン(MoSi2 )、窒化チタン(Ti
N)等の高融点金属の化合物、あるいは該化合物を主成
分とする発熱抵抗体から成る発熱部とを組み合わせて形
成したものが提案されている。
Therefore, as a ceramic heating element for high temperatures exceeding 900 ° C., a non-oxide ceramic represented by silicon nitride (Si 3 N 4 ) is used as an insulating member, and as an inorganic conductive material, in addition to the high melting point metal, Tungsten carbide (WC)
Or molybdenum silicide (MoSi 2 ), titanium nitride (Ti
There has been proposed a compound formed by combining a compound of a high melting point metal such as N) or a heat generating portion composed of a heat generating resistor containing the compound as a main component.

【0007】なかでも、熱衝撃や物理的衝撃に対して優
れた耐久性を有するセラミックヒータとして、窒化珪素
を主成分とする電気絶縁性セラミックスから成る絶縁体
中に、導電性セラミックスから成る電気抵抗体を平行に
所定間隔を隔てて二層埋設したものが提案されている
(特許第2537273号公報参照)。
[0007] Among them, as a ceramic heater having excellent durability against thermal shocks and physical shocks, an insulator made of electrically insulating ceramics containing silicon nitride as a main component and an electric resistance made of electrically conductive ceramics in an insulator made of silicon nitride. A body in which two layers are buried in parallel at a predetermined interval has been proposed (see Japanese Patent No. 2537273).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記セ
ラミックヒータにおいて二層の電気抵抗体の各抵抗値に
差があると、該二層の電気抵抗体はセラミックヒータの
電極取り出し部で並列電気接続されているため、通電に
より抵抗値の低い方の電気抵抗体に優先的に電流が流れ
て先に発熱して温度差を生じてしまい、セラミックヒー
タの表面温度分布が均一化されない恐れがある。
However, if there is a difference between the resistance values of the two-layered electrical resistors in the ceramic heater, the two-layered electrical resistors are electrically connected in parallel at the electrode extraction portion of the ceramic heater. Therefore, the current flows preferentially to the electric resistor having the lower resistance value due to energization, and heat is generated first to cause a temperature difference, so that the surface temperature distribution of the ceramic heater may not be uniform.

【0009】しかも、前述のような状態で加熱冷却が繰
り返されると、前記二層の電気抵抗体の抵抗増加や断線
等、電気的あるいは熱的な経時変化がそれぞれ異なり、
絶縁特性や発熱特性等の変化から長期的な信頼性に劣る
という課題があった。
Further, when heating and cooling are repeated in the above-described state, electrical or thermal changes over time such as an increase in resistance and disconnection of the two-layer electric resistor are different from each other.
There has been a problem that long-term reliability is poor due to changes in insulation characteristics and heat generation characteristics.

【0010】更に、かかる電気抵抗体を平面視した時の
断面形状がU字状を成す所定間隔を隔てて二層に形成し
て埋設したセラミックヒータを、内燃機関のグロープラ
グや各種点火用及び加熱用ヒータとして900℃を越え
る高温用に適用した場合、一般に点火時には1000〜
1300℃となり、その後、点火した火炎に曝されて1
350℃を越え1400℃にも達するような状況とな
り、このような高温での加熱冷却の繰り返しから絶縁破
壊によるセラミックヒータの割れを生じる等、例えば、
前記グロープラグでは、一般にその抵抗変化が初期値の
10%を越えるまでの耐久時間として850時間以上が
要求されているのに対して、短時間で10%を越える抵
抗変化を生じてしまう恐れがあり、実用上、耐久性に欠
けるという課題があった。
[0010] Further, a ceramic heater, which is formed in two layers at a predetermined interval and has a buried cross section when the electric resistor has a U-shape when viewed in plan, is embedded in a glow plug for an internal combustion engine, and for various ignitions. When applied to a high temperature exceeding 900 ° C. as a heater for heating, generally 1000 to 1000
1300 ° C and then exposed to the ignited flame
The temperature exceeds 350 ° C. and reaches 1400 ° C., and the ceramic heater cracks due to dielectric breakdown from repeated heating and cooling at such a high temperature.
In general, the glow plug requires 850 hours or more as a durable time until the resistance change exceeds 10% of an initial value. On the other hand, there is a possibility that a resistance change exceeding 10% occurs in a short time. There is a problem that the durability is poor in practical use.

【0011】[0011]

【発明の目的】本発明は前記課題に鑑み成されたもの
で、その目的は、直流または交流電源を使用して常温付
近から1000℃付近の高温に瞬時に発熱させることを
長時間にわたり何度も繰り返したり、1000℃以上の
高温で長時間の連続稼働をしても、無機導電材の発熱抵
抗体から成る発熱部の劣化が小さく、絶縁性の低下等に
よる絶縁部材の割れを発生したりしない、高温耐久性に
優れたセラミック発熱体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to use a DC or AC power supply to instantaneously generate heat from a temperature near normal temperature to a temperature as high as 1000 ° C. over a long period of time. Or the continuous operation at a high temperature of 1000 ° C. or more for a long time, the deterioration of the heat generating portion composed of the heat generating resistor made of the inorganic conductive material is small, and the insulating member may be cracked due to the deterioration of the insulating property or the like. It is another object of the present invention to provide a ceramic heating element having excellent high-temperature durability.

【0012】[0012]

【課題を解決するための手段】本発明者は前記課題につ
いて種々検討した結果、セラミック発熱体を構成する所
定間隔を隔てて平行に設けた複数の無機導電材の発熱抵
抗体から成る各発熱部の抵抗値のばらつきが、通電発熱
によるセラミック発熱体の電気的特性劣化及び高温耐久
性に影響していることが判明し、各発熱部の抵抗値の差
を特定範囲に制御した結果、電気的特性劣化が低減でき
ると共に高温耐久性が向上することを見いだし、本発明
に至った。
As a result of various studies on the above-mentioned problems, the present inventor has found that each heat-generating portion is composed of a plurality of heat-generating resistors of inorganic conductive material which are provided in parallel at a predetermined interval and constitute a ceramic heat-generating body. It has been found that the variation in the resistance value of the ceramic heating element affects the electrical characteristic deterioration and the high-temperature durability of the ceramic heating element due to energized heat generation. The present inventors have found that deterioration in characteristics can be reduced and high-temperature durability can be improved, leading to the present invention.

【0013】即ち、本発明のセラミック発熱体は、所定
間隔を隔てて平行に設けた通電により発熱する無機導電
材から成る複数の発熱部と、該発熱部と電気的に接続し
たリード部と、該リード部と電気的に接続した電極取り
出し部とを備えたセラミック焼結体を絶縁部材とするも
ので、前記リード部を含む各発熱部の常温における抵抗
値の最大の差が、各抵抗値の内、最大の抵抗値の30%
以内であることを特徴とするものである。
That is, the ceramic heating element of the present invention comprises a plurality of heating portions made of an inorganic conductive material which is provided in parallel at a predetermined interval and which generates heat when energized, a lead portion electrically connected to the heating portion, The ceramic sintered body having the lead portion and an electrode connection portion electrically connected to each other is used as an insulating member, and the maximum difference between the resistance values of the heat generating portions including the lead portion at room temperature is the resistance value. 30% of the maximum resistance value
It is characterized by being within.

【0014】とりわけ、前記抵抗値の最大の差が、各抵
抗値の内、最大の抵抗値の22%以内であることが望ま
しく、更に前記セラミック焼結体から成る絶縁部材は非
酸化物系セラミックスの内、窒化珪素質焼結体から成る
ものがより望ましいものである。
In particular, the maximum difference between the resistance values is preferably within 22% of the maximum resistance value among the respective resistance values, and the insulating member made of the ceramic sintered body is preferably a non-oxide ceramic. Of these, those made of a silicon nitride-based sintered body are more desirable.

【0015】[0015]

【作用】本発明のセラミック発熱体は、所定間隔を隔て
て平行に設けた複数の発熱部のリード部を含めた各抵抗
値の最大差が、該抵抗値の最大値の30%以内であるこ
とから、前記各発熱部に加わる電気的負荷が均一化され
て表面温度も均一となり、電気的あるいは熱的な経時変
化の差異による絶縁特性や発熱特性等の変化が加速され
ることもなくなり、発熱効率が良く、高温耐久性及び信
頼性が向上することになる。
According to the ceramic heating element of the present invention, the maximum difference between the resistance values including the lead portions of a plurality of heating portions provided in parallel at a predetermined interval is within 30% of the maximum value of the resistance value. Therefore, the electric load applied to each of the heat generating portions is uniformed, the surface temperature is also uniformed, and changes in insulation characteristics and heat generation characteristics due to differences in electrical or thermal changes over time are not accelerated. Heat generation efficiency is good, and high-temperature durability and reliability are improved.

【0016】[0016]

【発明の実施の形態】以下、本発明のセラミック発熱体
について図面に基づき詳細に述べる。図1は本発明のセ
ラミック発熱体の一実施例を示す斜視図であり、図2及
び図3はそれぞれ本発明のセラミック発熱体の他の例を
示す斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a ceramic heating element according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the ceramic heating element of the present invention, and FIGS. 2 and 3 are perspective views showing other examples of the ceramic heating element of the present invention.

【0017】図1において、1は通電により発熱する無
機導電材から成る発熱部2と、より低抵抗の無機導電材
から成るリードパターン部6とリード線7から成るリー
ド部3と、電極取り出し部4とをセラミック焼結体から
成る絶縁部材5中に埋設したセラミック発熱体である。
In FIG. 1, reference numeral 1 denotes a heat generating portion 2 made of an inorganic conductive material which generates heat when energized, a lead portion 3 made of a lead pattern portion 6 and a lead wire 7 made of a lower resistance inorganic conductive material, and an electrode take-out portion. 4 is a ceramic heating element embedded in an insulating member 5 made of a ceramic sintered body.

【0018】セラミック発熱体1は、絶縁部材5の一端
に、平面視した時の断面形状がU字状で、層状に形成し
た無機導電材から成る発熱部2と、該発熱部2の各端部
に少なくとも一部を重ねた層状のリードパターン部6
と、該リードパターン部6の他端にそれぞれリード線7
を接続し、該リード線7の他端側に重ねて絶縁部材5の
他端外周面に露出するように電極取り出し部4を設けて
それぞれ電気的に接続したものを2組、平行に絶縁部材
5中に配設し、発熱部2側の絶縁部材先端が略球面状
で、少なくとも最高発熱部に相当する部分の横断面が円
形である棒状を成すものである。
The ceramic heating element 1 has a heating portion 2 made of an inorganic conductive material formed in a layer and having a U-shaped cross section when viewed in a plan view at one end of an insulating member 5, and each end of the heating portion 2. Layered lead pattern portion 6 at least partially overlapped with the portion
And a lead wire 7 at the other end of the lead pattern portion 6, respectively.
Are connected to each other, and two sets of the electrode lead portions 4 are provided so as to be superposed on the other end side of the lead wire 7 and exposed on the outer peripheral surface of the other end of the insulating member 5 and electrically connected to each other. 5, the tip of the insulating member on the side of the heat generating portion 2 has a substantially spherical shape, and at least a portion corresponding to the highest heat generating portion has a circular cross section.

【0019】本発明の発熱部を構成する層状に平行に配
設した複数の発熱部2は、リード部を含めた各発熱部の
抵抗値の最大の差が、各抵抗値の最大値の30%を越え
ると、無機導電材の発熱抵抗体から成る発熱部の劣化が
大きく、絶縁性の低下等による絶縁部材の割れを発生し
たりして高温耐久性が著しく劣化してしまう。
According to the present invention, the plurality of heat generating portions 2 arranged in parallel to each other and constituting the heat generating portion have a maximum difference between the resistance values of each heat generating portion including the lead portion, which is 30 times the maximum value of each resistance value. %, The heat generating portion formed of a heat generating resistor made of an inorganic conductive material is greatly deteriorated, and the insulating member is cracked due to a decrease in insulation, and the high-temperature durability is significantly deteriorated.

【0020】従って、リード部を含めた発熱部の抵抗値
のばらつきは、前記30%以内に限定されるが、各発熱
部にかかる電気的負荷が均一化でき、効率のよい発熱が
可能となり、電気的特性劣化が少なく、高温耐久性及び
信頼性の向上という点からは、前記リード部を含めた各
発熱部の抵抗値を測定し、その最大差が測定した各抵抗
値の内、最大値の22%以内であることがより好ましい
ものである。
Therefore, the variation of the resistance value of the heat generating portion including the lead portion is limited to the above 30%, but the electric load applied to each heat generating portion can be made uniform, and efficient heat generation becomes possible. From the viewpoint of little deterioration in electrical characteristics and improvement in high-temperature durability and reliability, the resistance value of each heating portion including the lead portion was measured, and the maximum difference was the maximum value among the measured resistance values. Is more preferably within 22%.

【0021】また、本発明のセラミック発熱体1を構成
する発熱部2は、図2に示すように平面視した時の断面
形状がU字状を成す平行に向き合う無機導電材のブロッ
クで形成し、該ブロックに直接リード線で接続してリー
ド部3を、更にリード線の端部を絶縁部材5の外周に露
出させて電極取り出し部4を形成しても良い。
The heat generating portion 2 constituting the ceramic heat generating element 1 of the present invention is formed of a block of inorganic conductive material facing in parallel and having a U-shaped cross section when viewed in plan as shown in FIG. Alternatively, the lead portion 3 may be directly connected to the block by a lead wire, and the end portion of the lead wire may be exposed to the outer periphery of the insulating member 5 to form the electrode extraction portion 4.

【0022】一方、図1及び図2では、絶縁部材5の外
形を先端を丸めた円柱状としたが、絶縁部材5の外形形
状はこれに限定されるものではなく、図3に示すように
絶縁部材5の外形を略直方体形状としても良く、埋設す
る発熱部2及びリード部3、電極取り出し部4を一体的
に印刷等により形成しても良い。
On the other hand, in FIGS. 1 and 2, the outer shape of the insulating member 5 is a cylindrical shape with a rounded tip. However, the outer shape of the insulating member 5 is not limited to this, and as shown in FIG. The outer shape of the insulating member 5 may be a substantially rectangular parallelepiped shape, and the heat generating portion 2, the lead portion 3, and the electrode take-out portion 4 to be embedded may be integrally formed by printing or the like.

【0023】前述のように発熱部2及びリード部3、電
極取り出し部4を一体的に印刷形成する場合には、例え
ば、発熱部2とリード部3、電極取り出し部4はそれぞ
れ厚さをほぼ一定にして、線幅を順次変えてリード部3
及び電極取り出し部4の抵抗値を発熱部2より低く設定
すれば良い。
As described above, when the heat-generating part 2, the lead part 3, and the electrode take-out part 4 are integrally formed by printing, for example, the heat-generating part 2, the lead part 3, and the electrode take-out part 4 each have almost the same thickness. Keep the lead width constant by changing the line width
In addition, the resistance value of the electrode take-out unit 4 may be set lower than that of the heat-generating unit 2.

【0024】本発明において、前記発熱部は絶縁部材と
同時に焼成できる無機導電材であればいかなる材質でも
良く、例えば前記W、Mo、Re、Cr、Ta等の高融
点金属や、W、Mo、Re、Crの他にTa、Ti、Z
r、Hf、V、Nb等の第4a族、第5a族元素の窒化
物や炭化物、珪化物、硼化物の化合物、あるいは該化合
物を主成分とする発熱抵抗体等が挙げられ、とりわけ高
温用の発熱部としては、望ましくは絶縁部材の主成分と
してSi3 4 を用いる場合、それとの熱膨張差及び高
温度下でも反応し難く、取扱い易さや高温耐久性の点か
らはWCが最適である。
In the present invention, the heat generating portion may be made of any material as long as it is an inorganic conductive material which can be fired simultaneously with the insulating member. For example, high melting point metals such as W, Mo, Re, Cr and Ta, W, Mo, and the like can be used. Ta, Ti, Z besides Re and Cr
Compounds of nitrides, carbides, silicides, borides of Group 4a and Group 5a elements such as r, Hf, V, and Nb, and heat-generating resistors containing these compounds as main components, especially for high-temperature applications In the case where Si 3 N 4 is used as the main component of the insulating member, it is difficult to react even at a high temperature due to a difference in thermal expansion from the material, and WC is optimal in terms of ease of handling and high-temperature durability. is there.

【0025】また、前記無機導電材を主成分として用い
る場合、絶縁部材との熱膨張差によるクラックを防止
し、かつ抵抗を増大させないようにするために、分散材
として窒化珪素、窒化硼素、炭化珪素、あるいはアルミ
ナ等の一種以上を適宜添加しても良く、その添加量は、
例えば、主成分100重量部に対して、窒化珪素では5
〜30重量部、窒化硼素では1〜15重量部、炭化珪素
では3〜15重量部、アルミナでは30重量部以下であ
ることが望ましい。
When the above-mentioned inorganic conductive material is used as a main component, silicon nitride, boron nitride, carbide, etc. may be used as a dispersing material in order to prevent cracks due to the difference in thermal expansion from the insulating member and not to increase the resistance. Silicon or one or more of alumina and the like may be added as appropriate,
For example, with respect to 100 parts by weight of the main component, 5
It is preferable that the amount is 30 to 30 parts by weight, 1 to 15 parts by weight for boron nitride, 3 to 15 parts by weight for silicon carbide, and 30 parts by weight or less for alumina.

【0026】一方、本発明における発熱部は、前述のよ
うに層状やブロック状、線状のいずれでも良く、平行に
2つ以上で構成され、平面視した時の断面形状がU字状
やW字状、ジグザグ状等、各種形状形態で適用できる
が、それら複数の発熱抵抗体は互いに前述にような使用
状況下での絶縁破壊を防止するためには、0.2mm以
上離して設けることが必要である。
On the other hand, the heat generating portion in the present invention may be any of a layer, a block, and a line as described above, and is constituted by two or more in parallel, and has a U-shaped or W-shaped cross section when viewed in plan. Although it can be applied in various shapes such as a letter shape, a zigzag shape, etc., in order to prevent dielectric breakdown under the use condition as described above, the plurality of heating resistors should be provided at a distance of 0.2 mm or more from each other. is necessary.

【0027】特に、印刷法により層状の発熱部を形成す
る場合には、その厚さは発熱部に割れ等の発生を防止す
るという点からは、50V程度までの直流電源用に抵抗
値を設定すると、少なくとも最高発熱部では5〜150
μmの範囲の厚さが望ましく、特に10〜50μmの範
囲の厚さが最適である。
In particular, when a layered heat generating portion is formed by a printing method, the thickness of the heat generating portion is set to a resistance value for a DC power supply up to about 50 V from the viewpoint of preventing occurrence of cracks or the like in the heat generating portion. Then, at least in the highest heat generating part, 5-150
A thickness in the range of μm is desirable, especially a thickness in the range of 10 to 50 μm.

【0028】また、前記リード部としては、前記発熱部
と同様、絶縁部材と同時に焼成できる無機導電材で、前
記発熱部より低抵抗であればいかなる材質でも良く、例
えば前記W、Mo、Re、Cr、Ta等の高融点金属
や、W、Mo、Re、Crの他にTa、Ti、Zr、H
f、V、Nb等の第4a族、第5a族元素の窒化物や炭
化物、珪化物、硼化物の化合物、あるいは該化合物を主
成分とする低熱膨張率の導電材が望ましく、その形状は
線材あるいは押出成形法や射出成形法で成形した棒状材
料、またはスクリーン印刷法で層状に形成したものでも
良い。
The lead portion is made of an inorganic conductive material which can be fired at the same time as the insulating member, similarly to the heat generating portion, and may be made of any material having a lower resistance than the heat generating portion. For example, W, Mo, Re, In addition to refractory metals such as Cr and Ta, W, Mo, Re, and Cr, Ta, Ti, Zr, and H
Compounds of nitrides, carbides, silicides, borides of elements of groups 4a and 5a such as f, V, Nb, and the like, or a conductive material having a low thermal expansion coefficient containing these compounds as a main component are desirable. Alternatively, a rod-shaped material formed by an extrusion molding method or an injection molding method, or a layered material formed by a screen printing method may be used.

【0029】また、前記電極取り出し部は、前記リード
部と同様の材料が適用でき、リード部を直接露出させた
り、あるいはスクリーン印刷法でリード部材と電気的に
接続するように形成しても良い。
Further, the electrode take-out portion can be made of the same material as that of the lead portion, and may be formed such that the lead portion is directly exposed or electrically connected to the lead member by a screen printing method. .

【0030】また、前記絶縁部材は、高温用としては窒
化珪素やサイアロン、窒化アルミニウム等の非酸化物系
セラミック焼結体が望ましく、とりわけ窒化珪素質焼結
体はSi3 4 粉末に、焼結助剤としてイットリウム
(Y)等の周期律表第3a族元素の酸化物を用いたもの
等があり、高温でのイオン移動を抑制するという点から
は、焼結助剤としてはYb2 3 が望ましく、その粒界
相が焼結助剤成分の周期律表第3a族元素や珪素等を含
む結晶相あるいはガラス相を析出させたものが好適であ
る。
The insulating member is desirably a non-oxide ceramic sintered body such as silicon nitride, sialon, or aluminum nitride for high-temperature use. In particular, a silicon nitride-based sintered body is sintered to Si 3 N 4 powder. As a binding aid, there is one using an oxide of an element of Group 3a of the periodic table such as yttrium (Y). From the viewpoint of suppressing ion transfer at a high temperature, Yb 2 O is used as a sintering aid. 3 is desirable, that the grain boundary phase so as to precipitate a crystal phase or glass phase including a periodic table group 3a elements, silicon and the like of the sintering auxiliary component are preferred.

【0031】また、前記発熱部との熱膨張を調整するた
めに、窒化珪素質焼結体には熱膨張係数がより大きなM
oやW等の珪化物、炭化物、窒化物、硼化物を一種以上
添加することも有効である。
Further, in order to adjust the thermal expansion with the heat generating portion, the silicon nitride sintered body has a larger thermal expansion coefficient M
It is also effective to add one or more silicides, carbides, nitrides, and borides such as o and W.

【0032】[0032]

【実施例】次に、本発明のセラミック発熱体を以下に詳
述するようにして評価した。先ず、比表面積が7〜15
2 /gで、含有する不可避不純物として酸素量が1.
5重量%以下、金属不純物が総量で0.05重量%以下
のSi3 4 粉末に、焼結助剤として周期律表第3a族
元素(REと記す)の酸化物のRE2 3 と、Al2
3 、MoSi2 の各粉末をそれぞれ10重量%、2重量
%、4重量%となるように秤量し、これらを混合して調
製した泥漿から造粒体を作製し、該造粒体をプレス成形
法等、周知の成形法により平板状の成形体を得た。
Next, the ceramic heating element of the present invention was evaluated as described in detail below. First, the specific surface area is 7 to 15
At m 2 / g, the oxygen content is 1.
Si 3 N 4 powder containing 5% by weight or less and metal impurities in a total amount of 0.05% by weight or less was mixed with RE 2 O 3 of an oxide of a Group 3a element (RE) of the periodic table as a sintering aid. , Al 2 O
3. MoSi 2 powders were weighed so as to be 10% by weight, 2% by weight, and 4% by weight, respectively, and a granulated body was prepared from a slurry prepared by mixing them, and the granulated body was press-formed. A plate-like molded body was obtained by a known molding method such as a method.

【0033】一方、WCの微粉末80重量%とSi3
4 微粉末20重量%の混合粉末に酢酸ブチル等の溶媒を
加えて調製したペーストを発熱部形成用とし、WCの微
粉末85重量%とSi3 4 微粉末15重量%の混合粉
末に前記同様の溶媒を加えて調製したペーストをリード
パターン部及び電極取り出し部形成用とした。
On the other hand, 80% by weight of WC fine powder and Si 3 N
4 A paste prepared by adding a solvent such as butyl acetate to a mixed powder of 20% by weight of the fine powder is used for forming a heat generating portion, and the paste is mixed with a mixed powder of 85% by weight of the WC fine powder and 15% by weight of the Si 3 N 4 fine powder. A paste prepared by adding the same solvent was used for forming a lead pattern portion and an electrode extraction portion.

【0034】次に、得られた発熱部形成用ペーストを用
いて、スクリーン印刷法によりU字状のパターンを、そ
のパターンが焼結後の絶縁部材先端より5mm以内に収
まる位置にそれぞれ2枚の平板状の成形体表面に、厚さ
80μmの発熱部を形成する。
Next, a U-shaped pattern was formed by screen printing using the obtained paste for forming a heat generating portion, and two U-shaped patterns were respectively placed at positions where the pattern was within 5 mm from the end of the insulating member after sintering. A heating section having a thickness of 80 μm is formed on the surface of the flat molded body.

【0035】一方、前記U字状のパターンの両端部に一
部を重ねるように、前記リードパターン部形成用ペース
トを用いて前記同様のスクリーン印刷法により、所定形
状で厚さ約50μmのリードパターン部を形成する。
On the other hand, a lead pattern having a predetermined shape and a thickness of about 50 μm is formed by the same screen printing method using the lead pattern part forming paste so as to partially overlap both ends of the U-shaped pattern. Form a part.

【0036】他方、前記リードパターン部形成用ペース
トと同一組成の電極取り出し部形成用ペーストを用い
て、前記同様のスクリーン印刷法により、成形体の他端
側の表面に幅0.7mm、厚さ約70μmで該成形体の
側面まで平行に所定位置に4個のパターンをそれぞれ形
成し、電極取り出し部を形成した。
On the other hand, using a paste for forming an electrode lead-out portion having the same composition as the paste for forming a lead pattern portion, a screen having a width of 0.7 mm and a thickness of 0.7 mm was formed on the surface on the other end side by the same screen printing method as described above. Four patterns were formed at predetermined positions in parallel at about 70 μm to the side surface of the molded body, and electrode extraction portions were formed.

【0037】そして、前記発熱部に一部を重ねて形成し
たリードパターン部と、電極取り出し部とにそれぞれ接
続するように、直径が0.25mmのW線を載置し、そ
れら2枚とその上に発熱抵抗体や電極取り出し部等を形
成していない前記同一組成のセラミック成形体を重ねた
後、還元性雰囲気下、1700〜1900℃の温度で1
時間、焼成して一体化した。
Then, a W wire having a diameter of 0.25 mm is placed so as to be connected to a lead pattern portion formed by partially overlapping the heat generating portion and an electrode take-out portion. After laminating the above-mentioned ceramic molded body having the same composition without forming a heating resistor, an electrode take-out part, and the like, the ceramic molded body is heated at 1700 to 1900 ° C. in a reducing atmosphere.
It was fired and integrated for a time.

【0038】かくして得られたセラミック発熱体素材の
周囲を研磨加工して発熱部側の先端を球面とすると共に
断面円形とし、各電極取り出し部の端面を窒化珪素質焼
結体側面に露出させ、直径3.5mmのセラミック発熱
体を作製した。
The periphery of the ceramic heating element material thus obtained is polished to make the tip of the heating section side a spherical surface and a circular cross section, and to expose the end face of each electrode extraction section to the side face of the silicon nitride sintered body. A ceramic heating element having a diameter of 3.5 mm was produced.

【0039】次いで、前記セラミック発熱体の少なくと
も電極取り出し部の露出部にメタライズ法やメッキ法等
によりニッケル(Ni)被膜を形成した後、それぞれ電
極取り出し部に陰極用、陽極用の電極金具を銀ロウにて
接合して平行に所定間隔を隔てて2つの発熱部を埋設し
た評価用のセラミック発熱体を作製した。
Next, a nickel (Ni) film is formed on at least the exposed portion of the electrode portion of the ceramic heating element by a metallizing method, a plating method, or the like. A ceramic heating element for evaluation in which two heat generating portions were buried in parallel at a predetermined interval by bonding with a braze was produced.

【0040】先ず、評価用セラミック発熱体の電極取り
出し部を各発熱部毎にメタライズを施すか、あるいはセ
ラミック発熱体の端部を研削してリード部を露出させ抵
抗測定用の端子を形成し、室温で抵抗測定用マルチメー
ターを用いてリード部を含む各発熱部の抵抗を測定し、
その差から最大抵抗値に対する比率を算出した。
First, metallization of the electrode extraction portion of the ceramic heating element for evaluation is performed for each heating element, or the end of the ceramic heating element is ground to expose a lead portion to form a terminal for resistance measurement. At room temperature, measure the resistance of each heating part including the lead using a resistance measurement multimeter,
The ratio to the maximum resistance value was calculated from the difference.

【0041】次に、前記電極取り出し部あるいは研削し
て露出させたリード部をメタライズ等で並列に接続し、
前記同様にしてリード部を含む平行に設けた2つの発熱
部の全抵抗を測定した。
Next, the electrode take-out portion or the lead portion exposed by grinding is connected in parallel by metallizing or the like.
In the same manner as above, the total resistance of the two heat-generating portions provided in parallel including the lead portion was measured.

【0042】その後、前記電極取り出し部あるいは露出
させたリード部を並列に接続した評価用のセラミック発
熱体に、発熱温度1400℃で飽和する10〜35Vの
直流電圧を印加して最高発熱部の周方向の温度分布を測
定して、最大の温度差を求めて最高発熱部温度分布とし
て評価した。
Thereafter, a DC voltage of 10 to 35 V, which saturates at a heating temperature of 1400 ° C., is applied to the ceramic heating element for evaluation in which the electrode lead-out portions or the exposed lead portions are connected in parallel, thereby applying a voltage around the highest heating portion. The temperature distribution in the direction was measured, the maximum temperature difference was determined, and the temperature distribution was evaluated as the maximum heat generating portion temperature distribution.

【0043】また、前記直流電圧を連続して通電する高
負荷耐久試験を行い、一定時間毎に前記両電極間の抵抗
値を測定し、試験開始前の抵抗値に対する変化率が10
%を越えると不良と判断し、10%を越えた時の時間に
より耐久性を評価した。
A high-load endurance test in which the DC voltage is continuously applied is performed, and the resistance between the two electrodes is measured at regular intervals.
%, It was judged to be defective, and the durability was evaluated by the time when it exceeded 10%.

【0044】尚、本評価実験ではいずれも前記抵抗変化
率が10%以内では絶縁部材の割れは認められなかっ
た。
In this evaluation experiment, no crack was found in the insulating member when the rate of change in resistance was within 10%.

【0045】[0045]

【表1】 [Table 1]

【0046】表から明らかなように、各発熱部の抵抗値
の差が最大抵抗値に対して30%を越える試料番号5、
9、21、29、31、38では、最高発熱部の周方向
の温度分布が36℃以上の温度差があり、耐久時間も7
96時間以内で抵抗変化が10%を越えるのに対して、
本発明ではいずれも周方向の温度分布における温度差が
34℃以下と低く、耐久時間も898時間以上となって
いる。
As is clear from the table, Sample No. 5 in which the difference in the resistance value of each heating portion exceeded 30% of the maximum resistance value.
In 9, 21, 29, 31, and 38, the temperature distribution in the circumferential direction of the highest heat generating portion has a temperature difference of 36 ° C. or more, and the durability time is also 7 hours.
While the resistance change exceeds 10% within 96 hours,
In the present invention, the temperature difference in the temperature distribution in the circumferential direction is as low as 34 ° C. or less, and the durability time is 898 hours or more.

【0047】尚、前記実施例では印刷形成した発熱部を
絶縁部材中に埋設した自己飽和型のセラミック発熱体に
ついて説明したが、本発明は前記実施例に何ら限定され
るのではなく、本発明の主旨を逸脱しないものであれば
いかなるものでも良く、ブレーキングコイルを内蔵する
自己制御型のセラミック発熱体は勿論、発熱部が露出し
たセラミック発熱体に適用しても同様の効果を奏するも
のである。
In the above-described embodiment, the self-saturated ceramic heating element in which the printed heating element is embedded in the insulating member has been described. However, the present invention is not limited to the above-described embodiment. Anything may be used as long as it does not deviate from the gist of the present invention, and the same effect can be obtained even when applied to a ceramic heating element having a heating part exposed, as well as a self-control type ceramic heating element having a built-in braking coil. is there.

【0048】[0048]

【発明の効果】叙上の如く、本発明のセラミック発熱体
は所定間隔を隔てて平行に設けた複数の発熱部を具備し
たセラミック焼結体を絶縁部材とするものであって、リ
ード部を含む各発熱部の常温における抵抗値の最大差
を、該抵抗値の最大値の30%以内に制御したことか
ら、高温に急速昇温することを繰り返したり、高温下、
長時間にわたり通電しても、発熱部の抵抗変化が極めて
小であり、その結果、発熱抵抗体が断線することもな
く、絶縁部材の割れを発生することもなく、耐久性と信
頼性に優れた各種点火用及び加熱用として好適なセラミ
ック発熱体を得ることができる。
As described above, the ceramic heating element of the present invention uses a ceramic sintered body having a plurality of heating parts provided in parallel at a predetermined interval as an insulating member. Since the maximum difference between the resistance values of the respective heating parts at room temperature is controlled to be within 30% of the maximum value of the resistance value, rapid heating to a high temperature is repeated,
Even when the power is applied for a long time, the resistance change of the heat generating part is extremely small. As a result, the heat generating resistor does not break, the insulating member does not crack, and the durability and reliability are excellent. In addition, ceramic heating elements suitable for various types of ignition and heating can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミック発熱体の一実施例を示す斜
視図である。
FIG. 1 is a perspective view showing one embodiment of a ceramic heating element of the present invention.

【図2】本発明のセラミック発熱体の他の例を示す斜視
図である。
FIG. 2 is a perspective view showing another example of the ceramic heating element of the present invention.

【図3】本発明のセラミック発熱体の他の例を示す斜視
図である。
FIG. 3 is a perspective view showing another example of the ceramic heating element of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミック発熱体 2 発熱部 3 リード部 4 電極取り出し部 5 絶縁部材 DESCRIPTION OF SYMBOLS 1 Ceramic heating element 2 Heating part 3 Lead part 4 Electrode extraction part 5 Insulating member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】通電により発熱する無機導電材から成る所
定間隔を隔てて平行に設けた複数の発熱部と、該発熱部
に接続したリード部と、該リード部に接続した電極取り
出し部とを具備したセラミック焼結体を絶縁部材とする
セラミック発熱体であって、前記リード部を含む各発熱
部の常温における抵抗値の最大差が、該抵抗値の最大値
の30%以内であることを特徴とするセラミック発熱
体。
A plurality of heat generating portions made of an inorganic conductive material that generates heat by energization and provided in parallel at predetermined intervals, a lead portion connected to the heat generating portion, and an electrode extraction portion connected to the lead portion. A ceramic heating element having a ceramic sintered body provided as an insulating member, wherein a maximum difference between resistance values of each heating section including the lead portion at normal temperature is within 30% of the maximum value of the resistance value. Characteristic ceramic heating element.
【請求項2】前記抵抗値の最大差が、該抵抗値の最大値
の22%以内であることを特徴とする請求項1記載のセ
ラミック発熱体。
2. The ceramic heating element according to claim 1, wherein the maximum difference between the resistance values is within 22% of the maximum value of the resistance value.
【請求項3】前記セラミック焼結体から成る絶縁部材
が、窒化珪素質焼結体であることを特徴とする請求項1
又は請求項2のいずれかに記載のセラミック発熱体。
3. An insulating member made of a ceramic sintered body is a silicon nitride based sintered body.
Alternatively, the ceramic heating element according to claim 2.
JP20502197A 1997-07-30 1997-07-30 Ceramic heating body Pending JPH1154246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20502197A JPH1154246A (en) 1997-07-30 1997-07-30 Ceramic heating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20502197A JPH1154246A (en) 1997-07-30 1997-07-30 Ceramic heating body

Publications (1)

Publication Number Publication Date
JPH1154246A true JPH1154246A (en) 1999-02-26

Family

ID=16500139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20502197A Pending JPH1154246A (en) 1997-07-30 1997-07-30 Ceramic heating body

Country Status (1)

Country Link
JP (1) JPH1154246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069514A (en) * 2003-08-20 2005-03-17 Ngk Insulators Ltd Heat-treating furnace
JP2005147654A (en) * 2003-11-19 2005-06-09 Beru Ag Method of manufacturing ceramic glow plug
KR20160093667A (en) * 2013-12-02 2016-08-08 야노시 코오시-바류 Heating element powered by alternating current and heat generator accomplished by the heating element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069514A (en) * 2003-08-20 2005-03-17 Ngk Insulators Ltd Heat-treating furnace
JP2005147654A (en) * 2003-11-19 2005-06-09 Beru Ag Method of manufacturing ceramic glow plug
KR101169216B1 (en) * 2003-11-19 2012-07-30 보그와르너 베루 시스템스 게엠바흐 Method for manufacturing ceramic glow plug
KR20160093667A (en) * 2013-12-02 2016-08-08 야노시 코오시-바류 Heating element powered by alternating current and heat generator accomplished by the heating element

Similar Documents

Publication Publication Date Title
JPS6219034B2 (en)
KR20110065472A (en) Ceramic heater
JPH09137945A (en) Ceramic heater, ceramic glow plug and manufacture thereof
US5997998A (en) Resistance element
JP5876566B2 (en) Heater and glow plug equipped with the same
JP3078418B2 (en) Ceramic heating element
JPH1154246A (en) Ceramic heating body
JP4018998B2 (en) Ceramic heater and glow plug
JPH1025162A (en) Ceramic sintered material
JP3551635B2 (en) Ceramic resistance heating element and method of manufacturing the same
JP3121860B2 (en) Ceramic heater
JP3466399B2 (en) Ceramic heating element
JP4183186B2 (en) Ceramic heater
JP2004061041A (en) Ceramic glow plug
JP5944815B2 (en) Heater and glow plug equipped with the same
KR101881960B1 (en) Ceramic heater for glow-plug and glow-plug having the same
JP4153840B2 (en) Ceramic heater
JP2534847B2 (en) Ceramic Heater
JP3588227B2 (en) Ceramic heater
JP2000021555A (en) Ceramic heater and its manufacture
JP4038138B2 (en) Ceramic heater and manufacturing method thereof
JP4025641B2 (en) Ceramic heater
JPH05234665A (en) Ceramic exothermic body
JPH07139737A (en) Ceramic heater
JPH1022064A (en) Ceramic heating element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A02 Decision of refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A02