JPH1152272A - Optical scanning optical system and image forming device using the same - Google Patents

Optical scanning optical system and image forming device using the same

Info

Publication number
JPH1152272A
JPH1152272A JP22116197A JP22116197A JPH1152272A JP H1152272 A JPH1152272 A JP H1152272A JP 22116197 A JP22116197 A JP 22116197A JP 22116197 A JP22116197 A JP 22116197A JP H1152272 A JPH1152272 A JP H1152272A
Authority
JP
Japan
Prior art keywords
light
optical
shielding
optical system
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22116197A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishibe
芳浩 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22116197A priority Critical patent/JPH1152272A/en
Publication of JPH1152272A publication Critical patent/JPH1152272A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an optical scanning optical system and an image forming device using the optical system capable of excellently forming an image with a spot diameter and light quantity suitable for each resolution in accordance with the switching of the resolution. SOLUTION: In this device, the state of laser luminous flux emitted from a light source means 1 is converted to another state by a conversion optical element 2, the converted laser luminous flux is guided to a deflecting means 5 after the diameter of the luminous flux is shaped by a diaphragm member 3 having an aperture part, and the laser luminous flux deflected by the deflecting means 5 is guided to a surface to be scanned 7 through an image- formation means 6 so as to optically scan the surface 7. A light shielding member 8 having a light shielding part shielding a part of the laser luminous flux on an optical axis is provided in an optical path between the light source means 1 and the deflecting means 5. By utilizing the light shielding member 8, the effective ratio of a light shielding diameter in a main scanning direction and a subscanning direction is varied at least in one direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は走査光学装置及びそ
れを用いた画像形成装置に関し、特に光軸上の光束の一
部を遮光する所定形状より成る遮光部を有する遮光部材
を用いてスポット径を小さくし、また解像度(もしくは
走査線密度)の切り換えに応じて各々に適した光量及び
スポット径で画像形成を行なうことができる、例えばレ
ーザービームプリンタ(LBP)やデジタル複写機等の
装置に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical apparatus and an image forming apparatus using the same, and more particularly, to a spot diameter using a light-shielding member having a light-shielding portion having a predetermined shape for shielding a part of a light beam on an optical axis. It is suitable for devices such as a laser beam printer (LBP) and a digital copying machine, which can form an image with a light amount and a spot diameter suitable for each of the resolutions (or scanning line densities) according to the switching of resolution (or scanning line density). It is something.

【0002】[0002]

【従来の技術】従来よりレーザービームプリンタやデジ
タル複写機等の画像形成装置に用いられる光走査光学系
においては画像信号に応じて光源手段から光変調され出
射したレーザー光束(光ビーム)を、例えばポリゴンミ
ラーより成る光偏向器により周期的に偏向させ、fθ特
性を有する結像手段(結像光学系)によって感光性の記
録媒体(感光ドラム)面上にスポット状に収束させ、そ
の面上を光走査して画像記録を行なっている。
2. Description of the Related Art Conventionally, in an optical scanning optical system used for an image forming apparatus such as a laser beam printer or a digital copying machine, a laser beam (light beam) which is light-modulated and emitted from a light source means in accordance with an image signal is used, for example. The light is periodically deflected by an optical deflector composed of a polygon mirror, and is converged into a spot on a photosensitive recording medium (photosensitive drum) surface by an imaging means (imaging optical system) having fθ characteristics. Image recording is performed by optical scanning.

【0003】図9はこの種の画像形成装置に用いられる
光走査光学系の要部概略図である。
FIG. 9 is a schematic view of a main part of an optical scanning optical system used in this type of image forming apparatus.

【0004】同図において光源手段91から出射したレ
ーザー光束(光ビーム)はコリメーターレンズ92によ
り略平行光束に変換され、絞り部材93によりその光束
断面の大きさがビーム整形され、副走査断面内にのみ所
定の屈折力を有するシリンドリカルレンズ94に入射し
ている。シリンドリカルレンズ94に入射した略平行光
束のうち主走査断面内においてはそのまま略平行光束の
状態で射出する。又副走査断面内においては収束してポ
リゴンミラーより成る光偏向器95の偏向面(反射面)
95aに近傍ほぼ線像として結像している。そして光偏
向器95の偏向面95aで偏向されたレーザー光束をf
θ特性を有する結像光学系(fθレンズ)96を介して
被走査面としての感光ドラム面97上に導光し、該光偏
向器95を矢印A方向に回転させることによって、該感
光ドラム面97上を矢印B方向(主走査方向)に光走査
している。これにより記録媒体である感光ドラム面97
上に画像記録を行なっている。
In FIG. 1, a laser light beam (light beam) emitted from a light source means 91 is converted into a substantially parallel light beam by a collimator lens 92, and the size of the light beam cross section is shaped into a beam by a diaphragm member 93. Is incident on a cylindrical lens 94 having a predetermined refractive power. Of the substantially parallel light beams incident on the cylindrical lens 94, they are emitted as they are in the state of substantially parallel light beams in the main scanning section. The deflecting surface (reflection surface) of the optical deflector 95 formed of a polygon mirror and converged in the sub-scanning section.
An image is formed substantially as a line image near 95a. Then, the laser beam deflected by the deflection surface 95a of the optical deflector 95 is expressed by f
The light is guided onto a photosensitive drum surface 97 as a surface to be scanned through an imaging optical system (fθ lens) 96 having the θ characteristic, and the light deflector 95 is rotated in the direction of arrow A, whereby the photosensitive drum surface is rotated. Optical scanning is performed in the direction of arrow B (main scanning direction) on 97. As a result, the photosensitive drum surface 97 as a recording medium
The image is recorded above.

【0005】[0005]

【発明が解決しようとする課題】近年、レーザービーム
プリンタやデジタル複写機等は高解像度化及び高画質化
が求められてきており、特に高分解能、ハーフトーン
(中間階調)における豊かな階調再現に応える為に、被
走査面である感光ドラム面上でのスポット径をより小さ
くすることが求められている。
In recent years, high resolution and high image quality have been demanded for laser beam printers, digital copiers and the like, and particularly, high resolution and rich gradation in halftone (intermediate gradation). In order to respond to reproduction, it is required that the spot diameter on the surface of the photosensitive drum, which is the surface to be scanned, be reduced.

【0006】更に出力する画像に応じて解像度(もしく
は走査線密度)を切り換えて出力することのできる画像
形成装置においては、各々の解像度に応じた理想的なス
ポット径及び光量に設定することが望ましい。
Further, in an image forming apparatus capable of switching and outputting a resolution (or scanning line density) in accordance with an image to be output, it is desirable to set an ideal spot diameter and an ideal light amount according to each resolution. .

【0007】ここで感光ドラム面上でのスポット径dは
以下の式より表わされる。
Here, the spot diameter d on the photosensitive drum surface is represented by the following equation.

【0008】 d=αFλ ・・・・・・(1) (1)式において、 F:結像ビーム(光学系)のFナンバー λ:レーザー光束の波長 α:定数 従ってスポット径dをより小さくする為には(1)式か
ら解るように結像ビームのFナンバーを小さくするか、
あるいはレーザー光束の波長λを短くする必要がある。
D = αFλ (1) In the equation (1), F: F number of the image forming beam (optical system) λ: wavelength of the laser beam α: constant Therefore, the spot diameter d is made smaller. For this purpose, it is necessary to reduce the F-number of the imaging beam as understood from the equation (1),
Alternatively, it is necessary to shorten the wavelength λ of the laser beam.

【0009】しかしながら結像ビームのFナンバーを小
さくすると前記コリメータレンズ92から射出されるレ
ーザー光束の光束幅が大きくなってしまい、従ってコリ
メータレンズ92の有効径を大きくする必要がある。こ
のようなコリメータレンズは、これに使用するレンズ枚
数も多くなり、調整精度も厳しくなる為に製造コストも
高くなってしまうという問題点がある。
However, when the F-number of the image forming beam is reduced, the beam width of the laser beam emitted from the collimator lens 92 is increased, and it is necessary to increase the effective diameter of the collimator lens 92. Such a collimator lens has a problem in that the number of lenses used for the collimator lens increases, and the adjustment accuracy becomes strict, so that the manufacturing cost increases.

【0010】更に光偏向器95の偏向面(反射面)に入
射する光束の光束幅も大きくなる為に、該偏向面の有効
面積も大きくしなければならない。このような光偏向器
は製造コストが高くなるのは勿論、該光偏向器自体の重
量も増加してしまうので、該光偏向器を回転させるモー
ターの負荷が非常に大きなものとなり、この結果、該モ
ーターのコストアップや消費電力の増加、そしてモータ
ーからの発熱量の増加といった種々の問題点が発生して
くる。
Further, since the light beam width of the light beam incident on the deflecting surface (reflection surface) of the light deflector 95 is also increased, the effective area of the deflecting surface must be increased. Such an optical deflector not only increases the manufacturing cost but also increases the weight of the optical deflector itself, so that the load of a motor for rotating the optical deflector becomes very large, and as a result, Various problems such as an increase in the cost and power consumption of the motor and an increase in the amount of heat generated from the motor occur.

【0011】又、レーザー光束の波長λを短くすること
については、可視レーザはまだコストが一般的に高く、
一部高級機には使用されているものの低価格のプリンタ
ーには不向きである。
Regarding shortening the wavelength λ of the laser beam, visible lasers are still generally expensive,
Although used for some high-end machines, it is not suitable for low-cost printers.

【0012】また解像度(もしくは走査線密度)を切り
換える際には、本来その解像度に応じた最適なスポット
径及び光量に設定するのが望ましいが、従来の画像形成
装置においては、例えば400dpiと600dpiと
を切り換える際などにおいては、該解像度に応じてスポ
ット径を変えるということはしていなかった。
When switching the resolution (or scanning line density), it is originally desirable to set the optimum spot diameter and light amount according to the resolution. However, in a conventional image forming apparatus, for example, 400 dpi and 600 dpi are set. For example, when switching the spot size, the spot diameter is not changed according to the resolution.

【0013】また光量については、例えば600dpi
と1200dpiとを切り換える等のように解像度を2
倍程度変化させる場合には、同じスポット径で、かつ同
じ光量で記録密度を倍にしてしまうと、当然出力画像の
濃度が濃くなってしまうので光量を半分程度にまで落と
してやることが望ましい。
The light amount is, for example, 600 dpi.
Resolution of 2 such as switching between
In the case where the recording density is doubled with the same spot diameter and the same light amount in the case of changing the recording density by about twice, the density of the output image naturally becomes high. Therefore, it is desirable to reduce the light amount to about half.

【0014】しかしながら光量を、例えば光源であるレ
ーザー光源の出力だけで調整することは難しい。一般に
レーザービームプリンタ等の画像形成装置に用いられる
走査光学系に使用されるレーザー光源は安価で出力が5
mW程度の半導体レーザーであることが多い。このクラ
スの半導体レーザーは寿命、出力の安定性、そして熱特
性等を考慮すると出力は1mW程度から4.5mW程度
の範囲で使用することが望ましい。例えば1mW程度か
ら4.5mWであれば光量は約4.5倍変化させること
ができるので、解像度を倍にしたときに光量をレーザー
出力で単純に半分に調整できそうであるが、実際は半導
体レーザーが光学系を通過するときの各光学部品の透過
率、あるいは反射率のバラツキ、更に最も影響の大きい
半導体レーザー自身の放射角のバラツキによる光量バラ
ツキによって光量の調整範囲は大幅に減ってしまう。そ
の為、被走査面上での光量を半分に落してやることすら
難しいという問題点がある。
However, it is difficult to adjust the light quantity only by the output of a laser light source, for example, a light source. Generally, a laser light source used for a scanning optical system used in an image forming apparatus such as a laser beam printer is inexpensive and has an output of 5%.
It is often a semiconductor laser of about mW. It is desirable to use a semiconductor laser of this class in the range of about 1 mW to about 4.5 mW in consideration of life, stability of output, thermal characteristics, and the like. For example, if the power is about 1 mW to 4.5 mW, the light quantity can be changed by about 4.5 times. Therefore, when the resolution is doubled, the light quantity seems to be able to be simply halved by the laser output. When the light passes through the optical system, the adjustment range of the light amount is significantly reduced due to the variation in the transmittance or the reflectance of each optical component and the variation in the light amount due to the variation in the radiation angle of the semiconductor laser itself, which has the greatest influence. Therefore, there is a problem that it is difficult to even reduce the light amount on the surface to be scanned to half.

【0015】本発明は光源手段と偏向手段との間の光路
中に光軸上の光束の一部を遮光する所定形状(例えば円
形形状もしくは楕円形状)の遮光部を有する遮光部材を
設け、該遮光部材を利用して主走査方向及び副走査方向
の実効的な遮光径比を少なくとも1つの方向において可
変とすることにより、被走査面上におけるレーザー光束
のスポット径を小さくすることができ、また解像度(も
しくは走査線密度)の切り換えに応じて各々に適した光
量及びスポット径で画像形成を良好に行なうことができ
る光走査光学系及びそれを用いた画像形成装置の提供を
目的とする。
According to the present invention, a light-shielding member having a light-shielding portion having a predetermined shape (for example, a circular shape or an elliptical shape) for shielding a part of a light beam on an optical axis is provided in an optical path between the light source means and the deflecting means. By making the effective light-shielding diameter ratio in the main scanning direction and the sub-scanning direction variable in at least one direction using the light-shielding member, the spot diameter of the laser beam on the surface to be scanned can be reduced, It is an object of the present invention to provide an optical scanning optical system capable of favorably forming an image with a light amount and a spot diameter suitable for each of the resolutions (or scanning line densities) according to switching of the resolution (or scanning line density), and an image forming apparatus using the optical scanning optical system.

【0016】[0016]

【課題を解決するための手段】本発明の光走査光学系
は、 (1) 光源手段から出射されたレーザー光束の状態を変換
光学素子により他の状態に変換し、該変換されたレーザ
ー光束を、開口部を有する絞り部材によりその光束径を
整形して偏向手段に導光し、該偏向手段により偏向され
たレーザー光束を結像手段を介して被走査面上に導光
し、該被走査面上を光走査する光走査光学系において、
該光源手段と該偏向手段との間の光路中に該レーザー光
束の光軸上の一部を遮光する遮光部を有する遮光部材を
設け、該遮光部材を利用して主走査方向及び副走査方向
の実効的な遮光径比を少なくとも1つの方向において可
変としたことを特徴としている。
An optical scanning optical system according to the present invention comprises the following steps: (1) The state of a laser beam emitted from a light source is converted into another state by a conversion optical element, and the converted laser beam is A diaphragm member having an opening to shape the light beam diameter and guide the light beam to the deflecting means, and guide the laser light beam deflected by the deflecting means onto the surface to be scanned through the image forming means; In an optical scanning optical system that optically scans a surface,
A light-shielding member having a light-shielding portion that shields a part of the laser beam on the optical axis is provided in an optical path between the light source means and the deflecting means, and the main scanning direction and the sub-scanning direction are provided by using the light-shielding member. Is characterized in that the effective light shielding diameter ratio is variable in at least one direction.

【0017】特に(1-1) 前記実効的な遮光径比は前記光
走査光学系の走査線密度、もしくは解像度を切り換える
ときに変更することや、(1-2) 前記走査線密度を高密
度、もしくは前記解像度を高解像度に切り換えるときに
は前記実効的な遮光径比を低密度、もしくは低解像度に
比して大きくすることや、(1-3) 前記実効的な遮光径比
の変更は前記遮光部材の光軸に対する傾き角度を変更す
ることにより行なうことや、(1-4) 前記遮光部材による
主走査方向及び副走査方向の実効的な遮光径比を各々P
m(eff) ,Ps(eff) とし、前記絞り部材の開口部の主
走査方向及び副走査方向の径を各々Dm,Ds、該遮光
部材の遮光部を該絞り部材に投射したときの該遮光部の
主走査方向及び副走査方向の径を各々dm(eff) ,ds
(eff) としたとき、該各々の実効的な遮光径比Pm(ef
f) ,Ps(eff) は、
In particular, (1-1) the effective light-shielding diameter ratio is changed when switching the scanning line density or resolution of the optical scanning optical system, and (1-2) the scanning line density is increased. Or, when the resolution is switched to a high resolution, the effective light-shielding diameter ratio is set to be lower than the low-density or low-resolution, or (1-3) the change in the effective light-shielding diameter ratio is the light-shielding diameter ratio. By changing the inclination angle of the member with respect to the optical axis, (1-4) the effective light shielding diameter ratio in the main scanning direction and the sub-scanning direction by the light shielding member is set to P
m (eff) and Ps (eff), the diameters of the aperture of the aperture member in the main scanning direction and the sub-scanning direction are Dm and Ds, respectively, and the light shielding when the light shielding part of the light shielding member is projected on the aperture member. The diameters of the portion in the main scanning direction and the sub-scanning direction are dm (eff) and ds, respectively.
(eff), the effective light shielding diameter ratio Pm (ef)
f) and Ps (eff) are

【0018】[0018]

【数2】 であることや、(1-5) 前記遮光部材はガラスにパターン
蒸着することにより作成され、該遮光部材の光軸に対し
傾けて配置されていることや、(1-6) 前記変換光学素子
は前記光源手段から出射した光束の状態を略平行光束、
もしくは収束光束、もしくは発散光束に変換しているこ
と、等を特徴としている。
(Equation 2) Or (1-5) the light-shielding member is created by pattern evaporation on glass, and is arranged to be inclined with respect to the optical axis of the light-shielding member, and (1-6) the conversion optical element Is a state of a light beam emitted from the light source means a substantially parallel light beam,
Alternatively, it is converted into a convergent light beam or a divergent light beam.

【0019】本発明の画像形成装置は、 (2) 上記(1),(1-1),(1-2),(1-3),(1-4),(1-5),(1-6) の
いずれか1項記載の光走査光学系を用いて画像形成を行
なうことを特徴としている。
The image forming apparatus of the present invention comprises: (2) The above (1), (1-1), (1-2), (1-3), (1-4), (1-5), (1) An image is formed using the optical scanning optical system according to any one of 1-6).

【0020】[0020]

【発明の実施の形態】図1は本発明の実施形態1の光走
査光学系を、例えばレーザービームプリンタ(LBP)
等の画像形成装置に用いたときの主走査方向の要部断面
図(主走査断面図)である。
FIG. 1 shows an optical scanning optical system according to a first embodiment of the present invention, for example, a laser beam printer (LBP).
FIG. 3 is a cross-sectional view (main scanning cross-sectional view) of a main part in the main scanning direction when used in an image forming apparatus such as that shown in FIG.

【0021】同図において1は光源手段であり、例えば
半導体レーザより成っている。2は変換光学素子であ
り、光源手段1から出射したレーザー光束(光ビーム)
を略平行光束、もしくは収束光束、もしくは発散光束に
変換している。3は絞り部材(開口絞り)であり、後述
する形状より成る開口部3aを有し、レーザー光束の断
面の大きさを整形している。
In FIG. 1, reference numeral 1 denotes light source means, for example, a semiconductor laser. Reference numeral 2 denotes a conversion optical element, which is a laser beam (light beam) emitted from the light source unit 1.
Is converted into a substantially parallel light beam, a convergent light beam, or a divergent light beam. Reference numeral 3 denotes an aperture member (aperture stop) having an opening 3a having a shape to be described later, and shaping the size of the cross section of the laser beam.

【0022】8は遮光部材であり、後述する形状より成
る遮光部8aを有し、レーザー光束の光軸上の一部(光
軸を含む中心部)を遮光することによって被走査面上の
スポット径を小さくしている。本実施形態ではこの遮光
部材による主走査方向及び副走査方向の光束を遮光する
実効的な遮光径比を少なくとも1つの方向において可変
としており、これにより解像度(もしくは走査線密度)
の切り換えに応じて各々に適した光量及びスポット径で
画像形成を行なうようにしている。又この遮光部材8は
板ガラスにパターンを蒸着することによって作成されて
おり、遮光部材の光軸Lに対し傾けて配置されている。
Reference numeral 8 denotes a light-shielding member, which has a light-shielding portion 8a having a shape to be described later. The diameter is reduced. In the present embodiment, the effective light blocking diameter ratio for blocking the light beams in the main scanning direction and the sub-scanning direction by the light blocking member is variable in at least one direction.
In accordance with the switching, image formation is performed with a light amount and a spot diameter suitable for each. The light-shielding member 8 is formed by evaporating a pattern on a sheet glass, and is arranged to be inclined with respect to the optical axis L of the light-shielding member.

【0023】4はシリンドリカルレンズであり、副走査
断面内にのみ所定の屈折力を有している。5は光偏向器
であり、例えばポリゴンミラー(回転多面鏡)より成っ
ており、モータ等の駆動手段(不図示)により矢印A方
向に一定速度で回転している。6は結像手段としてのf
−θ特性を有する結像光学系(fθレンズ系)であり、
単レンズより成っており、光偏向器5で偏向されたレー
ザー光束を被走査面としての感光ドラム(記録媒体)面
7上に結像させている。
Reference numeral 4 denotes a cylindrical lens having a predetermined refractive power only in the sub-scan section. Reference numeral 5 denotes an optical deflector, which is, for example, a polygon mirror (rotating polygon mirror), and is rotated at a constant speed in the direction of arrow A by driving means (not shown) such as a motor. 6 is f as imaging means
An imaging optical system (fθ lens system) having -θ characteristics;
The laser beam deflected by the optical deflector 5 forms an image on a photosensitive drum (recording medium) surface 7 as a surface to be scanned.

【0024】本実施形態において光源手段1から出射さ
れたレーザー光束は変換光学素子2により略平行光束
(もしくは収束光束、もしくは発散光束)に変換され、
絞り部材3によって主走査方向(光偏向器の偏向方向)
と、副走査方向(光偏向器の偏向方向に直交する方向)
とに、その光束断面の大きさがビーム整形される。その
後、遮光部材8によって光軸近傍の一部のレーザー光束
が遮光されてシリンドリカルレンズ4に入射する。シリ
ンドリカルレンズ4に入射した略平行光束のうち主走査
断面内においてはそのまま略平行光束の状態で射出す
る。又副走査断面内においては収束して光偏向器5の偏
向面(反射面)5aにほぼ線像として結像している。そ
の後、偏向面5aで偏向したレーザー光束は結像光学系
6を介して感光ドラム面7上に集光し、該光偏向器5を
矢印A方向に回転させることにより、該感光ドラム面7
上を矢印B方向(主走査方向)に等速走査している。こ
れにより記録媒体である感光ドラム面7上に画像記録を
行なっている。
In this embodiment, the laser beam emitted from the light source means 1 is converted by the conversion optical element 2 into a substantially parallel beam (or a convergent beam or a divergent beam).
Main scanning direction (deflection direction of optical deflector) by aperture member 3
And the sub-scanning direction (direction orthogonal to the deflection direction of the optical deflector)
At this time, the size of the light beam cross section is beam-shaped. After that, a part of the laser beam near the optical axis is shielded by the light shielding member 8 and enters the cylindrical lens 4. Of the substantially parallel light beams incident on the cylindrical lens 4, they are emitted as they are in the state of substantially parallel light beams in the main scanning section. In the sub-scan section, the light converges and forms a substantially linear image on the deflection surface (reflection surface) 5a of the optical deflector 5. Thereafter, the laser beam deflected by the deflecting surface 5a is condensed on the photosensitive drum surface 7 via the image forming optical system 6, and the optical deflector 5 is rotated in the direction of arrow A, whereby the photosensitive drum surface 7
The top is scanned at a constant speed in the direction of arrow B (main scanning direction). Thus, an image is recorded on the photosensitive drum surface 7 as a recording medium.

【0025】図2は図1に示した絞り部材3の具体的な
開口部3aの形状(絞り形状)を示した説明図である。
この開口部3aの形状は感光ドラム面7上でのスポット
径によって任意に決められ、通常、円形、もしくは楕円
形、もしくは長円形状より成っている。同図においてD
mは開口部3aの主走査方向の径、Dsは開口部3aの
副走査方向の径である。
FIG. 2 is an explanatory diagram showing a specific shape (aperture shape) of the opening 3a of the diaphragm member 3 shown in FIG.
The shape of the opening 3a is arbitrarily determined according to the spot diameter on the photosensitive drum surface 7, and is usually circular, elliptical, or elliptical. In FIG.
m is the diameter of the opening 3a in the main scanning direction, and Ds is the diameter of the opening 3a in the sub-scanning direction.

【0026】図3は図1に示した遮光部材8の遮光部8
aの形状である。この遮光部8aの形状は光軸を中心と
した、例えば円形もしくは楕円形状より成っている。同
図においてdmは遮光部8aの主走査方向の径、dsは
遮光部8aの副走査方向の径である。
FIG. 3 shows the light shielding portion 8 of the light shielding member 8 shown in FIG.
a. The shape of the light shielding portion 8a is, for example, circular or elliptical with the optical axis as the center. In the figure, dm is the diameter of the light shielding portion 8a in the main scanning direction, and ds is the diameter of the light shielding portion 8a in the sub scanning direction.

【0027】図4は光源手段1から出射したレーザー光
束が変換光学素子2で略平行光束に変換され、絞り部材
3と、光軸Lに対し所定の角度傾けた遮光部材8とによ
りビーム整形されている様子を示した要部概略図であ
る。同図において図1に示した要素と同一要素には同符
番を付している。
FIG. 4 shows that the laser beam emitted from the light source means 1 is converted into a substantially parallel beam by the conversion optical element 2, and the beam is shaped by the stop member 3 and the light shielding member 8 inclined at a predetermined angle with respect to the optical axis L. It is the principal part schematic diagram which showed the appearance. In the figure, the same elements as those shown in FIG. 1 are denoted by the same reference numerals.

【0028】同図においてdm(eff) は遮光部材8の遮
光部8aを絞り部材3に投射したときの該遮光部8aの
主走査方向の径、dmは遮光部材8の位置における遮光
部8aの主走査方向の径である。
In the figure, dm (eff) is the diameter of the light-shielding portion 8a of the light-shielding member 8 in the main scanning direction when the light-shielding portion 8a is projected onto the diaphragm member 3, and dm is the diameter of the light-shielding portion 8a at the position of the light-shielding member 8. This is the diameter in the main scanning direction.

【0029】図5は絞り部材3の位置における遮光部材
8による実効的な遮光形状を表わした説明図である。同
図において図2、図4に示した要素と同一要素には同符
番を付している。
FIG. 5 is an explanatory diagram showing an effective light shielding shape by the light shielding member 8 at the position of the diaphragm member 3. In this figure, the same elements as those shown in FIGS. 2 and 4 are denoted by the same reference numerals.

【0030】同図においてds(eff) は遮光部材8の遮
光部8aを絞り部材3に投射したときの該遮光部8aの
副走査方向の径である。
In the figure, ds (eff) is the diameter of the light shielding portion 8a in the sub-scanning direction when the light shielding portion 8a of the light shielding member 8 is projected on the diaphragm member 3.

【0031】ここで遮光部材8の遮光部8aの形状を絞
り部材3の開口部3aに対して主走査方向と副走査方向
との実効的な遮光径比を各々Pm(eff) ,Ps(eff) と
したとき、該遮光径比Pm(eff) ,Ps(eff) を
Here, the shape of the light-shielding portion 8a of the light-shielding member 8 is set to Pm (eff) and Ps (eff) with respect to the aperture 3a of the aperture member 3 in terms of the effective light-shielding diameter ratio in the main scanning direction and the sub-scanning direction, respectively. ), The light-shielding diameter ratios Pm (eff) and Ps (eff) are

【0032】[0032]

【数3】 と定義する。(Equation 3) Is defined.

【0033】一般に上記のように絞り部材3の中心部分
を通過するレーザー光束を遮光すると感光ドラム面7上
でのスポット径を小さくすることができることが知られ
ている。
It is generally known that the spot diameter on the photosensitive drum surface 7 can be reduced by blocking the laser beam passing through the central portion of the diaphragm member 3 as described above.

【0034】例えば、その例として本発明者が行なった
シミュレーションの結果を図6に示す。ここでは説明を
簡単にする為にdm(eff) =ds(eff) 、即ち主走査方
向と副走査方向の実効的な遮光径比を等しいとしてシミ
ュレーションを行なっている。ここではPm(eff) =P
s(eff) =0のときの回折限界スポット径を60μmに
設定している。同図に示すように実効的な遮光径比を大
きくするに従ってスポット径を小さくできることが解
る。
For example, FIG. 6 shows a result of a simulation performed by the present inventor as an example. Here, for the sake of simplicity, the simulation is performed on the assumption that dm (eff) = ds (eff), that is, the effective light blocking diameter ratio in the main scanning direction and the sub-scanning direction is equal. Here, Pm (eff) = P
The diffraction limit spot diameter when s (eff) = 0 is set to 60 μm. As shown in the figure, it can be understood that the spot diameter can be reduced as the effective light blocking diameter ratio is increased.

【0035】本実施形態では走査線密度を高密度、もし
くは解像度を高解像度に切り換えるときには実効的な遮
光径比を低密度、もしくは低解像度に比して大きくして
いる。即ち、高解像度(もしくは高密度)においては感
光ドラム7面上での光量が低解像度(もしくは低密度)
に比して減少し、かつスポット径が小さくなる。
In this embodiment, when the scanning line density is changed to high density or the resolution is changed to high resolution, the effective light blocking diameter ratio is increased compared to low density or low resolution. That is, at high resolution (or high density), the amount of light on the surface of the photosensitive drum 7 is low (or low density).
And the spot diameter becomes smaller.

【0036】本実施形態ではこの実効的な遮光径比をそ
の光走査光学系の走査線密度、もしくは解像度を切り換
えるときに変更しており、例えば上述の如く走査線密度
を高密度、もしくは解像度を高解像度に切り換えるとき
には、該実効的な遮光径比を低密度、もしくは低解像度
に比して大きくしている。またこの実効的な遮光径比の
変更は遮光部材の光軸に対する傾き角度を変更手段(不
図示)により変更することにより行なっている。
In this embodiment, the effective light blocking diameter ratio is changed when the scanning line density or the resolution of the optical scanning optical system is switched. For example, as described above, the scanning line density is increased or the resolution is increased. When switching to high resolution, the effective light-shielding diameter ratio is increased compared to low density or low resolution. The effective change of the light-shielding diameter ratio is performed by changing the inclination angle of the light-shielding member with respect to the optical axis by changing means (not shown).

【0037】ここで例えば600dpiと1200dp
iというように解像度を切り換える場合について図7、
図8を用いて説明する。図7、図8において前記図4、
図5に示した要素と同一要素には同符番を付している。
Here, for example, 600 dpi and 1200 dpi
FIG. 7 shows a case where the resolution is switched as i.
This will be described with reference to FIG. 7 and FIG.
The same elements as those shown in FIG. 5 are denoted by the same reference numerals.

【0038】図8(A),(B)は各々600dpi時
における遮光部材8の配置の様子を示した主走査断面図
及び絞り部材3の位置における実効的な遮光形状を示す
説明図である。同図(A)では遮光部材8を主走査方向
(もしくは光軸L方向)に対して傾けて配置しており、
かつ主走査方向に対するその傾き角α(もしくは光軸L
に対する傾斜角度)を適切に設定することにより、実効
的な遮光径比を適切に設定して600dpiの画像に応
じた小スポット径及び光量を得ている。
FIGS. 8A and 8B are a main scanning sectional view showing the arrangement of the light shielding member 8 at 600 dpi and an explanatory diagram showing an effective light shielding shape at the position of the stop member 3. FIGS. In FIG. 2A, the light shielding member 8 is arranged to be inclined with respect to the main scanning direction (or the optical axis L direction).
And its inclination angle α with respect to the main scanning direction (or the optical axis L
By appropriately setting the inclination angle with respect to the effective light-shielding diameter ratio, a small spot diameter and light amount corresponding to a 600 dpi image are obtained.

【0039】一方、図7(A),(B)は各々1200
dpiに解像度を切り換えたときの遮光部材8の配置の
様子を示した主走査断面図及び絞り部材3の位置におけ
る実効的な遮光形状を示す説明図である。同図(A)で
は遮光部材8を主走査方向に対する傾き角αを図8
(A)に比して小さくすることによって実効的な遮光径
比を大きく設定している。これによりレーザー光束を遮
光する面積を大きくすることによって、感光ドラム面上
での光量を半分以上にまで落すことができ、かつ主走査
方向のスポット径も小さくすることができるので、より
高解像度に適したスポット形状を得ることができる。
On the other hand, FIGS. 7A and 7B show 1200
FIG. 7 is a main scanning cross-sectional view illustrating the arrangement of the light shielding member 8 when the resolution is switched to dpi, and an explanatory diagram illustrating an effective light shielding shape at the position of the diaphragm member 3. 8A, the inclination angle α of the light shielding member 8 with respect to the main scanning direction is shown in FIG.
The effective light-shielding diameter ratio is set large by making it smaller than that in FIG. By increasing the area that blocks the laser beam, the amount of light on the photosensitive drum surface can be reduced to more than half and the spot diameter in the main scanning direction can be reduced, resulting in higher resolution. A suitable spot shape can be obtained.

【0040】このように本実施形態においては上述の如
く半導体レーザー1と光偏向器5との間の光路中に遮光
部材8を設け、該遮光部材8を利用して主走査方向の実
効的な遮光径比を可変とすることにより、被走査面7上
におけるレーザー光束のスポット径を小さくすることが
でき、また解像度(もしくは走査線密度)の切り換えに
応じて各々に適した光量及びスポット径で画像形成を行
なうことができる。
As described above, in the present embodiment, the light shielding member 8 is provided in the optical path between the semiconductor laser 1 and the optical deflector 5 as described above, and the effective light in the main scanning direction is utilized by using the light shielding member 8. By making the light-shielding diameter ratio variable, the spot diameter of the laser beam on the scanned surface 7 can be reduced, and the light amount and spot diameter suitable for each can be changed according to the switching of the resolution (or scanning line density). Image formation can be performed.

【0041】尚、本実施形態では遮光部材8を主走査方
向に対して傾けて配置しているが、これに限らず、例え
ば副走査方向において傾けても良く、あるいは両方向に
おいて相対的に傾けて配置しても良い。これにより副走
査方向の実効的な遮光径比も可変とすることができる。
In this embodiment, the light shielding member 8 is arranged to be inclined with respect to the main scanning direction. However, the present invention is not limited to this. For example, the light shielding member 8 may be inclined in the sub scanning direction, or may be relatively inclined in both directions. It may be arranged. Thereby, the effective light-shielding diameter ratio in the sub-scanning direction can also be made variable.

【0042】また本実施形態において解像度(もしくは
走査線密度)を切り換える際の遮光部材の傾き角を変更
する変更手段は特に限定はしない。また遮光部材の表面
で反射される反射光が再度半導体レーザーに戻ってしま
うと、該半導体レーザーの動作が不安定になってしまう
為、該遮光部材は常に光軸Lに対して傾けて配置するの
が良い。これにより半導体レーザー1の動作の安定性を
図ることができる。
In this embodiment, there is no particular limitation on the changing means for changing the inclination angle of the light shielding member when switching the resolution (or the scanning line density). If the light reflected on the surface of the light-shielding member returns to the semiconductor laser again, the operation of the semiconductor laser becomes unstable. Therefore, the light-shielding member is always arranged inclined with respect to the optical axis L. Is good. Thereby, the operation stability of the semiconductor laser 1 can be improved.

【0043】[0043]

【発明の効果】本発明によれば前述の如く光源手段と偏
向手段との間の光路中に光軸上の光束の一部を遮光する
所定形状(例えば円形形状もしくは楕円形状)の遮光部
を有する遮光部材を設け、該遮光部材を利用して主走査
方向及び副走査方向の実効的な遮光径比を少なくとも一
つの方向において可変とし、具体的には解像度(もしく
は走査線密度)の切り換えの際に、例えば高解像時には
実効的な遮光径比を低解像度に比して大きくすることに
より、光源である半導体レーザーの出力を変えることな
く光量を落とすことができ、高解像時に適した濃度の画
像を得ることができ、また同時にスポット径も小さくす
ることができる為に高解像時にはより一層の高画質の画
像を得ることができる光走査光学系及びそれを用いた画
像形成装置を達成することができる。
According to the present invention, as described above, in the optical path between the light source means and the deflecting means, a light shielding portion of a predetermined shape (for example, a circular shape or an elliptical shape) for shielding a part of the light beam on the optical axis is provided. A light-shielding member having an effective light-shielding diameter ratio in at least one direction in the main scanning direction and the sub-scanning direction using the light-shielding member. Specifically, switching of resolution (or scanning line density) is performed. In this case, for example, by increasing the effective light blocking diameter ratio at a high resolution as compared with a low resolution, the light amount can be reduced without changing the output of a semiconductor laser as a light source, which is suitable for a high resolution. An optical scanning optical system and an image forming apparatus using the optical scanning optical system, which can obtain an image with a high density and can also obtain a higher quality image at a high resolution because the spot diameter can be reduced at the same time. Achievement Rukoto can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1の主走査断面図FIG. 1 is a main scanning sectional view of a first embodiment of the present invention.

【図2】 本発明の実施形態1における開口絞りの形状
を示す説明図
FIG. 2 is an explanatory diagram showing a shape of an aperture stop according to the first embodiment of the present invention.

【図3】 本発明の実施形態1における遮光部の形状を
示す説明図
FIG. 3 is an explanatory view showing a shape of a light shielding portion according to the first embodiment of the present invention.

【図4】 本発明の実施形態1において遮光部によって
ビーム整形される様子を示す説明図
FIG. 4 is an explanatory diagram showing a state in which beam shaping is performed by a light shielding unit in the first embodiment of the present invention.

【図5】 本発明の実施形態1における絞り部材の位置
における実効的な遮光形状を示す説明図
FIG. 5 is an explanatory diagram showing an effective light shielding shape at the position of the aperture member according to the first embodiment of the present invention.

【図6】 実効的遮光径比とスポット径との関係を示す
説明図
FIG. 6 is an explanatory diagram showing a relationship between an effective light blocking diameter ratio and a spot diameter.

【図7】 本発明の実施形態1の解像度(600dp
i)の切り換え時における遮光部材の傾き状態を示す説
明図及び絞り部材の位置における実効的な遮光形状を示
す説明図
FIG. 7 illustrates a resolution (600 dp) according to the first embodiment of the present invention.
Explanatory drawing showing the state of inclination of the light shielding member at the time of switching i) and explanatory drawing showing the effective light shielding shape at the position of the diaphragm member.

【図8】 本発明の実施形態1の解像度(1200dp
i)の切り換え時における遮光部材の傾き状態を示す説
明図及び絞り部材の位置における実効的な遮光形状を示
す説明図
FIG. 8 illustrates a resolution (1200 dp) according to the first embodiment of the present invention.
Explanatory drawing showing the state of inclination of the light shielding member at the time of switching i) and explanatory drawing showing the effective light shielding shape at the position of the diaphragm member.

【図9】 従来の光走査光学系の主走査断面図FIG. 9 is a main scanning sectional view of a conventional optical scanning optical system.

【符号の説明】 1 光源手段 2 変換光学素子 3 絞り部材 4 シリンドリカルレンズ 5 偏向手段(光偏向器) 6 結像手段(fθレンズ系) 7 被走査面(感光ドラム面) 8 遮光部材[Description of Signs] 1 Light source means 2 Conversion optical element 3 Aperture member 4 Cylindrical lens 5 Deflection means (optical deflector) 6 Imaging means (fθ lens system) 7 Scanned surface (photosensitive drum surface) 8 Light shielding member

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光源手段から出射されたレーザー光束の
状態を変換光学素子により他の状態に変換し、該変換さ
れたレーザー光束を、開口部を有する絞り部材によりそ
の光束径を整形して偏向手段に導光し、該偏向手段によ
り偏向されたレーザー光束を結像手段を介して被走査面
上に導光し、該被走査面上を光走査する光走査光学系に
おいて、 該光源手段と該偏向手段との間の光路中に該レーザー光
束の光軸上の一部を遮光する遮光部を有する遮光部材を
設け、該遮光部材を利用して主走査方向及び副走査方向
の実効的な遮光径比を少なくとも1つの方向において可
変としたことを特徴とする光走査光学系。
1. A laser beam emitted from a light source means is converted into another state by a conversion optical element, and the converted laser beam is deflected by shaping its beam diameter by an aperture member having an opening. An optical scanning optical system that guides the laser beam deflected by the deflecting unit onto the surface to be scanned through the image forming unit, and optically scans the surface to be scanned. A light-shielding member having a light-shielding portion that shields a part of the laser beam on the optical axis is provided in an optical path between the light source and the deflecting means, and an effective light in the main scanning direction and the sub-scanning direction is provided by using the light-shielding member. An optical scanning optical system, wherein a light shielding diameter ratio is variable in at least one direction.
【請求項2】 前記実効的な遮光径比は前記光走査光学
系の走査線密度、もしくは解像度を切り換えるときに変
更することを特徴とする請求項1の光走査光学系。
2. The optical scanning optical system according to claim 1, wherein the effective light-shielding diameter ratio is changed when switching the scanning line density or the resolution of the optical scanning optical system.
【請求項3】 前記走査線密度を高密度、もしくは前記
解像度を高解像度に切り換えるときには前記実効的な遮
光径比を低密度、もしくは低解像度に比して大きくする
ことを特徴とする請求項2の光走査光学系。
3. The effective light-shielding diameter ratio is increased when the scanning line density is switched to a high density or when the resolution is switched to a high resolution. Optical scanning optical system.
【請求項4】 前記実効的な遮光径比の変更は前記遮光
部材の光軸に対する傾き角度を変更することにより行な
うことを特徴とする請求項1、2又は3の光走査光学
系。
4. The optical scanning optical system according to claim 1, wherein the effective change of the light shielding diameter ratio is performed by changing an inclination angle of the light shielding member with respect to an optical axis.
【請求項5】 前記遮光部材による主走査方向及び副走
査方向の実効的な遮光径比を各々Pm(eff) ,Ps(ef
f) とし、前記絞り部材の開口部の主走査方向及び副走
査方向の径を各々Dm,Ds、該遮光部材の遮光部を該
絞り部材に投射したときの該遮光部の主走査方向及び副
走査方向の径を各々dm(eff) ,ds(eff) としたと
き、該各々の実効的な遮光径比Pm(eff) ,Ps(eff)
は、 【数1】 であることを特徴とする請求項1、2、3又は4の光走
査光学系。
5. The effective light-shielding diameter ratio of the light-shielding member in the main scanning direction and the sub-scanning direction is Pm (eff) and Ps (ef), respectively.
f), the diameters of the opening of the aperture member in the main scanning direction and the sub-scanning direction are Dm and Ds, respectively, and the main scanning direction and the sub-scanning direction of the light shielding unit when the light shielding unit is projected onto the aperture member. Assuming that the diameters in the scanning direction are dm (eff) and ds (eff), respectively, the effective light-shielding diameter ratios Pm (eff) and Ps (eff)
Is: The optical scanning optical system according to claim 1, 2, 3, or 4, wherein
【請求項6】 前記遮光部材はガラスにパターン蒸着す
ることにより作成され、該遮光部材の光軸に対し傾けて
配置されていることを特徴とする請求項1の光走査光学
系。
6. The optical scanning optical system according to claim 1, wherein the light shielding member is formed by pattern vapor deposition on glass, and is arranged to be inclined with respect to the optical axis of the light shielding member.
【請求項7】 前記変換光学素子は前記光源手段から出
射した光束の状態を略平行光束、もしくは収束光束、も
しくは発散光束に変換していることを特徴とする請求項
1の光走査光学系。
7. The optical scanning optical system according to claim 1, wherein said conversion optical element converts a state of a light beam emitted from said light source means into a substantially parallel light beam, a convergent light beam, or a divergent light beam.
【請求項8】 請求項1乃至7のいずれか1項記載の光
走査光学系を用いて画像形成を行なうことを特徴とする
画像形成装置。
8. An image forming apparatus for forming an image using the optical scanning optical system according to claim 1.
JP22116197A 1997-08-01 1997-08-01 Optical scanning optical system and image forming device using the same Pending JPH1152272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22116197A JPH1152272A (en) 1997-08-01 1997-08-01 Optical scanning optical system and image forming device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22116197A JPH1152272A (en) 1997-08-01 1997-08-01 Optical scanning optical system and image forming device using the same

Publications (1)

Publication Number Publication Date
JPH1152272A true JPH1152272A (en) 1999-02-26

Family

ID=16762438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22116197A Pending JPH1152272A (en) 1997-08-01 1997-08-01 Optical scanning optical system and image forming device using the same

Country Status (1)

Country Link
JP (1) JPH1152272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294327A (en) * 2008-06-03 2009-12-17 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294327A (en) * 2008-06-03 2009-12-17 Ricoh Co Ltd Optical scanner and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2524567B2 (en) Multiple beam scanning optics
JP2011059559A (en) Multi-beam optical scanning device and image forming apparatus using the same
US5859720A (en) Scanniing optical apparatus
KR100449729B1 (en) Optical scanning apparatus
US5867298A (en) Dual format pre-objective scanner
JPH09304720A (en) Optical scanning device and optical lens
US5861977A (en) Dual format dual resolution scanner with off-axis beams
JPH07270699A (en) Optical scanner
JP4298229B2 (en) Optical scanning device and image forming apparatus using the same
JPH1152272A (en) Optical scanning optical system and image forming device using the same
US6067182A (en) Optical scanning device
JPH1164759A (en) Light scanning optical device
JP2001021819A (en) Scanning optical device
JPH10260371A (en) Scanning optical device
JP2817454B2 (en) Scanning optical device
JP2001337283A (en) Laser beam scanner
JPH11264952A (en) Optical scanning device
JPH0511209A (en) Optical scanning and recording device
JPH11149037A (en) Cylinder lens unit and scanning optical device using the unit
JPH10246860A (en) Multi-beam scanning optical device
JPH0772405A (en) Optical scanner
JPH07140404A (en) Scanning optical device
JP2001066532A (en) Optical scanner
JPS62200318A (en) Semiconductor laser scanner
JPH10325931A (en) Adjusting method for multibeam scanning optical system