JPH1151912A - Ultrasonic testing method and ultrasonic testing device - Google Patents
Ultrasonic testing method and ultrasonic testing deviceInfo
- Publication number
- JPH1151912A JPH1151912A JP9220719A JP22071997A JPH1151912A JP H1151912 A JPH1151912 A JP H1151912A JP 9220719 A JP9220719 A JP 9220719A JP 22071997 A JP22071997 A JP 22071997A JP H1151912 A JPH1151912 A JP H1151912A
- Authority
- JP
- Japan
- Prior art keywords
- receiver
- wave
- ultrasonic
- reception
- central axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0258—Structural degradation, e.g. fatigue of composites, ageing of oils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2695—Bottles, containers
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波試験方法及
び超音波試験装置に関し、特に、鋼管や圧力容器の内面
側において進行する浸炭や材質劣化等、表面側から試験
を行うことの難しい状況に適した超音波試験方法と試験
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic test method and an ultrasonic test apparatus, and more particularly, to a situation where it is difficult to perform a test from the surface side, such as carburization or deterioration of material on the inner surface side of a steel pipe or a pressure vessel. The present invention relates to an ultrasonic test method and a test apparatus suitable for a computer.
【0002】[0002]
【従来の技術】例えば、ナフサ熱分解用のエチレン装置
においては、分解炉の出口に該当する上昇管における内
面が浸炭で劣化し易く、定期的な取り替えが必要であ
る。この種の上昇管には、耐熱性向上の見地から、高ニ
ッケル高クロムの鋼管が用いられている。浸炭によるマ
ルテンサイト変態に伴って、鋼管内面が磁性を帯びる。
そこで、従来では、上昇管の外面に磁石を接触させ、そ
の吸着度合いにより浸炭の程度を評価していた。しか
し、厚肉の鋼管外面から磁石の吸着度合いを評価する程
度では、浸炭層の厚さを推定することは困難であった。2. Description of the Related Art For example, in an ethylene unit for naphtha pyrolysis, the inner surface of a riser pipe corresponding to the outlet of a cracking furnace is easily deteriorated by carburization, and requires periodic replacement. For this type of riser, a steel pipe of high nickel and high chromium is used from the viewpoint of improving heat resistance. With the martensitic transformation caused by carburization, the inner surface of the steel pipe becomes magnetic.
Therefore, conventionally, a magnet was brought into contact with the outer surface of the riser, and the degree of carburization was evaluated based on the degree of adsorption. However, it was difficult to estimate the thickness of the carburized layer only by evaluating the degree of magnet attraction from the outer surface of the thick steel pipe.
【0003】一方、発明者らは超音波を用いた音速測定
により浸炭厚さを推定する点についても検討した。しか
し、浸炭層と健全層との界面で明確な超音波の反射が得
られず、表裏面が粗い場合には超音波吸収が大きくて、
正確な音速測定は行い難かった。[0003] On the other hand, the inventors have also studied a point of estimating the carburized thickness by measuring the speed of sound using ultrasonic waves. However, when no clear ultrasonic reflection is obtained at the interface between the carburized layer and the sound layer, and the front and back surfaces are rough, the ultrasonic absorption is large,
It was difficult to measure sound speed accurately.
【0004】また、試験体の表面に沿った各座標位置に
おける劣化の程度を推定するに当たっては、特開平7−
301624号公報に記載の如く、後方散乱波を用いる
手法が知られている。しかし、同公報によれば、試験体
の上記各座標位置における後方散乱波全体を評価してお
り、深さ方向に対する試験体の劣化分布を推定すること
は不可能であった。Further, in estimating the degree of deterioration at each coordinate position along the surface of a test specimen, Japanese Patent Laid-Open No.
As described in JP-A-301624, a technique using a backscattered wave is known. However, according to the publication, the entire backscattered wave at each of the coordinate positions of the test body is evaluated, and it is impossible to estimate the deterioration distribution of the test body in the depth direction.
【0005】[0005]
【発明が解決しようとする課題】かかる従来の実状に鑑
みて、本発明は、試験体の裏面側から進行する材質変化
の試験体厚さ方向に対する分布を試験体の表面側から評
価することの可能な超音波試験方法とこれに用いる試験
装置を提供することを目的とする。SUMMARY OF THE INVENTION In view of such a conventional situation, the present invention provides a method of evaluating the distribution of a change in material progressing from the back side of a specimen in the thickness direction of the specimen from the front side of the specimen. It is an object of the present invention to provide a possible ultrasonic test method and a test apparatus used for the method.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係る超音波試験方法の特徴は、送信子から
試験体の表面を介して入射する超音波の送信側中心軸
と、この超音波に起因して試験体内で発生する後方散乱
波を前記表面側から受信する受信子の受信側中心軸とを
交差させて前記送信子と前記受信子とを配置し、前記受
信子の受信部を前記表面に起因する前記超音波の鏡面反
射波の中心軸外に位置させると共に、各受信時間におけ
る前記後方散乱波の特徴量により前記試験体の裏面側に
おける各深さ部分の状態を評価することにある。In order to achieve the above object, an ultrasonic testing method according to the present invention is characterized in that a transmitting-side central axis of an ultrasonic wave incident from a transmitter through a surface of a test object and a transmitting-side central axis thereof. The transmitter and the receiver are arranged by intersecting the center axis of the receiver for receiving the backscattered wave generated in the test object from the surface side due to the ultrasonic wave, and receiving the receiver. Position is located outside the central axis of the specular reflected wave of the ultrasonic wave caused by the front surface, and the state of each depth portion on the back surface side of the test specimen is evaluated by the characteristic amount of the backscattered wave at each reception time. Is to do.
【0007】同特徴によれば、送信側中心軸と受信側中
心軸とを交差させて送信子と受信子とを配置すること
で、斜め方向から後方散乱波をより顕著に受信すること
ができる。また、試験体表面での鏡面反射波の中心軸上
から前記受信子の受信部を外すことで、この鏡面反射波
により受信する信号が飽和する等の不都合もなく、微小
な後方散乱波を低ノイズで受信できる。「受信部」には
例えば受信子の「音響レンズ」や試験体に接触させる
「楔」が用いられる。本発明にいう「後方散乱波の特徴
量」とは、受信信号の強度のみならず、各時間ゲートに
おける特定部分の積分値や一次モーメント等が含まれ
る。そして、後方散乱波を低ノイズかつ比較的高強度で
受信できれば、上記各特徴量の成分も多く含まれてお
り、試験体の評価もより正確なものとなる。本発明の特
徴は、後方散乱波を捉える点で、傷や底面エコーを捉え
る斜角探傷とは異なっている。According to this feature, the backscattered wave can be more remarkably received from an oblique direction by disposing the transmitter and the receiver so that the central axis of the transmitting side and the central axis of the receiving side intersect with each other. . Further, by removing the receiver of the receiver from the center axis of the specular reflected wave on the surface of the test object, there is no inconvenience such as the signal received by the specular reflected wave being saturated, and the minute backscattered wave is reduced. Can be received with noise. As the “receiving unit”, for example, an “acoustic lens” of a receiver or a “wedge” to be brought into contact with a test object is used. The “feature amount of the backscattered wave” in the present invention includes not only the intensity of the received signal but also the integral value, the first moment, and the like of a specific portion in each time gate. Then, if the backscattered wave can be received with low noise and relatively high intensity, the components of the respective feature amounts are also included in a large amount, and the evaluation of the test object becomes more accurate. The feature of the present invention is different from oblique flaw detection in which a flaw or a bottom echo is captured in that a backscattered wave is captured.
【0008】また、前記受信子の焦点を前記表面外に位
置させるとよい。焦点を試験体表面外へずらすことによ
って、受信子による試験体表面での受信領域は拡大し、
試験体の深さ方向に対する検出可能範囲が拡大する。It is preferable that the focal point of the receiver is located outside the surface. By shifting the focus out of the surface of the specimen, the receiving area on the surface of the specimen by the receiver is enlarged,
The detectable range in the depth direction of the test body is expanded.
【0009】さらに、前記特徴量が前記受信子による後
方散乱波の受信強度であり、前記送信側中心軸又は前記
受信側中心軸のうちいずれか一方を前記表面に対してほ
ぼ直交させることが望ましい。発明者らの実験によれ
ば、例えば高合金鋼において浸炭が進行した層では後方
散乱波の強度が低下することが確認され、受信子による
後方散乱波の受信強度を測定することで、浸炭層の深さ
方向に対する分布を推定できることが明らかとなった。
また、送信側中心軸又は受信側中心軸のうちいずれか一
方を前記表面に対してほぼ直交させることで、試験体が
曲面状の形状を呈していても、三次元空間における試験
体の位置を特定することが容易となる。Further, it is preferable that the characteristic quantity is a reception intensity of the backscattered wave by the receiver, and that either one of the central axis on the transmitting side and the central axis on the receiving side be substantially orthogonal to the surface. . According to the experiments of the inventors, for example, it has been confirmed that the intensity of the backscattered wave is reduced in a layer in which carburization has progressed in a high alloy steel, and by measuring the reception intensity of the backscattered wave by the receiver, the carburized layer is measured. It became clear that the distribution in the depth direction can be estimated.
Further, by making one of the transmission-side central axis and the reception-side central axis substantially perpendicular to the surface, even if the test piece has a curved shape, the position of the test piece in the three-dimensional space can be determined. It becomes easy to specify.
【0010】一方、上記方法に用いる本発明に係る超音
波試験装置の特徴は、超音波の送信子と、この超音波に
起因して試験体内で発生する後方散乱波を受信する受信
子と、各受信時間における前記後方散乱波の特徴量を表
示する特徴量表示手段とを備え、前記送信子の送信側中
心軸と受信側中心軸とを交差させて前記送信子と前記受
信子とを配置することにある。On the other hand, the ultrasonic testing apparatus according to the present invention used in the above method is characterized by a transmitter for ultrasonic waves, a receiver for receiving backscattered waves generated in a test object due to the ultrasonic waves, And a feature value display unit for displaying a feature value of the backscattered wave at each reception time, and the transmitter and the receiver are arranged by intersecting a transmission center axis and a reception center axis of the transmitter. Is to do.
【0011】[0011]
【発明の実施の形態】次に、添付図面を参照しながら、
本発明の実施形態について説明する。図1に示すよう
に、本発明にかかる超音波試験装置1は、センサーヘッ
ド20および特徴量表示手段60を備えている。この特
徴量表示手段60は、ドライブユニット30,パーソナ
ルコンピューター40及びモニター50をさらに備えて
いる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, referring to the attached drawings,
An embodiment of the present invention will be described. As shown in FIG. 1, the ultrasonic test apparatus 1 according to the present invention includes a sensor head 20 and a feature amount display unit 60. The feature amount display means 60 further includes a drive unit 30, a personal computer 40, and a monitor 50.
【0012】センサーヘッド20は、パルサー31によ
り駆動される送信子21と、後方散乱波を受信する受信
子22とを備えている。これら送信子21,受信子22
は、一定の角度を以って互いに固定されており、三つの
ステップモーターを含むスキャン用モーター23の駆動
により、三次元的に試験体の表面をスキャンする。The sensor head 20 includes a transmitter 21 driven by a pulsar 31 and a receiver 22 for receiving backscattered waves. These transmitter 21 and receiver 22
Are fixed to each other at a certain angle, and scan the surface of the test object three-dimensionally by driving a scanning motor 23 including three stepping motors.
【0013】ドライブユニット30は、送信子21を駆
動させるためのパルサー31と、受信子22により受信
された後方散乱波を受信するレシーバー32と、この信
号をデジタル変換するためのA/Dコンバータ33とを
備えている。また、モータードライバー34はスキャン
用モーター23の駆動量をステップ制御する。The drive unit 30 includes a pulsar 31 for driving the transmitter 21, a receiver 32 for receiving the backscattered wave received by the receiver 22, and an A / D converter 33 for digitally converting the signal. It has. Further, the motor driver 34 controls the driving amount of the scanning motor 23 stepwise.
【0014】パーソナルコンピューター40は、汎用品
にソフトウェア及びインターフェースを組み込んで、符
号42〜46に示す特定の機能を実現させる。また、ト
リガー42は、キーボードやマウスなどの操作手段41
により動作し、パルサー31を駆動させて送信子21か
ら超音波パルスを試験体に対し入射する。The personal computer 40 realizes specific functions indicated by reference numerals 42 to 46 by incorporating software and an interface into a general-purpose product. Further, the trigger 42 is provided with an operating means 41 such as a keyboard or a mouse.
To drive the pulsar 31 to cause the transmitter 21 to transmit an ultrasonic pulse to the test object.
【0015】受信子22,レシーバー32及びA/Dコ
ンバータ33を介して受信され且つデジタル信号化され
た後方散乱波は、RAMやハードディスクなどのメモリ
ー43に記憶される。タイマー44は、トリガー42と
連携して図3(a)の時間ゲートGを設定し、各時間ゲ
ートGごとの信号をサンプリングする。処理手段45
は、図3に示す如きグラフとして、受信した信号をモニ
ター50に表示させる。また、処理手段45は、タイマ
ー44と連携して各時間ゲートG毎にサンプリングされ
た信号からFFT手段等を用いて周波数スペクトルを求
めると共に、後述する各種特徴量を求めて表示する。The backscattered wave received via the receiver 22, the receiver 32 and the A / D converter 33 and converted into a digital signal is stored in a memory 43 such as a RAM or a hard disk. The timer 44 sets the time gates G in FIG. 3A in cooperation with the trigger 42, and samples a signal for each time gate G. Processing means 45
Displays the received signal on the monitor 50 as a graph as shown in FIG. Further, the processing means 45 obtains a frequency spectrum from the signal sampled for each time gate G using the FFT means and the like in cooperation with the timer 44, and obtains and displays various characteristic amounts described later.
【0016】モーターコントローラー46は、操作手段
41からの入力により送信子21,受信子22をスキャ
ンさせる空間軌道を設定し、この軌道に従ってスキャン
用モーター23を駆動させる。また、処理手段45は、
このモーターコントローラー46、メモリー43及びタ
イマー44と連携し、試験体の表面に沿った各座標位置
において上記特徴量をCスキャン表示により色調で表現
することも可能である。The motor controller 46 sets a spatial trajectory for scanning the transmitter 21 and the receiver 22 based on an input from the operating means 41, and drives the scanning motor 23 according to the trajectory. Further, the processing means 45
In cooperation with the motor controller 46, the memory 43, and the timer 44, it is also possible to express the above-mentioned feature amount in color tone by C-scan display at each coordinate position along the surface of the test object.
【0017】図2は、送信子21及び受信子22と試験
体100との関係を示す図である。本実施形態では、水
浸法を利用しており、試験体100,送信子21及び受
信子22は水W中に浸漬されている。本実施形態におけ
る試験体100としては高ニケッル・高クロム鋼よりな
るナフサ分解用の上昇管を用いている。試験体100の
表面101は、送信子21からパルスを送信し受信子2
2により受信する側に相当する管外面であり、管内面で
ある裏面102側に浸炭層103が存在する。同図は上
昇管である試験体100の管軸方向に直交する断面の一
部を模式的に示したものである。FIG. 2 is a diagram showing the relationship between the transmitter 21 and the receiver 22 and the test object 100. In the present embodiment, the water immersion method is used, and the test body 100, the transmitter 21 and the receiver 22 are immersed in the water W. As the test body 100 in the present embodiment, a riser tube for naphtha decomposition made of high nickel / high chromium steel is used. The surface 101 of the specimen 100 transmits a pulse from the transmitter 21 and
2, a carburized layer 103 exists on the outer surface of the tube corresponding to the receiving side and on the side of the back surface 102 which is the inner surface of the tube. FIG. 1 schematically shows a part of a cross section of a test body 100 which is a rising pipe, which is orthogonal to the pipe axis direction.
【0018】送信子21,受信子22は、それぞれ基台
21a、22a上に支持される振動子21b,22bか
ら発生する超音波パルスを音響レンズ21c,22cを
介して送信側焦点Fx及び受信側焦点Fyにそれぞれ収
束させる構造となっている。この送信子21,受信子2
2としては、ポリフッ化ビニリデンを用いた薄形の振動
子を凹曲面に貼り付けて送信側焦点Fx,受信側焦点F
yをなすように構成してもよい。The transmitter 21 and the receiver 22 transmit ultrasonic pulses generated from the vibrators 21b and 22b supported on the bases 21a and 22a through the acoustic lenses 21c and 22c, respectively. It is structured to converge to the focal point Fy. This transmitter 21 and receiver 2
As No. 2, a thin-film vibrator using polyvinylidene fluoride is attached to a concave curved surface, and a transmission-side focal point Fx and a reception-side focal point Fx are attached.
It may be configured to form y.
【0019】図中の送信側中心軸X及び受信側中心軸Y
は、各送信子21及び受信子22における超音波の送・
受信方向を示す軸であって、音響レンズ21c,22c
の曲面の中心を通り、これら送信側中心軸X及び受信側
中心軸Y上に送信側焦点Fx及び受信側焦点Fyがそれ
ぞれ位置することとなる。そして、送信側中心軸Xと受
信側中心軸Yとが斜めに交差するように、送信子21と
受信子22と試験体100に対して配置してある。ま
た、本実施形態では、送信側中心軸Xを表面101にほ
ぼ直交させるように送信子21を配置し、スキャン用モ
ーター23により試験体表面に沿ってスキャンさせてい
る。なお、本明細書において「表面にほぼ直交させる」
とは、試験体の表面が曲面である場合、その表面の微小
要素又はその接線(接面)にほぼ直交させることを意味
するものとする。The transmitting side central axis X and the receiving side central axis Y in FIG.
Is the transmission and reception of ultrasonic waves at each transmitter 21 and receiver 22.
Axes indicating the receiving direction, the acoustic lenses 21c and 22c
, The transmission-side focal point Fx and the reception-side focal point Fy are located on the transmission-side central axis X and the reception-side central axis Y, respectively. The transmitter 21, the receiver 22, and the test object 100 are arranged so that the transmitting-side central axis X and the receiving-side central axis Y obliquely intersect. Further, in the present embodiment, the transmitter 21 is arranged so that the transmission-side central axis X is substantially perpendicular to the surface 101, and scanning is performed along the surface of the test object by the scanning motor 23. In this specification, "substantially perpendicular to the surface"
When the surface of the test piece is a curved surface, it means that the surface is substantially perpendicular to the microelements on the surface or the tangent (tangent surface) thereof.
【0020】ところで、送信側中心軸Xは表面101と
の交点である送信側交点P1を介して屈折することはな
い。また、送信側中心軸Xは表面101に基づく鏡面反
射波の中心軸Zにも相当し、したがって、鏡面反射波が
直接的に受信子22に入射して受信波に外乱を与えるお
それは殆どない。一方、水Wと試験体100とでは音速
が異なるので、図2に示すように受信側中心軸Yは、表
面101との交点である受信側交点P4を境にして受信
側内部軸Y1と受信側外部軸Y2とに屈折する。Incidentally, the transmission-side central axis X does not refract through the transmission-side intersection P1, which is the intersection with the surface 101. Further, the transmission-side central axis X also corresponds to the central axis Z of the specular reflected wave based on the surface 101. Therefore, there is almost no possibility that the specular reflected wave directly enters the receiver 22 and causes disturbance to the received wave. . On the other hand, since the sound velocity is different between the water W and the test body 100, the receiving-side central axis Y and the receiving-side internal axis Y1 are separated by a receiving-side intersection P4 which is an intersection with the surface 101 as shown in FIG. It is refracted to the side external axis Y2.
【0021】送信子21から試験体100に入射し発生
する後方散乱波を受信子22で受信する際には、試験体
100の厚さ方向に対するある程度の広がりをもって受
信することが望ましい。そこで、本実施形態では、受信
側焦点Fyを受信側中心軸Yと表面101との交点であ
る受信側交点P4よりも試験体100から遠ざかる側に
受信側中心軸Yの方向に沿ってずらせて位置させるよう
に受信子22を変位させることにより、表面101上に
おける受信子22の受信領域Aを拡大してある。もちろ
ん、受信側焦点Fyは、受信側中心軸Yに沿って試験体
100の表面101よりもその内部へ深く進入する側へ
ずらせてもよい。また、本実施形態では送信側中心軸X
と試験体表面101との交点である送信側交点P1を送
信側焦点Fxとほぼ一致させてあるが、送信側交点P1
と送信側焦点Fxとを送信側中心軸Xの方向に沿って多
少ずらせて位置させてもよい。When the receiver 22 receives the backscattered wave that is incident upon the specimen 100 from the transmitter 21 and is generated, it is desirable to receive the backscattered wave with a certain extent in the thickness direction of the specimen 100. Therefore, in the present embodiment, the reception-side focal point Fy is shifted along the direction of the reception-side central axis Y to a side farther from the test object 100 than the reception-side intersection P4, which is the intersection of the reception-side central axis Y and the surface 101. By displacing the receiver 22 so as to be positioned, the reception area A of the receiver 22 on the surface 101 is enlarged. Of course, the receiving-side focal point Fy may be shifted along the receiving-side central axis Y to a side that enters the interior of the specimen 100 more deeply than the surface 101. Further, in the present embodiment, the transmitting side center axis X
The transmission-side intersection P1 which is the intersection of the transmission-side focal point Fx with the transmission-side focal point Fx.
And the transmission-side focal point Fx may be slightly shifted along the direction of the transmission-side central axis X.
【0022】ところで、送信側中心軸Xと受信側中心軸
Y(受信側内部軸Y1)との交点である主交点P2が送
信側中心軸Xと裏面102との交点である底面交点P3
と一致している場合、受信領域Aの半分程度は、送信側
中心軸Xに沿う部分から発生する後方散乱波を有効に捉
え得ない。そこで、主交点P2を底面交点P3よりも送
信子21に近接する側に位置させることにより、受信領
域Aに無駄が生じることを防いでいる。Incidentally, a main intersection P2, which is an intersection of the transmission-side central axis X and the reception-side central axis Y (reception-side internal axis Y1), is a bottom intersection P3, which is an intersection of the transmission-side central axis X and the back surface 102.
In the case where the distance is equal to, about half of the reception area A cannot effectively capture backscattered waves generated from a portion along the transmission-side central axis X. Therefore, the main intersection P2 is positioned closer to the transmitter 21 than the bottom intersection P3, thereby preventing the reception area A from being wasted.
【0023】図3(a)は、浸炭層103の厚みが大き
い場合、同(b)は、浸炭層103の厚みが小さい場
合、同(c)は、健全材の場合における受信子22の受
信波形を示すグラフである。受信強度を特徴量と捉える
と、受信強度の低い時間帯が浸炭部分に相当すると考え
られ、底面エコーS2は浸炭層103に起因するもので
あるから、この時間帯は浸炭層103からの送信側中心
軸X方向に対する浸炭厚D1として換算できる。このよ
うに換算して求めた同(a)の浸炭厚D1が、同(b)
の浸炭厚D2より大きくなることが確認され、試験体断
面の観察による浸炭厚の実測値にほぼ一致することか
ら、浸炭厚の推定が可能であることが実証された。な
お、受信側中心軸Yが送信側中心軸Xに対して斜めに配
置されるということ、及び、受信子の受信部である音響
レンズ21cが鏡面反射波の中心軸Z外に位置すること
となるので、鏡面反射波の影響は受信波形から除去され
ており、後方散乱波の飽和を防止している。なお、送信
側中心軸Xを表面101にほぼ直交させると、鏡面反射
波の中心軸Zが送信側中心軸Xとほぼ一致するため、後
述の第二実施形態等に比較して、鏡面反射波の影響を除
去すべく受信側中心軸Yないし受信子22を配置する際
の自由度が高いという点で本実施形態は優れている。FIG. 3A shows a case where the thickness of the carburized layer 103 is large, FIG. 3B shows a case where the thickness of the carburized layer 103 is small, and FIG. It is a graph which shows a waveform. When the reception intensity is regarded as a feature amount, it is considered that a time zone where the reception intensity is low corresponds to the carburized portion, and the bottom surface echo S2 is caused by the carburized layer 103. It can be converted as the carburized thickness D1 with respect to the central axis X direction. The carburized thickness D1 of (a) obtained by conversion in this way is the same as that of (b).
It was confirmed that the carburized thickness was larger than the carburized thickness D2 of the test piece, and the measured carburized thickness was almost the same as the actual measured value of the carburized thickness by observing the cross section of the test body. Note that the receiving-side central axis Y is disposed obliquely with respect to the transmitting-side central axis X, and that the acoustic lens 21c, which is the receiving unit of the receiver, is located outside the central axis Z of the specular reflected wave. Therefore, the influence of the specular reflected wave is removed from the received waveform, and the saturation of the backscattered wave is prevented. When the transmission-side central axis X is substantially perpendicular to the surface 101, the central axis Z of the specular reflected wave substantially coincides with the transmitting-side central axis X. This embodiment is excellent in that the degree of freedom in arranging the receiving-side central axis Y or the receiver 22 in order to eliminate the influence of is high.
【0024】一方、図4は、本発明の優位性を明らかに
するための比較例であり、送信子21を受信子としても
兼用した場合における反射波の受信強度を示す。同
(a)は、浸炭層103の厚みが大きいとき、同(b)
は浸炭層103の厚みが小さいときにそれぞれ該当す
る。表面101に起因する表面エコーS1のレベルが大
きく、受信信号の飽和等により後方散乱波S3に影響を
与え、その評価が困難になっている。また、底面エコー
S2のレベルは、(b)に比べて(a)の方が大きいこ
とから、浸炭層103における後方散乱波は少なく超音
波の透過性が良くなっていることが判明した。かかる傾
向より、斜め方向から受信子22を介して後方散乱波を
受信する場合、浸炭層103では強度が小さい一方、健
全部では受信強度がより大きくなることが裏付けられ
た。FIG. 4 is a comparative example for clarifying the superiority of the present invention, and shows the reception intensity of the reflected wave when the transmitter 21 is also used as the receiver. (A), when the thickness of the carburized layer 103 is large, (b)
Corresponds to the case where the thickness of the carburized layer 103 is small. The level of the surface echo S1 caused by the surface 101 is large, which affects the backscattered wave S3 due to the saturation of the received signal and the like, making the evaluation thereof difficult. In addition, since the level of the bottom surface echo S2 is higher in (a) than in (b), it has been found that the backscattered waves in the carburized layer 103 are small and the ultrasonic wave permeability is improved. This tendency confirms that when the backscattered wave is received from the oblique direction via the receiver 22, the strength is small in the carburized layer 103, while the received strength is larger in the healthy part.
【0025】次に、本発明の他の実施の可能性について
言及する。なお、以下の各実施形態において、第一実施
形態と同様の部材には同様の符号を付してある。Next, another embodiment of the present invention will be described. In the following embodiments, the same members as those in the first embodiment are denoted by the same reference numerals.
【0026】図5に示す第二実施形態は、基本的に第一
実施形態とほぼ同様の構成である。但し、受信側中心軸
Yを表面101にほぼ直交させるように受信子22を配
置する一方、試験体表面101にほぼ直交する垂線Vに
対して斜めに送信側中心軸Xが交差するように送信子2
1を配置してある点が異なる。また、受信子22の受信
部である音響レンズ22cの開口部が験体表面101に
起因する鏡面反射波の中心軸Z外に位置するように、送
信子21及び受信子22を配置してある。この配置によ
って、鏡面反射波が受信子22に直接的に到達して測定
精度が低下することを防止している。本実施形態では、
受信側焦点Fyを試験体表面101よりも試験体100
内部へ進入する側に変位させることで、受信領域Aを拡
大している。The second embodiment shown in FIG. 5 has basically the same configuration as the first embodiment. However, while the receiver 22 is arranged so that the central axis Y on the receiving side is substantially perpendicular to the surface 101, the transmission is performed such that the central axis X on the transmitting side obliquely intersects a perpendicular V substantially perpendicular to the surface 101 of the test object. Child 2
1 is different. Further, the transmitter 21 and the receiver 22 are arranged such that the opening of the acoustic lens 22c, which is the receiving unit of the receiver 22, is located outside the central axis Z of the specular reflected wave caused by the test object surface 101. . This arrangement prevents the specular reflected wave from directly reaching the receiver 22 and lowering the measurement accuracy. In this embodiment,
The focal point Fy on the receiving side is set to the specimen 100 more than the specimen surface 101.
The receiving area A is enlarged by displacing the receiving area A toward the inside.
【0027】図6に示す第三実施形態は、送信子21・
受信子22の配置及びその基本構成がともに第一実施形
態とほぼ同様となっている。但し、同図は上昇管である
試験体100の管軸方向に沿った断面の一部を模式的に
示したものである。すなわち、本実施形態は送信側中心
軸X及び受信側中心軸Yが管軸と同一面内に収まるよう
に試験体100に対して送信子21及び受信子22を配
置したものである。The third embodiment shown in FIG.
The arrangement of the receiver 22 and its basic configuration are almost the same as those of the first embodiment. However, this figure schematically shows a part of a cross section along the pipe axis direction of a test body 100 which is a rising pipe. That is, in the present embodiment, the transmitter 21 and the receiver 22 are arranged with respect to the test body 100 such that the central axis X on the transmitting side and the central axis Y on the receiving side fall within the same plane as the tube axis.
【0028】図7に示す第四実施形態は、水浸法ではな
く直接接触法を用いている点が上記各実施形態と異な
る。送信子21及び受信子22はアクリル製の楔21
d,22dに振動子21b,22bを設けてなり、水や
グリース等の接触媒質を介して試験体の表面101に接
触させてある。本実施形態の試験体100は、管ではな
く平板状の鋼材である。送信側中心軸X及び受信側中心
軸Yは、楔21d,22d及び試験体100の屈折率の
差により送信側交点P1及び受信側交点P4を境に受信
側内部軸X1及び送信側内部軸Y1と受信側外部軸X2
及び送信側外部軸Y2とに屈折する。送信側内部軸X1
と受信側内部軸Y1との双方が表面101に対して斜め
となるように、楔及び振動子の配置を設定してある。送
信子21及び受信子22は同図に示すように幅を有する
送信領域Bx、受信領域Byを備えているので、底面交
点P3よりも主交点P2を表面101側に位置させるこ
とで、受信領域を拡大させることが可能となる。なお、
直接接触法によれば表面101に起因する鏡面反射波の
中心軸Zは送信子21内に位置することとなるので、鏡
面反射波が受信子22に外乱を与えるおそれはない。The fourth embodiment shown in FIG. 7 differs from the above embodiments in that a direct contact method is used instead of a water immersion method. The transmitter 21 and the receiver 22 are made of an acrylic wedge 21.
Vibrators 21b and 22b are provided on d and 22d, and are brought into contact with the surface 101 of the test piece via a couplant such as water or grease. The test body 100 of the present embodiment is not a tube but a flat steel material. The center axis X on the transmitting side and the center axis Y on the receiving side are defined as a receiving inner axis X1 and a transmitting inner axis Y1 at a boundary between the transmitting intersection P1 and the receiving intersection P4 due to a difference in refractive index between the wedges 21d and 22d and the test piece 100. And receiving side external axis X2
And the transmission side external axis Y2. Transmission side internal axis X1
The arrangement of the wedges and the vibrator is set such that both the internal axis Y1 and the receiving side internal axis Y1 are oblique to the surface 101. Since the transmitter 21 and the receiver 22 have a transmission area Bx and a reception area By having a width as shown in the figure, the main intersection P2 is positioned closer to the front surface 101 than the bottom intersection P3, so that the reception area Can be expanded. In addition,
According to the direct contact method, since the central axis Z of the specular reflected wave caused by the surface 101 is located in the transmitter 21, there is no possibility that the specular reflected wave causes disturbance to the receiver 22.
【0029】最後に、本発明の更に他の実施の可能性に
ついて説明する。上記実施形態では、「後方散乱波の特
徴量」として「後方散乱波の受信の強度」を捉えた。し
かし、上述の処理手段45に高速フーリエ変換装置(F
FT装置)を設け、上記各時間ゲートG毎にFFT装置
で周波数スペクトルを求め、この周波数スペクトルの特
定周波数範囲における積分値や周波数スペクトルの一次
モーメント等の値を「後方散乱波の特徴量」として、試
験体の評価を行っても良い。Lastly, another embodiment of the present invention will be described. In the above embodiment, the “reception strength of the backscattered wave” is captured as the “feature amount of the backscattered wave”. However, a fast Fourier transform device (F
FT device), a frequency spectrum is obtained by the FFT device for each of the time gates G, and a value such as an integral value of the frequency spectrum in a specific frequency range or a first moment of the frequency spectrum is defined as a “backscattered wave characteristic amount”. The evaluation of the specimen may be performed.
【0030】本発明は必ずしも上述の如き水浸法や直接
接触法に限られるものではない。例えば、ウォーターバ
ックを介して超音波を送受信するように実施しても構わ
ない。The present invention is not necessarily limited to the water immersion method and the direct contact method as described above. For example, you may implement so that an ultrasonic wave may be transmitted / received via a water bag.
【0031】上記実施形態では、「試験体の各深さ部分
の状態評価」として、「高合金鋼における浸炭厚の推定
評価」を行ったが、本発明の評価対象はこれに限られな
い。例えば、水素浸食、水素脆化、熱脆化、窒化等の現
象について、試験体厚さ方向に対する分布状況を推定す
る場合にも適用が可能である。In the above embodiment, "estimation evaluation of carburized thickness in high alloy steel" was performed as "evaluation of state at each depth of test specimen", but the present invention is not limited to this. For example, with respect to phenomena such as hydrogen erosion, hydrogen embrittlement, thermal embrittlement, and nitriding, the present invention can also be applied to the case of estimating the distribution state in the thickness direction of a specimen.
【0032】[0032]
【発明の効果】このように、上記本発明に係る超音波試
験方法及び試験装置の特徴によれば、試験体の表面に起
因する反射波の影響を除去し、微小な後方散乱波を低ノ
イズで顕著に受信することで、試験体の裏面側から進行
する材質変化の試験体厚さ方向に対する分布を試験体の
表面側から正確に推定評価することが可能となった。そ
の結果、各種プラント施設における配管や容器等の寿命
推定がより正確に行え、当該施設の健全性維持に貢献し
得るに至った。As described above, according to the features of the ultrasonic test method and the test apparatus according to the present invention, the influence of the reflected wave caused by the surface of the test object is eliminated, and the minute backscattered wave is reduced in noise. As a result, it is possible to accurately estimate and evaluate the distribution of the material change progressing from the back side of the specimen in the thickness direction of the specimen from the front side of the specimen. As a result, the life of pipes, containers, and the like in various plant facilities can be more accurately estimated, which can contribute to maintaining the soundness of the facilities.
【0033】なお、特許請求の範囲の項に記入した符号
は、あくまでも図面との対照を便利にするためのものに
すぎず、該記入により本発明は添付図面の構成に限定さ
れるものではない。It should be noted that the reference numerals described in the claims are merely for convenience of comparison with the drawings, and the present invention is not limited to the configuration of the attached drawings by the description. .
【図1】本発明にかかる超音波試験装置の論理ブロック
図である。FIG. 1 is a logical block diagram of an ultrasonic test apparatus according to the present invention.
【図2】送信側中心軸及び受信側中心軸を含む断面での
送信子及び受信子との試験体との関係を示す図である。FIG. 2 is a diagram illustrating a relationship between a transmitter and a receiver and a test body in a cross section including a transmission-side central axis and a reception-side central axis.
【図3】送信側中心軸及び受信側中心軸を交差させた状
態における受信子による後方散乱波の受信信号強度と時
間との関係を示すグラフであって、(a)は浸炭層が厚
い場合、(b)は浸炭層が薄い場合、(c)は浸炭層が
存在しない健全な試験体をそれぞれ用いた場合の結果を
示す。FIG. 3 is a graph showing a relationship between a received signal intensity of a backscattered wave by a receiver and time in a state where a central axis of a transmitting side and a central axis of a receiving side cross each other, wherein (a) is a case where a carburized layer is thick; , (B) shows the results when the carburized layer is thin, and (c) shows the results when using a sound specimen without the carburized layer.
【図4】本発明に対する比較例を示す結果であり、送信
側中心軸を試験体の表面に直交させると共にこの送信子
で受信子を兼ねた場合の受信結果を示し、(a)は図3
(a)に相当する浸炭層の厚い場合、(b)は図3
(b)に示す浸炭層の薄い場合にそれぞれ対応する結果
を示すものである。4A and 4B are results showing a comparative example with respect to the present invention, and show a reception result when the center axis on the transmitting side is orthogonal to the surface of the test sample and this transmitter also serves as a receiver; FIG.
In the case where the carburized layer corresponding to (a) is thick, (b) shows FIG.
It shows the results corresponding to the case where the carburized layer shown in (b) is thin.
【図5】送信側中心軸を試験体の表面に対し傾斜させる
一方受信側中心軸を試験体の表面に対してほぼ直交させ
た状態における図2相当図である。FIG. 5 is a diagram corresponding to FIG. 2 in a state where a transmission-side central axis is inclined with respect to a surface of a test object while a central axis of a reception side is substantially orthogonal to the surface of the test object;
【図6】試験体の管軸方向に沿った断面における図2相
当図である。FIG. 6 is a diagram corresponding to FIG. 2 in a cross section along the tube axis direction of the test body.
【図7】平板状の試験体に対し直接接触法を用いた場合
における図2相当図である。FIG. 7 is a diagram corresponding to FIG. 2 in a case where a direct contact method is used for a flat test piece.
1 超音波試験装置 20 センサーヘッド 21 送信子 21a 基台 21b 振動子 21c 音響レンズ 21d 楔 22 受信子 22a 基台 22b 振動子 22c 音響レンズ 22d 楔 23 スキャン用モーター 30 ドライブユニット 31 パルサー 32 レシーバー 33 A/Dコンバータ 34 モータードライバー 40 パーソナルコンピューター 41 操作手段 42 トリガー 43 メモリー 44 タイマー 45 処理手段 46 モーターコントローラー 50 モニター 60 特徴量表示手段 100 試験体 101 表面 102 裏面 103 浸炭層 X 送信側中心軸 X1 送信側内部軸 X2 送信側外部軸 Fx 送信側焦点 Y 受信側中心軸 Y1 受信側内部軸 Y2 受信側外部軸 Fy 受信側焦点 P1 送信側交点 P2 主交点 P3 底面交点 P4 受信側交点 A 受信領域 S1 表面エコー S2 底面エコー S3 後方散乱波 D1 浸炭厚 D2 浸炭厚 G 時間ゲート Bx 送信領域 By 受信領域 V 垂線。 DESCRIPTION OF SYMBOLS 1 Ultrasonic test apparatus 20 Sensor head 21 Transmitter 21a Base 21b Vibrator 21c Acoustic lens 21d Wedge 22 Receiver 22a Base 22b Vibrator 22c Acoustic lens 22d Wedge 23 Scan motor 30 Drive unit 31 Pulser 32 Receiver 33 A / D Converter 34 Motor driver 40 Personal computer 41 Operation means 42 Trigger 43 Memory 44 Timer 45 Processing means 46 Motor controller 50 Monitor 60 Feature display means 100 Specimen 101 Front surface 102 Back surface 103 Carburized layer X Central axis on transmission side X1 Internal axis on transmission side X2 Transmitting external axis Fx Transmitting focal point Y Receiving central axis Y1 Receiving internal axis Y2 Receiving external axis Fy Receiving focal point P1 Transmitting intersection P2 Main intersection P3 Bottom intersection P4 Receiving side Intersection A Reception area S1 Surface echo S2 Bottom echo S3 Backscattered wave D1 Carburization thickness D2 Carburization thickness G Time gate Bx Transmission area By Reception area V Perpendicular.
Claims (4)
表面(101)を介して入射する超音波の送信側中心軸
(X)と、この超音波に起因して試験体(100)内で
発生する後方散乱波を前記表面(101)側から受信す
る受信子(22)の受信側中心軸(Y)とを交差させて
前記送信子(21)と前記受信子(22)とを配置し、
前記受信子(22)の受信部(22c,22d)を前記
表面(101)に起因する前記超音波の鏡面反射波の中
心軸(Z)外に位置させると共に、各受信時間における
前記後方散乱波の特徴量により前記試験体(100)の
裏面(102)側における各深さ部分の状態を評価する
超音波試験方法。1. A transmission-side central axis (X) of an ultrasonic wave incident from a transmitter (21) through a surface (101) of a test object (100), and the test object (100) caused by the ultrasonic wave. The transmitter (21) and the receiver (22) intersect with the center axis (Y) of the receiver (22) that receives the backscattered wave generated in the receiver from the surface (101) side. Place,
The receivers (22c, 22d) of the receiver (22) are positioned outside the central axis (Z) of the specular reflected wave of the ultrasonic wave caused by the surface (101), and the backscattered wave at each reception time. An ultrasonic test method for evaluating the state of each depth portion on the back surface (102) side of the test body (100) by the characteristic amount of (1).
記表面(101)外に位置させることを特徴とする請求
項1に記載の超音波試験方法。2. The ultrasonic testing method according to claim 1, wherein a focal point (Fy) of the receiver (22) is located outside the surface (101).
後方散乱波の受信強度であり、前記送信側中心軸(X)
又は前記受信側中心軸(Y)のうちいずれか一方を前記
表面(101)に対してほぼ直交させることを特徴とす
る請求項1又は2のいずれかに記載の超音波試験方法。3. The characteristic quantity is a reception intensity of a backscattered wave by the receiver (22), and the transmission-side central axis (X)
3. The ultrasonic testing method according to claim 1, wherein one of the receiving-side central axes (Y) is substantially perpendicular to the surface (101). 4.
試験方法に用いる超音波試験装置であって、超音波の送
信子(21)と、この超音波に起因して試験体(10
0)内で発生する後方散乱波を受信する受信子(22)
と、各受信時間における前記後方散乱波の特徴量を表示
する特徴量表示手段(60)とを備え、前記送信側中心
軸(X)と前記受信側中心軸(Y)とを交差させて前記
送信子(21)と前記受信子(22)とを配置すること
を特徴とする超音波試験装置。4. An ultrasonic test apparatus used in the ultrasonic test method according to claim 1, wherein a transmitter (21) of the ultrasonic wave and a test object (21) caused by the ultrasonic wave. 10
Receiver (22) for receiving backscattered waves generated in 0)
And a feature value display means (60) for displaying a feature value of the backscattered wave at each reception time, wherein the transmission-side center axis (X) and the reception-side center axis (Y) are crossed with each other so as to intersect with each other. An ultrasonic test apparatus comprising a transmitter (21) and a receiver (22).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9220719A JPH1151912A (en) | 1997-07-31 | 1997-07-31 | Ultrasonic testing method and ultrasonic testing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9220719A JPH1151912A (en) | 1997-07-31 | 1997-07-31 | Ultrasonic testing method and ultrasonic testing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1151912A true JPH1151912A (en) | 1999-02-26 |
Family
ID=16755453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9220719A Pending JPH1151912A (en) | 1997-07-31 | 1997-07-31 | Ultrasonic testing method and ultrasonic testing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1151912A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214891A (en) * | 2010-03-31 | 2011-10-27 | Mitsubishi Electric Corp | Array ultrasonic flaw detector |
-
1997
- 1997-07-31 JP JP9220719A patent/JPH1151912A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214891A (en) * | 2010-03-31 | 2011-10-27 | Mitsubishi Electric Corp | Array ultrasonic flaw detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5009523B2 (en) | Ultrasonic probe and inspection method and system | |
Brath et al. | Phased array imaging of complex-geometry composite components | |
CN106596725A (en) | Method for ultrasonic distinguishing of R-region defect of composite material structure | |
US6588278B1 (en) | Ultrasonic inspection device and ultrasonic probe | |
US20090249879A1 (en) | Inspection systems and methods for detection of material property anomalies | |
Chang et al. | Reliable estimation of virtual source position for SAFT imaging | |
JP4564183B2 (en) | Ultrasonic flaw detection method | |
Chang et al. | Time of flight diffraction imaging for double-probe technique | |
JP4144699B2 (en) | Probe and material evaluation test method using the same | |
JPH1151912A (en) | Ultrasonic testing method and ultrasonic testing device | |
JP2008076387A (en) | Ultrasonic stress measuring method and instrument | |
JP2000131297A (en) | Leakage elastic surface wave measuring probe | |
Buiochi et al. | A computational method to calculate the longitudinal wave evolution caused by interfaces between isotropic media | |
US11808898B2 (en) | Method for measuring an ultrasonic attenuation parameter guided by harmonic elastography, probe and device for the implementation of the method | |
KR20040056821A (en) | Ultrasonic evaluation system for internal deposit layer in a pipe | |
JP3753567B2 (en) | Ultrasonic probe | |
JP3707962B2 (en) | Ultrasonic inspection equipment | |
Boonsang et al. | Synthetic aperture focusing techniques in time and frequency domains for photoacoustic imaging | |
İşleyici | Effect of surface roughness on ultrasonic testing | |
JPH10253340A (en) | Method for measuring scale thickness on inside surface of tube | |
JP2001124746A (en) | Ultrasonic inspection method | |
Cheng et al. | Study on Ultrasonic Phased Array Imaging Technique for Direct Contact Inspection on Double Curved Surface | |
JPH10318995A (en) | Method of evaluating degree of deterioration in test object by surface wave | |
Johansen et al. | Ultrasonic Well Integrity Logging Using Phased Array Technology | |
JP2001249119A (en) | Image display method for ultrasonic flaw detection and image display apparatus therefor |