JPH1151880A - Moisture containing amount measuring unit of iron melting vessel inner lining refractory - Google Patents

Moisture containing amount measuring unit of iron melting vessel inner lining refractory

Info

Publication number
JPH1151880A
JPH1151880A JP9213562A JP21356297A JPH1151880A JP H1151880 A JPH1151880 A JP H1151880A JP 9213562 A JP9213562 A JP 9213562A JP 21356297 A JP21356297 A JP 21356297A JP H1151880 A JPH1151880 A JP H1151880A
Authority
JP
Japan
Prior art keywords
neutron
thermal
thermal neutron
neutrons
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9213562A
Other languages
Japanese (ja)
Other versions
JP3507664B2 (en
Inventor
Yoshihisa Tanemoto
敬久 種本
Katsuro Dejima
勝郎 出島
Toshiya Ori
俊哉 小里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21356297A priority Critical patent/JP3507664B2/en
Publication of JPH1151880A publication Critical patent/JPH1151880A/en
Application granted granted Critical
Publication of JP3507664B2 publication Critical patent/JP3507664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moisture containing amount measuring unit capable of highly precisely measuring an amount of moisture containing in an inner lining refractory stuck on the surface of the iron plate of an iron melting vessel. SOLUTION: With regard to a moisture containing amount measuring unit 1, a thermal neutron tube 3 is disposed in a groove-like recess 2a at the side of being brought into contact with the surface of an iron plate 11 of an iron melting vessel of a block-like iron member 2, and a thermal neutron column 4 composed of a pair of graphite is disposed in a recess 22a and at a position of sandwiching the thermal neutron tube 3, and a neutron generation source 5 is fitted in the minute hole of the opening side of the recess 2a separated from the recess 2a. As a result, those which are decelerated and radiated from the neutron generation source 5, decelerated and scattered by moisture of an inner lining refractory 13 and returned as the thermal neutron, middle and fast neutrons are properly made the thermal neutrons by the thermal neutron column 4 to be counted by the thermal neutron tube 3, even such returned middle and fast neutrons are included without being converted to the thermal neutron.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中性子を利用して
被検体中に含まれている水分の量を測定する含水量測定
ユニットに関し、より詳しくは溶湯容器の鉄皮の内側に
張られた不定型耐火物に含まれている水分の量を高精度
で測定する溶湯容器内張り耐火物の含水量測定ユニット
の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water content measuring unit for measuring the amount of water contained in a test object by using neutrons, and more particularly, to a water content measuring unit stretched inside a steel shell of a molten metal container. It belongs to the technical field of a unit for measuring the water content of a refractory lining a molten metal vessel for measuring the amount of water contained in an irregular type refractory with high accuracy.

【0002】[0002]

【従来の技術】周知のとおり、被検体中に含まれている
水分量を測定する水分計の中に、中性子を利用したもの
がある。このような水分計は、例えば特開昭51−49
788号公報(従来例1)や特開昭49−64602号
公報(従来例2)において開示されているので、以下こ
れら水分計や水分測定装置の概要を、これらの明細書に
記載されている同一符号並びに同一名称を以て順次説明
する。
2. Description of the Related Art As is well known, there is a moisture meter that measures the amount of moisture contained in a subject using neutrons. Such a moisture meter is disclosed, for example, in Japanese Patent Laid-Open No. 51-49.
No. 788 (Conventional Example 1) and Japanese Patent Application Laid-Open No. 49-64602 (Conventional Example 2), the outlines of these moisture meters and moisture measuring devices are described in these specifications. Description will be made sequentially using the same reference numerals and the same names.

【0003】先ず、従来例1に係る「極低レベル中性子
透過型水分計」を、その断面構成説明図の図4を参照し
ながら説明すると、符号1はヘッド外箱で、このヘッド
外箱1の内部の上側には高圧電源7と前置増幅器8とが
内設されている。また、このヘッド外箱1の内部の下側
には、熱中性子検出管4を埋設してなる中性子減速材3
が配設されていて、この中性子減速材2は熱中性子吸収
材2で覆われている。さらに、ヘッド外箱1には上部か
ら下方に貫通し、先端に100マイクロキュリー以下の
中性子線源6が埋設されてなる線源棒5が取付けられた
構成で、この極低レベル中性子透過型水分計は地盤内の
水分を計測するものである。
First, the "ultra-low-level neutron transmission type moisture meter" according to Conventional Example 1 will be described with reference to FIG. A high-voltage power supply 7 and a preamplifier 8 are provided in an upper part of the inside. A neutron moderator 3 having a thermal neutron detection tube 4 embedded therein is provided below the inside of the head outer box 1.
The neutron moderator 2 is covered with the thermal neutron absorber 2. Further, the head outer case 1 has a configuration in which a source rod 5 penetrating downward from above and having a neutron source 6 of 100 microcuries or less embedded therein is attached to a tip thereof. The meter measures moisture in the ground.

【0004】このような構成になる極低レベル中性子透
過型水分計で地盤内の水分を計測するときは、先ずヘッ
ド外箱1を地面にセットして線源棒5を地盤内に挿入す
る。すると、この線源棒5の先端の中性子線源6から放
出される高速中性子は、主に地盤内の水分子との相互作
用で一部は熱中性子となって、また他の一部は中速また
は高速中性子のままヘッド外箱1に到達するが、熱中性
子は中性子吸収材2により吸収されてしまうので、中速
または高速中性子だけが中性子吸収材2を透過し、中性
子減速材3による減速により熱中性子となって熱中性子
検出管4により検出される。このように、熱中性子検出
管4により検出されるのは、水分量によって左右される
中速または高速中性子であるから、これらをカウントす
ることにより地盤中に含まれている水分の量を知ること
ができる。
When measuring moisture in the ground with the extremely low-level neutron transmission moisture meter having such a configuration, first, the head outer box 1 is set on the ground, and the source rod 5 is inserted into the ground. Then, fast neutrons emitted from the neutron source 6 at the tip of the source rod 5 are partially converted into thermal neutrons mainly due to the interaction with water molecules in the ground, and the other part is converted into medium neutrons. The neutrons reach the head outer box 1 with the fast or fast neutrons, but thermal neutrons are absorbed by the neutron absorbing material 2, so that only the medium or fast neutrons pass through the neutron absorbing material 2 and are decelerated by the neutron moderating material 3. As a result, thermal neutrons are detected by the thermal neutron detection tube 4. As described above, since what is detected by the thermal neutron detection tube 4 is a medium-speed or high-speed neutron that depends on the amount of moisture, the amount of moisture contained in the ground can be obtained by counting these neutrons. Can be.

【0005】次に、特開昭49−64602号公報に開
示されてなる「コークス水分測定装置」を、そのブロッ
ク図の図5を参照しながら説明すると、コークスホッパ
ー1の側壁に、高速中性子線源3、熱中性子計数管4、
前置増幅器5が内蔵されてなる検出プローブ2が設置さ
れている。高速中性子線源3からコークスホッパー1に
照射された高速中性子は水素原子によって減速・散乱さ
れて熱中性子となる。このうち検出プローブ2の方向に
散乱されたものが熱中性子計数管4で電気パルスに変換
され、前置増幅器5で増幅されてケーブル6を介してレ
ートメータ7に伝えられる。増幅された電気パルス信号
は波高弁別器9により弁別されて、不要なノイズが除去
されて波形成形器10により一定波形のパルスに揃えら
れる。さらに、このパルス信号は計数率計11で矩形波
パルスにされ、積分器12により直流電圧に変換され、
切換器13を通って記録計14を作動させる。
Next, a "coke moisture measuring apparatus" disclosed in Japanese Patent Application Laid-Open No. 49-64602 will be described with reference to FIG. Source 3, thermal neutron counter 4,
A detection probe 2 having a built-in preamplifier 5 is provided. Fast neutrons emitted from the fast neutron source 3 to the coke hopper 1 are decelerated and scattered by hydrogen atoms to become thermal neutrons. Of these, those scattered in the direction of the detection probe 2 are converted into electric pulses by the thermal neutron counter 4, amplified by the preamplifier 5, and transmitted to the rate meter 7 via the cable 6. The amplified electric pulse signal is discriminated by a wave height discriminator 9, unnecessary noise is removed, and the pulse signal is made uniform by a waveform shaper 10. Further, the pulse signal is converted into a rectangular wave pulse by the counting rate meter 11 and converted into a DC voltage by the integrator 12.
The recorder 14 is operated through the switch 13.

【0006】そして、秤量器15からコークスホッパー
1の空杯信号が発生すると、この空杯信号は切換器13
を切換えて、レートメータ7の直流出力電圧がサーボ増
幅器17だけに加えられる。サーボ増幅器17は直流出
力電圧と帰還用のポテンショメータ19の出力電圧との
差が零になるまでサーボモータ18を駆動し、サーボモ
ータ18と機械的に連結された零点調整器16を操作し
て記録計14の指針位置を零にする。このように、秤量
器15からのコークスホッパー1の空杯信号で記録計1
4の指針位置が零になるので、コークスの水分以外の水
分が検出プローブ2の高速中性子照射窓付近に付着して
も、水分測定系の零点がずれることに起因する誤差の発
生が回避される。
When the empty signal of the coke hopper 1 is generated from the weighing device 15, the empty signal is transmitted to the switch 13.
And the DC output voltage of the rate meter 7 is applied only to the servo amplifier 17. The servo amplifier 17 drives the servo motor 18 until the difference between the DC output voltage and the output voltage of the feedback potentiometer 19 becomes zero, and operates the zero point adjuster 16 mechanically connected to the servo motor 18 to record. The pointer positions of the total 14 are set to zero. As described above, the recorder 1 receives the empty signal of the coke hopper 1 from the weighing device 15.
Since the pointer position of No. 4 becomes zero, even if moisture other than the coke moisture adheres to the vicinity of the high-speed neutron irradiation window of the detection probe 2, the occurrence of an error due to the shift of the zero point of the moisture measurement system is avoided. .

【0007】[0007]

【発明が解決しようとする課題】ところで、従来例1に
係る極低レベル中性子透過型水分計によれば、先端に中
性子線が埋設されてなる線源棒を被検体に挿入する構成
であるから、例えば溶湯容器内張り耐火物中に含まれて
いる水分の量の測定に用いることができない。仮に、溶
湯容器内張り耐火物中に含まれている水分の量の測定に
適用し得たとしても、この極低レベル中性子透過型水分
計は、中性子線源から高速中性子を放出し、地盤内の水
分子との相互作用による熱中性子を中性子吸収材で吸収
し、中性子吸収材を透過した中・高速中性子を中性子減
速材で熱中性子にして熱中性子検出管でカウントする構
成で、水分により減速された熱中性子を直接カウントす
るものではないから、被検体中の水分の量の測定精度に
問題がある。
The ultralow-level neutron transmission type moisture meter according to Conventional Example 1 has a configuration in which a source rod having a neutron beam embedded at the tip is inserted into a subject. For example, it cannot be used for measuring the amount of moisture contained in a refractory lining a molten metal container. Even if it could be applied to the measurement of the amount of moisture contained in the refractory lining a molten metal vessel, this extremely low-level neutron transmission moisture meter emits fast neutrons from a neutron source, Thermal neutrons due to interaction with water molecules are absorbed by a neutron absorbing material, and medium and fast neutrons that have passed through the neutron absorbing material are converted to thermal neutrons by a neutron moderator and counted by a thermal neutron detector tube. Since the thermal neutrons are not directly counted, there is a problem in the accuracy of measuring the amount of water in the subject.

【0008】また、従来例2に係るコークス水分測定装
置は、コークスホッパーの側壁に取付ける構成であるか
ら、溶湯容器内張耐火物中に含まれている水分の測定に
転用し得ると考えられる。そして、高速中性子線源から
コークスホッパーに照射された高速中性子のうち、水素
原子で減速・散乱されて熱中性子となったものを検出プ
ローブに内蔵されている熱中性子計数管でカウントする
構成で、水分の量を高精度で測定し得ると考えられる
が、水分により減速・散乱されて戻ってくる熱中性子だ
けをカウントし、水分により減速・散乱されたものの熱
中性子とならず、中・高速中性子として戻ってくるもの
をカウントしないのであるから、やはり従来例1と同様
に、被検体中の水分の量の測定精度に問題がある。
Further, since the coke moisture measuring apparatus according to the conventional example 2 is configured to be attached to the side wall of the coke hopper, it is considered that it can be diverted to the measurement of moisture contained in the refractory lining the molten metal container. Then, among the fast neutrons irradiated from the fast neutron beam source to the coke hopper, those that have been decelerated and scattered by hydrogen atoms and become thermal neutrons are counted by a thermal neutron counter tube incorporated in the detection probe, It is thought that the amount of water can be measured with high accuracy, but only the thermal neutrons that are decelerated and scattered by water and returned are counted. Since the returned data is not counted, there is a problem in the measurement accuracy of the amount of water in the subject, similarly to the conventional example 1.

【0009】ところで、溶湯容器内張り耐火物中に含ま
れている水分の量を測定するのは、下記のことを狙いと
している。即ち、耐火物として、施工性が優れると共に
安価な不定形耐火物を使用する場合、取鍋の乾燥状態説
明図の図6(a)に示すように、容器50の鉄皮51の
内側に張られた永久張り煉瓦52の内側に図示しない中
子を入れ、これら永久張り煉瓦52と中子との間の空間
に水で練ったコンクリート状の不定形耐火物を流し込
み、固まった後に中子を取り出すと共に乾燥させて永久
張り煉瓦52の内側に内張り耐火物53を形成させる
が、乾燥は容器50の開口部を閉蓋する蓋54を貫通
し、内張り耐火物53の内側に火炎を吹き出すガスバー
ナ55により行われる。このようなガスバーナ55によ
る内張り耐火物53の乾燥は、過去の実績から経験的に
作られた乾燥パターンに従って行われているが、内張り
耐火物53の乾燥が不十分であると溶湯の注湯により水
蒸気爆発を起こし、永久張り煉瓦と内張り耐火物との損
傷状態説明図の図6(b)に示すように、内張り耐火物
53が剥離するだけでなく永久り張煉瓦52に爆裂が生
じて、永久張り煉瓦と内張り耐火物との再施工が必要に
なるので、水蒸気爆発を防ぐために過乾燥を行ってい
る。
By the way, the purpose of measuring the amount of water contained in the refractory lining the molten metal container is to achieve the following. That is, when an inexpensive irregular-shaped refractory having excellent workability is used as the refractory, as shown in FIG. A core (not shown) is put inside the permanent brick 52, and a concrete-shaped refractory made of concrete kneaded with water is poured into a space between the permanent brick 52 and the core. It is taken out and dried to form a lining refractory 53 inside the permanent lining brick 52. In drying, a gas burner 55 that penetrates a lid 54 that closes the opening of the container 50 and blows a flame into the lining refractory 53 is used. It is performed by Drying of the lining refractory 53 by such a gas burner 55 is performed according to a drying pattern empirically created from past results. However, if the drying of the lining refractory 53 is insufficient, the molten metal is poured. As shown in FIG. 6 (b) in the explanatory diagram of the damage state between the permanent brick and the refractory lining, not only the refractory lining 53 peeled off, but also the explosion occurred in the permanent brick 52, The re-installation of the permanent brick and the refractory lining is required, so overdrying is performed to prevent steam explosion.

【0010】乾燥中の内張り耐火物中の水分の量を溶湯
容器の鉄皮の外側からリアルタイムで、しかも高精度で
測定することができれば、内張り耐火物の適正な乾燥パ
ターンを確立することができる。さすれば、過乾燥の所
要時間の短縮が可能になるので、内張り耐火物の施工費
の削減が可能になるからである。
If the amount of moisture in the refractory lining during drying can be measured in real time and with high accuracy from outside the steel shell of the molten metal container, an appropriate drying pattern of the refractory lining can be established. . If so, the time required for overdrying can be reduced, and the construction cost of the refractory lining can be reduced.

【0011】従って、本発明の目的とするところは、水
分により減速・散乱されて戻ってくる熱中性子、中・高
速中性子を確実に捕捉して、高精度で溶湯容器内張り耐
火物中に含まれている水分の量を測定することを可能な
らしめる溶湯容器内張り耐火物の含水量測定ユニットを
提供することである。
Accordingly, an object of the present invention is to reliably capture thermal neutrons and medium / high speed neutrons which are decelerated and scattered by moisture and are contained in the refractory lining the molten metal container with high precision. An object of the present invention is to provide a unit for measuring the water content of a refractory lining a molten metal vessel, which makes it possible to measure the amount of water contained.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る溶湯容器内張り耐火物の含水量測定ユ
ニットが採用した手段の特徴とするところは、溶湯容器
(10)の鉄皮(11)の表面に接触させる側に、溝状の凹所(2
a)が設けられてなるブロック状の鉄部材(2) と、この鉄
部材(2) の凹所(2a)内に配設されてなる熱中性子計数管
(3) と、前記凹所(2a)内で、かつ前記熱中性子計数管
(3) を挟む位置に配設されてなる一対の熱中性子柱(4)
と、前記鉄部材(2) の凹所(2a)から外れたこの凹所(2a)
の開口側に設けられた微小な穴(2b)に嵌着されてなる中
性子発生線源(5) とからなる構成にしたところにある。
Means for Solving the Problems In order to solve the above-mentioned problems, the feature of the means adopted by the unit for measuring the water content of a refractory lining a molten metal vessel according to the present invention is that the molten metal vessel has a feature.
On the side that comes into contact with the surface of the steel shell (11) of (10), a groove-shaped recess (2
a) A block-shaped iron member (2) provided with a), and a thermal neutron counter arranged in the recess (2a) of this iron member (2)
(3) and the thermal neutron counter in the recess (2a) and
(3) A pair of thermal neutron columns (4) arranged at positions sandwiching
And this recess (2a) deviated from the recess (2a) of the iron member (2)
And a neutron generation source (5) fitted in a minute hole (2b) provided on the opening side of the neutron source.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態に係る
溶湯容器内張り耐火物の含水量測定ユニットを、その構
成説明図(但し、含水量測定ユニットから離れた位置に
溶湯容器の一部を示してある。)の図1を参照して説明
すると、図に示す符号1は、容器状の鉄皮11と、この
鉄皮11の内側に張られた永久張り煉瓦12と、この永
久張り煉瓦12の内側に張られた内張り耐火物13(不
定形耐火物である。)とからなる溶湯容器10の前記内
張り耐火物13中に含まれている水分の量を測定する後
述する構成になる含水量測定ユニットである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing the construction of a unit for measuring the water content of a refractory lining a molten metal vessel according to an embodiment of the present invention. 1 will be described with reference to FIG. 1. Reference numeral 1 shown in the figure denotes a container-shaped iron shell 11, a permanent brick 12 stretched inside the steel shell 11, and a permanent brick 12 The configuration described below for measuring the amount of water contained in the lining refractory 13 of the molten metal container 10 including the lining refractory 13 (which is an irregular-shaped refractory) stretched inside the brick 12. It is a moisture content measurement unit.

【0014】この含水量測定ユニット1は、溶湯容器1
0の鉄皮11の表面に接触させる側に溝状の凹所2aが
設けられてなる横断断面が凹状に形成されてなるブロッ
ク状の鉄部材2と、この鉄部材2の凹所2a内に配設さ
れてなる熱中性子計数管3と、前記凹所2a内で、かつ
前記熱中性子計数管3を挟む位置に配設されてなるグラ
ファイトからなる一対の熱中性子柱4,4と、前記鉄部
材2の凹所2aから外れた、この凹所2aの開口側に設
けられた微小な穴2bに嵌込まれた中性子発生線源5と
からなる構成になっている。勿論、図示省略している
が、熱中性子計数管3による熱中性子のカウント数は電
気信号となって種々の電気計器に順次入力されて処理さ
れる。
The water content measuring unit 1 includes a molten metal container 1
A block-shaped iron member 2 having a groove-shaped recess 2a provided on the side of the iron member 11 which is in contact with the surface of the iron shell 11, and a block-shaped iron member 2 having a concave cross section. A thermal neutron counter tube 3 disposed therein; a pair of thermal neutron columns 4 and 4 made of graphite disposed in the recess 2a and at positions sandwiching the thermal neutron counter tube 3; The neutron generating source 5 is separated from the recess 2a of the member 2 and is fitted into a minute hole 2b provided on the opening side of the recess 2a. Although not shown, the number of thermal neutrons counted by the thermal neutron counter 3 is converted into an electric signal and sequentially input to various electric meters for processing.

【0015】この実施の形態に係る含水量測定ユニット
1に用いた中性子発生線源5は、原子番号98のカリホ
ルニウム(Cf)で、いくつか作られている放射性同位
体のうちの 252Cfである。なお、 226Raのような天
然のα放射性元素にベリリウムを適当に混入したラジウ
ム−ベリリウムを用いることもできる。
The neutron generating source 5 used in the water content measuring unit 1 according to this embodiment is californium (Cf) having an atomic number of 98, and is 252 Cf of some radioisotopes produced. . Note that radium-beryllium in which beryllium is appropriately mixed with a natural α-radioactive element such as 226 Ra can also be used.

【0016】このように、グラファイトからなる熱中性
子柱4,4の間に熱中性子計数管3を配設する構成とし
たのは、熱中性子を高効率で捕捉することを狙いとした
ものである。つまり、熱中性子柱4,4が十分長く、中
性子のビームの方向が良く揃っていれば、エネルギーが
0.0018eV以上の中性子が回折され、種々の方向
を向いたグラファイトの結晶で反射が繰り返されて、外
に逃げ出す熱中性子が少なくなり、さらに熱中性子柱
4,4の素材であるグラファイトは減速材でもあるの
で、水分により減速・散乱されたものの熱中性子になら
ずに戻ってくる中・高速中性子も減速して熱中性子に変
えてカウントすることができるからである。
The configuration in which the thermal neutron counter tube 3 is disposed between the thermal neutron columns 4 and 4 made of graphite is intended to capture thermal neutrons with high efficiency. . In other words, if the thermal neutron columns 4 and 4 are sufficiently long and the directions of the neutron beams are well aligned, neutrons having an energy of 0.0018 eV or more are diffracted, and reflection is repeated by graphite crystals oriented in various directions. As a result, the amount of thermal neutrons that escape to the outside decreases, and graphite, which is the material of the thermal neutron columns 4 and 4, is also a moderator. This is because neutrons can be decelerated and converted to thermal neutrons and counted.

【0017】以下、上記構成になる含水量測定ユニット
1を用いて溶湯容器内張り耐火物中に含まれている水分
の量を測定する場合を説明すると、先ず溶湯容器10の
鉄皮11の表面の方向に鉄部材2の凹所2aの開口側を
向けて鉄皮11に取付ける。微小な熱中性子発生線源5
から溶湯容器10の鉄皮11に照射された高速中性子は
鉄皮11を透過し、内張り耐火物13中に含まれている
水分により減速・散乱されて熱中性子となる。
Hereinafter, a case of measuring the amount of water contained in the refractory lining the molten metal vessel by using the water content measuring unit 1 having the above structure will be described. First, the surface of the steel shell 11 of the molten metal vessel 10 is measured. The iron member 2 is attached to the steel shell 11 with the opening side of the recess 2a facing in the direction. Micro thermal neutron source 5
The high-speed neutrons radiated from the metal shell 11 of the molten metal container 10 through the shell 11 are decelerated and scattered by the moisture contained in the refractory lining 13 to become thermal neutrons.

【0018】そして、これら熱中性子のうち、含水量測
定ユニット1の方向に散乱されたものが鉄皮11を透過
し、グラファイトからなる熱中性子柱4,4の種々の方
向を向いた結晶で繰り返し反射されて、熱中性子計数管
3によりカウントされる。さらに、水分により減速・散
乱されたものの熱中性子にならずに、散乱により含水量
測定ユニット1の方向に戻ってくる中・高速中性子も熱
中性子柱4,4により減速されて熱中性子となって、熱
中性子計数管3によりカウントされる。
Of these thermal neutrons, those scattered in the direction of the water content measuring unit 1 penetrate through the iron shell 11 and are repeatedly formed of crystals of the thermal neutron columns 4 and 4 made of graphite oriented in various directions. The light is reflected and counted by the thermal neutron counter 3. Furthermore, medium and fast neutrons which return to the direction of the water content measuring unit 1 due to scattering without being converted to thermal neutrons due to being decelerated and scattered by moisture are also decelerated by the thermal neutron columns 4 and 4 to become thermal neutrons. Are counted by the thermal neutron counter 3.

【0019】[0019]

【実施例】次に、本発明の含水量測定ユニットによる取
鍋の内張り耐火物中の水分の量の測定に係る実施例を、
含水量測定ユニットを取付けた取鍋の斜視図の図2
(a)と、熱電対の上下方向の取付け位置をずらせて示
す取鍋の断面図の図2(b)と、乾燥時間とカウント数
の関係説明図の図3とを参照しながら説明する。
Next, an embodiment relating to the measurement of the amount of water in the refractory lining of a ladle by the water content measuring unit of the present invention will be described.
FIG. 2 of a perspective view of a ladle to which a water content measuring unit is attached.
This will be described with reference to (a), FIG. 2 (b) of a cross-sectional view of a ladle in which a mounting position of a thermocouple in a vertical direction is shifted, and FIG. 3 of a diagram illustrating a relationship between drying time and count number.

【0020】図2(a),(b)に示すように、溶湯容
器である取鍋10の鉄皮11の表面に含水量測定ユニッ
ト1が取付けられると共に、その隣りに鉄皮11の温度
を測定する熱電対6が取付けられている。この取鍋10
は新鍋であって、測定部位における鉄皮11の厚さは3
2mm、永久張り煉瓦12の厚さは90mm、不定形耐
火物である内張り耐火物13の厚さは174mmのもの
である。そして、含水量測定ユニット1のカウント積分
時間を10分とし、45時間(2700分)の乾燥中を
通じて内張り耐火物13中の水分の量を測定すると共
に、これと並行して、熱電対6により鉄皮11の温度を
測定した。記録計に記録されたカウント数と鉄皮の温度
とは、図3に示すとおりである。
As shown in FIGS. 2 (a) and 2 (b), a water content measuring unit 1 is mounted on the surface of a steel shell 11 of a ladle 10 which is a molten metal container, and the temperature of the steel shell 11 is measured next to the unit. A thermocouple 6 to be measured is attached. This ladle 10
Is a new pot, and the thickness of the iron shell 11 at the measurement site is 3
The thickness of the permanent brick 12 is 90 mm, and the thickness of the refractory lining 13 which is an irregular refractory is 174 mm. Then, the count integration time of the water content measuring unit 1 is set to 10 minutes, and the amount of water in the lining refractory 13 is measured during the drying for 45 hours (2700 minutes), and in parallel with this, the thermocouple 6 is used. The temperature of the iron shell 11 was measured. The count number and the temperature of the steel shell recorded on the recorder are as shown in FIG.

【0021】図3によれば、内張り耐火物13の乾燥開
始から750分まではカウント数が次第に増加し、15
00分経過すると急激に減少し、2100は緩やかに減
少し、2500分以降ではほぼ一定になるという経過を
たどっている。このような経過については、以下のとお
りである。
According to FIG. 3, the count number gradually increases from the start of drying of the refractory lining 13 to 750 minutes.
After a lapse of 00 minutes, the value rapidly decreases, 2100 gradually decreases, and after 2500 minutes, it is almost constant. Such a process is as follows.

【0022】即ち、内張り耐火物13の乾燥開始から7
50分までの間のカウント数の増加は、ガスバーナで熱
せられた取鍋10内の空気が鉄皮11部で冷やされて結
露したためと理解することができる。実際、この間は鉄
皮11に設けた図示しない蒸気抜きから水が漏出してい
るのを確認した。1500分を過ぎるとカウント数が急
激に減少するのは、鉄皮11の温度が100℃前後でほ
ぼ一定になっているので、水分の蒸発期間であると理解
される。また、2100分以降のカウント数の減少は内
張り耐火物13中の結晶水が飛び無水になることにする
と考えられる。なお、このように2500分以降でカウ
ント数が一定になるのは、内張り耐火物13中の水分が
完全に除去されたことに起因すると理解することができ
る。
That is, from the start of drying the refractory lining 13,
It can be understood that the increase in the count number up to 50 minutes is because the air in the ladle 10 heated by the gas burner was cooled by the steel shell 11 and dew was formed. Actually, during this time, it was confirmed that water leaked from a steam vent (not shown) provided on the steel shell 11. It is understood that the rapid decrease in the count number after 1500 minutes is the evaporation period of water because the temperature of the steel shell 11 is almost constant at around 100 ° C. Further, it is considered that the decrease in the count number after 2100 minutes results in the crystallization water in the refractory lining 13 jumping and becoming anhydrous. In addition, it can be understood that the reason why the count number becomes constant after 2500 minutes is that the moisture in the refractory lining 13 is completely removed.

【0023】そして、カウント数が一定になるときを以
て内張り耐火物13の乾燥が完全に終了したことを確認
するために取鍋10に溶湯を注湯したが、この内張り耐
火物13が蒸気爆発を起こすようなことはなかった。よ
って、カウント数が一定になることが内張り耐火物13
の乾燥の完了を意味するので、これにより内張り耐火物
13の適正な乾燥パターンを確立することができる。
The molten metal was poured into the ladle 10 in order to confirm that the drying of the refractory lining 13 was completely completed when the count number became constant, but the refractory lining 13 caused a steam explosion. There was nothing to wake up. Therefore, the count number becomes constant when the refractory lining 13 is used.
Therefore, it is possible to establish an appropriate drying pattern of the lining refractory 13.

【0024】ところで、従来は、取鍋の内張り耐火物1
3の乾燥所要時間は季節(大気の湿度と気温の相違)に
より当然相違するにもかかわらず、夏場に内張り耐火物
13の乾燥施工工事を行う場合でも冬場と同等な乾燥パ
ターンを採用していたが、この含水量測定ユニット1を
用いることにより、特に夏場の場合には乾燥所要時間の
短縮と、燃費の削減とが可能になる。
Conventionally, a refractory lining of a ladle 1
Despite the fact that the required drying time of 3 differs depending on the season (difference between atmospheric humidity and temperature), the drying pattern equivalent to that in winter was adopted even when the drying construction of the refractory lining 13 was performed in summer. However, the use of the water content measuring unit 1 makes it possible to reduce the time required for drying and to reduce fuel consumption, particularly in summer.

【0025】このように、本発明の実施の形態に係る含
水量測定ユニット1によれば、上記のとおり、水分によ
り減速・散乱されて戻ってくる熱中性子を熱中性子柱
4,4により外方に逃がすことなく、さらに中・高速中
性子も熱中性子に変えて熱中性子計数管3によりカウン
トすることができるので、熱中性子を中性子吸収材で吸
収し、中性子吸収材を透過した中・高速中性子を中性子
減速材で熱中性子にして熱中性子検出管(熱中性子計数
管)によりカウントする従来例1よりも水分の量の測定
精度が優れ、また熱中性子柱を持たない従来例2よりも
水分の量の測定精度が優れており、溶湯容器内張り耐火
物の水分の量の測定精度の向上に大いに寄与することが
できる。
As described above, according to the water content measuring unit 1 according to the embodiment of the present invention, as described above, the thermal neutrons that are decelerated and scattered by moisture and returned are directed outward by the thermal neutron columns 4 and 4. In addition, medium and fast neutrons can be converted to thermal neutrons and counted by the thermal neutron counter tube 3 without escape, so that thermal neutrons are absorbed by the neutron absorbing material, and the medium and fast neutrons transmitted through the neutron absorbing material are removed. The measurement accuracy of the amount of water is better than that of Conventional Example 1 in which thermal neutrons are converted into thermal neutrons with a neutron moderator and counted by a thermal neutron detection tube (thermal neutron counter tube), and the amount of water is higher than that of Conventional Example 2 having no thermal neutron column Is excellent in measurement accuracy, and can greatly contribute to improvement in measurement accuracy of the amount of water in the refractory lining the molten metal vessel.

【0026】さらに、本発明の実施の形態に係る含水量
測定ユニット1によれば、上記のとおり、水分により散
乱されて戻ってくる熱中性子、中速中性子、高速中性子
を捕捉してカウントするので、より小出力、例えば管理
区域の設定が不要な中性子発生線源5を用いても測定が
可能であるから、中性子遮蔽のための含水量測定ユニッ
ト1の鉄部材2の大きさを小さくすることができ、これ
により管理区域の縮小が可能になるという効果もある。
Further, according to the water content measuring unit 1 according to the embodiment of the present invention, as described above, thermal neutrons, medium-speed neutrons, and fast neutrons that are scattered and returned by moisture are captured and counted. Since it is possible to measure even with a smaller output, for example, using a neutron generating source 5 that does not require setting of a control area, the size of the iron member 2 of the water content measuring unit 1 for neutron shielding should be reduced. This has the effect that the management area can be reduced.

【0027】なお、以上では、本発明に係る含水量測定
ユニット1を取鍋の内張り耐火物中の水分の量の測定に
適用した場合を例として説明したが、例えばタンディッ
シュ等の溶湯容器にも適用することができるので、特に
取鍋用の用途に限定されるものではない。
In the above, the case where the water content measuring unit 1 according to the present invention is applied to the measurement of the amount of water in the refractory lining a ladle has been described as an example. Is not particularly limited to ladle applications.

【0028】[0028]

【発明の効果】以上述べたように、本発明に係る溶湯容
器内張り耐火物の含水量測定ユニットによれば、水分に
より減速・散乱されて戻ってくる熱中性子を外方に逃が
すことなくカウントし、さらに中・高速中性子も熱中性
子に変えてカウントすることができる。従って、熱中性
子を中性子吸収材で吸収し、中性子吸収材を透過した中
・高速中性子を中性子減速材で熱中性子にして熱中性子
計数管である熱中性子検出管でカウントする従来例1よ
りも被検体の水分の量の測定精度が優れ、また熱中性子
柱を持たない従来例2よりも被検体の水分の量の測定精
度が優れているので、溶湯容器内張り耐火物の水分の量
の測定精度の向上に対して大いに寄与することができる
という極めて優れた効果がある。
As described above, according to the unit for measuring the water content of a refractory lining a molten metal vessel according to the present invention, thermal neutrons that are decelerated and scattered by moisture and returned are counted without escaping to the outside. In addition, medium and fast neutrons can be counted instead of thermal neutrons. Therefore, the thermal neutrons are absorbed by the neutron absorbing material, and the medium and fast neutrons that have passed through the neutron absorbing material are converted into thermal neutrons by the neutron moderator, and are counted by the thermal neutron detector tube, which is a thermal neutron counter tube. Since the measurement accuracy of the water content of the sample is excellent and the measurement accuracy of the water content of the test sample is superior to that of the conventional example 2 having no thermal neutron column, the measurement accuracy of the water content of the refractory lining the molten metal container is improved. There is an extremely excellent effect that it can greatly contribute to the improvement of.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る溶湯容器内張り耐火
物の含水量測定ユニットの構成説明図(但し、含水量測
定ユニットから離れた位置に溶湯容器の一部を示してあ
る。)である。
FIG. 1 is an explanatory diagram of a configuration of a unit for measuring the water content of a refractory lining a molten metal vessel according to an embodiment of the present invention (however, a part of the molten metal vessel is shown at a position away from the moisture content measurement unit). is there.

【図2】本発明の実施例に係り、図2(a)は含水量測
定ユニットを取付けた取鍋の斜視図、図2(b)は熱電
対の上下方向の取付け位置をずらせて示す取鍋の断面図
である。
FIG. 2 (a) is a perspective view of a ladle to which a water content measuring unit is attached, and FIG. 2 (b) is a perspective view showing a thermocouple in which an attachment position in a vertical direction is shifted. It is sectional drawing of a pot.

【図3】本発明の実施例に係り、乾燥時間とカウント数
の関係説明図である。
FIG. 3 is a diagram illustrating a relationship between a drying time and a count number according to the embodiment of the present invention.

【図4】従来例1に係り、極低レベル中性子透過型水分
計の断面構成説明図である。
FIG. 4 is a cross-sectional configuration explanatory view of an extremely low-level neutron transmission moisture meter according to Conventional Example 1.

【図5】従来例2に係り、コークス水分測定装置のブロ
ック図である。
FIG. 5 is a block diagram of a coke moisture measuring device according to Conventional Example 2.

【図6】図6(a)は取鍋の乾燥状態説明図、図6
(b)は永久張り煉瓦と内張り耐火物との損傷状態説明
図である。
FIG. 6 (a) is an explanatory view of a drying state of a ladle, and FIG.
(B) is an explanatory diagram of a damaged state of the permanent brick and the lining refractory.

【符号の説明】[Explanation of symbols]

1…含水量測定ユニット 2…鉄部材,2a…凹所,2b…微小な穴 3…熱中性子計数管 4…熱中性子柱 5…中性子発生線源 6…熱電対 10…溶湯容器,11…鉄皮,12…永久張り煉瓦,1
3…内張り耐火物
DESCRIPTION OF SYMBOLS 1 ... Water content measuring unit 2 ... Iron member, 2a ... Depression, 2b ... Micro hole 3 ... Thermal neutron counter tube 4 ... Thermal neutron column 5 ... Neutron generating radiation source 6 ... Thermocouple 10 ... Molten vessel, 11 ... Iron Leather, 12 ... Permanent brick, 1
3. Refractory lining

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶湯容器(10)の鉄皮(11)の表面に接触さ
せる側に、溝状の凹所(2a)が設けられてなるブロック状
の鉄部材(2) と、この鉄部材(2) の凹所(2a)内に配設さ
れてなる熱中性子計数管(3) と、前記凹所(2a)内で、か
つ前記熱中性子計数管(3) を挟む位置に配設されてなる
一対の熱中性子柱(4) と、前記鉄部材(2) の凹所(2a)か
ら外れたこの凹所(2a)の開口側に設けられた微小な穴(2
b)に嵌着されてなる中性子発生線源(5) とからなること
を特徴とする溶湯容器内張り耐火物の含水量測定ユニッ
ト。
1. A block-shaped iron member (2) provided with a groove-shaped recess (2a) on a side of a molten metal container (10) in contact with a surface of an iron shell (11); A thermal neutron counter tube (3) disposed in the recess (2a) of (2), and a thermal neutron counter tube (3) disposed in the recess (2a) and at a position sandwiching the thermal neutron counter tube (3). And a small hole (2) provided on the opening side of the recess (2a) which is separated from the recess (2a) of the iron member (2).
b) a neutron generating source (5) fitted to the molten metal vessel;
JP21356297A 1997-08-07 1997-08-07 Unit for measuring the water content of refractories lined with molten metal vessels Expired - Fee Related JP3507664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21356297A JP3507664B2 (en) 1997-08-07 1997-08-07 Unit for measuring the water content of refractories lined with molten metal vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21356297A JP3507664B2 (en) 1997-08-07 1997-08-07 Unit for measuring the water content of refractories lined with molten metal vessels

Publications (2)

Publication Number Publication Date
JPH1151880A true JPH1151880A (en) 1999-02-26
JP3507664B2 JP3507664B2 (en) 2004-03-15

Family

ID=16641273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21356297A Expired - Fee Related JP3507664B2 (en) 1997-08-07 1997-08-07 Unit for measuring the water content of refractories lined with molten metal vessels

Country Status (1)

Country Link
JP (1) JP3507664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237327A (en) * 2010-05-12 2011-11-24 Shinko Engineering & Maintenance Co Ltd Measurement method of refractory thickness, and device
KR101532339B1 (en) * 2013-09-06 2015-06-29 주식회사 포스코 Continuous casting apparatus and continuous casting method
KR20190067472A (en) * 2017-12-07 2019-06-17 주식회사 포스코 Damage simulator for refractory and manufacture apparatus thereof
WO2019187235A1 (en) * 2018-03-28 2019-10-03 株式会社トプコン Non-destructive inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237327A (en) * 2010-05-12 2011-11-24 Shinko Engineering & Maintenance Co Ltd Measurement method of refractory thickness, and device
KR101532339B1 (en) * 2013-09-06 2015-06-29 주식회사 포스코 Continuous casting apparatus and continuous casting method
KR20190067472A (en) * 2017-12-07 2019-06-17 주식회사 포스코 Damage simulator for refractory and manufacture apparatus thereof
WO2019187235A1 (en) * 2018-03-28 2019-10-03 株式会社トプコン Non-destructive inspection method
US11609190B2 (en) 2018-03-28 2023-03-21 Topcon Corporation Non-destructive inspection method

Also Published As

Publication number Publication date
JP3507664B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
US4499380A (en) Apparatus and method for determining the hydrogen content of a substance
US20060104400A1 (en) Process and device for analysis of radioactive objects
JP6179885B2 (en) Method and apparatus for measuring the amount of fissile material
JP3507664B2 (en) Unit for measuring the water content of refractories lined with molten metal vessels
Nasr et al. Measurement of Isfahan heavy water zero-power reactor kinetic parameters using advanced pulsed neutron source method in a near critical state
Morichi et al. Developments and experiences of the CHANCE, MICADO and PREDIS projects in radioactive waste characterization
JP2006010356A (en) Non-destructive analyzing method using pulse neutron transmitting method and its non-destructive analyzer
JP3831812B2 (en) Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing
JP3012891B2 (en) Identification of waste drum contents by active neutron method
Blaugrund et al. Improved technique for measuring intense pulsed ion beams by the nuclear activation method
Flora et al. Kinetic Experiments on Water Boilers" A" Core Report: Program history, facility description and experimental results
RU2200988C2 (en) Method for metering neutron flux in power reactor
Popa-Simil et al. Corrosion control of steel components exposed to thermal cycling using radioactive tracers
SU813213A1 (en) Method of determination of boron concentration
SU569204A1 (en) Method of measuring thickness of lining of thermal sets
JPH01244345A (en) Neutron measuring apparatus
JPH02157696A (en) Non-destructive analysis apparatus for fissile material
RU2305276C2 (en) Measurement of moisture content in containers filled with plutonium oxide
JPH10227735A (en) Moisture measuring method of ladle refractory
US4971749A (en) Nuclear excitation laser type intra-reactor neutron flux measuring system
SU1603261A1 (en) Method of determining rate of corrosion
SU667924A1 (en) Method of measuring heat power of nuclear reactor
Norris A service laboratory's view of the status and direction of reactor vessel surveillance
JPH02238350A (en) Method for identifying contents of waste drum can using active neutron method
SU716419A1 (en) Device for determining concentration of fissionable matter in fuel specimens without their destruction

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees