JPH11513888A - ポリヌクレオチド増幅の陽性コントロール - Google Patents

ポリヌクレオチド増幅の陽性コントロール

Info

Publication number
JPH11513888A
JPH11513888A JP9527451A JP52745197A JPH11513888A JP H11513888 A JPH11513888 A JP H11513888A JP 9527451 A JP9527451 A JP 9527451A JP 52745197 A JP52745197 A JP 52745197A JP H11513888 A JPH11513888 A JP H11513888A
Authority
JP
Japan
Prior art keywords
primer
polynucleotide
sequence
oligonucleotide
nucleotides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9527451A
Other languages
English (en)
Other versions
JP4104657B2 (ja
Inventor
ラインカーズ,アレキサンダー・ジェイ
Original Assignee
デイド・ベーリング・マルブルク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デイド・ベーリング・マルブルク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング filed Critical デイド・ベーリング・マルブルク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Publication of JPH11513888A publication Critical patent/JPH11513888A/ja
Application granted granted Critical
Publication of JP4104657B2 publication Critical patent/JP4104657B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Abstract

(57)【要約】 本発明は標的ポリヌクレオチドの標的配列の増幅法の改良に関する。この方法は、オリゴヌクレオチドプライマーの伸長生成物を少なくとも標的配列に沿って、または伸長したオリゴヌクレオチドプライマーに沿って形成させる工程を含む。伸長生成物は、標的配列のコピーである。この改良は、オリゴヌクレオチドプライマーがそのオリゴヌクレオチドプライマーの3'−末端の1−10ヌクレオチド以外でハイブリダイズする第2のポリヌクレオチドの存在下で伸長生成物を形成させることを含む。選択した条件下で、オリゴヌクレオチドプライマーは、標的配列に沿ってかかるプライマーの伸長に相関する制御された方法で第2のポリヌクレオチドに沿って伸長し、そうして、増幅反応の陽性コントロールを提供するが、このコントロールは、定性的または定量的であり得る。所望により、修飾オリゴヌクレオチドプライマーが増幅反応に含まれる。この修飾プライマーは、反応条件下に、上記の1−10ヌクレオチドの分解を防ぐ化学修飾がその3'−末端にある以外はオリゴヌクレオチドプライマーと実質的に同一である。この方法は、核酸増幅の分野において特に有用である。

Description

【発明の詳細な説明】 ポリヌクレオチド増幅の陽性コントロール 発明の背景 1.発明の分野 顕著な罹病率および死亡率は、感染病に関連する。疾病をよりよく監視および 処置するためのより迅速かつ正確な診断法が要求されている。DNAプローブ、 核酸ハイブリダイゼーションおよびインビトロ増幅技術を用いる分子学的方法は 、患者の診断に使用される従来法に利点を与える有望な方法である。 核酸ハイブリダイゼーションは、核酸の同一性を調査し、その存在を確認する のに使用されてきた。ハイブリダイゼーションは、相補的塩基対形成に基づくも のである。違いに相補的な一本鎖核酸を一緒にインキュベートすると、相補的塩 基配列対は、二本鎖ハイブリッド分子を形成する。一本鎖デオキシリボ核酸(ss DNA)またはリボ核酸(RNA)が相補的核酸配列と水素結合構造を形成する 能力は、分子生物学研究における分析ツールとして使用されてきた。高比活性の 放射性ヌクレオシドトリホスフェートを有効利用し、T4ポリヌクレオチドキナ ーゼによりDNAを32P標識することにより、様々な生物学的対象の核酸配列が 同定、単離および特性化されてきた。核酸ハイブリダイゼーションは、特定の核 酸配列に関係する疾病状態の診断において多大な可能性を有する。これらの特定 核酸配列は、挿入、欠失、点突然変異による、または細菌、糸状菌カビ、真菌、 およびウイルスの感染による外来DNAまたはRNAの獲得による、DNAの遺 伝子変化または環境変化から生じる場合もある。核酸ハイブリダイゼーションは 、今までのところ、主に、大学および企業の分子生物学研究所で採用されている 。患者体液に存在する疾病関連DNAまたはRNAの濃度が多くの場合非常に低 く、また十分な感度の核酸ハイブリダイゼーション分析法が利用できないため、 核酸ハイブリダイゼーションを臨床医療において診断ツールとして応用するには 限界がある。 特定の核酸配列を検出する方法の1つは、一般に、ニトロセルロース紙、セル ロース紙、ジアゾ化紙、またはナイロン膜などの固体支持体への標的核酸の固定 化である。標的核酸を支持体に固定化した後、支持体を適切に標識したプローブ 核酸に約48時間接触させる。その時間経過後、固体支持体を温度制御下で数回 洗浄して、ハイブリダイズしなかったプローブを除去する。次いで、この支持体 を乾燥し、ハイブリダイズした物質をオートラジオグラフィーにより、または分 光測定法により検出する。 非常に低い濃度を検出しなければならない場合、上記の方法は、反応が遅くか つ多くの手間がかかり、また、放射性標識よりも検出されにくい同位元素標識は 適切でないことが多い。 ポリメラーゼ連鎖反応(PCR)法として知られている特定のDNAセグメン トの酵素的増幅法が報告されている。このインビトロ増幅法は、変性、オリゴヌ クレオチドプライマーアニーリング、および好熱性ポリメラーゼによるプライマ ー伸長というサイクルの繰り返しに基づくものであり、プライマーによりフラン クされた領域のコピーを指数的に増大する。DNAの相対する鎖にアニールする PCRプライマーを、一方のプライマーのポリメラーゼ触媒伸長生成物がもう一 方の鋳型鎖として働き得るように配置し、その長さが各オリゴヌクレオチドプラ イマーの5'末端間の距離として定義される別個のフラグメントの蓄積を導く。 その他の核酸配列増幅法もまた、報告されている。この方法は、シングルプラ イマー増幅と称する。この方法は、標的配列が相対的に短い相補的配列によりフ ランクされているステム−ループ構造または逆方向反復構造を有する標的配列の 増幅を提供するものである。検出すべきポリヌクレオチド分析物の存在に関して かかる標的配列を作製する様々な方法もまた、報告されている。 上記方法は、非常に少量で存在する標的DNA分子を、高感度で検出する極め て有力な技術である。元の標的DNA分子の数と特異的に増幅した生成物の数と の相関関係は、多くの変数によって影響を受ける。緩衝液または温度条件の僅か な変化が反応毎の(reaction-to-reaction)増幅効率に非常に大きな影響を与え ることもある。更に、DNA標的の臨床試料が酵素的増幅を抑制し得る阻害因子 を含有することもある。 核酸の標的配列を臨床診断使用のために増幅する場合、確実に各増幅反応によ り増幅した生成物を獲得できるようにする必要がある。特に、市販診断用製品で は、不適切なアッセイ法または汚染試薬または不活性試薬に起因する誤診を避け るための確認方法が必要である。各試薬および検出方法が適切に作用しているる ことを示す内部陽性コントロールの開発が重要である。かかるコントロールがな い場合、標的核酸の存在を示すはずのアッセイの失敗は、標的の不在に起因する こともあり、またはアッセイの実施に使用される1またはそれ以上の試薬または ある器具の不足によって引き起こされることもある。 増幅反応を定性化または定量化する様々な手法が開発されており、これらの手 法は、2つの主たるカテゴリー、即ち、相同コントロール(homologous control s)と異種コントロール(heterologous controls)に分けることができる。かか るコントロールは、mRNAの増幅に応用されており、またDNA分析物に適応 されている。相同コントロールは、標的配列を含有しないコントロールポリヌク レオチドを有する。かかる手法の1つは、“内生標準”アッセイとして知られて おり、試験したすべての試料において比較的一定レベルで発現される内生ポリヌ クレオチドを標準として利用するものである。次いで、試験配列のレベルを標準 と比較する。異種コントロールは、通常、HLA−DQおよびベータ−グロブリ ン遺伝子またはmRNAなどのヒトDNAの増幅領域である。異種コントロール は、すべての非標的特異的試薬および操作の適切さを保証するが、標的特異的試 薬に関わる問題については感度が低い。 相同コントロールは、目指す標的と同じ配列の一部を含有するコントロールポ リヌクレオチドを利用するが、サイズの相異により、または制限部位などの特定 の配列の存在または不存在により標的と識別できる。相同コントロールは、外生 核酸フラグメントを含有する、即ち、それらは、天然には試料中に存在せず、ま た、標的を増幅するのに使用したのと同じプライマーを用いてそれらを増幅でき るように構築されている。この手法では、配列中にほんの僅かな変化を持つが、 容易に標的配列と識別できるように合成標準を設計する。アッセイする試料およ び合成標準を同一の反応容器内で増幅するので、増幅に影響を与え得るあらゆる 変数は標的およびコントロールの双方に等しく影響すべきである。 一般に、上記の方法では、コントロールの増幅と存在するならば標的の増幅と の間に競合が起こり、例えば、プライマー結合に対する競合、およびデオキシヌ クレオシドトリホスフェートおよびポリメラーゼなどのその他の試薬に対する競 合などである。この競合は、普通、限られた量のポリメラーゼしか利用できない ことから起こる。結果として、これらの1つが高濃度で存在すれば、他のものの 増幅はブロックされてしまい、そうして、コントロールまたは標的のいずれかの 検出を妨害する可能性がある。従って、例えば、PCRにおいて類似サイズの2 種のDNAの同時増幅を達成するためには、普通、ほぼ等しい濃度の2種のDN A標的配列を用いて増幅を開始する必要がある。 2.関連技術の記載 米国特許第5,219,727号(Wang等)は、ポリメラーゼ連鎖反応により、試料中 の標的核酸セグメントの量を測定する方法を記述している。この方法は、標的核 酸セグメントと内部標準核酸セグメントとの同時増幅に関連するものである。各 セグメントから増幅したDNAの量を測定し、標準曲線と比較して増幅前に試料 中に存在した標的核酸セグメントの量を測定する。この方法は、生物学的試料中 の特定のmRNA種の量を測定する具体的な応用性を有する。この開発について もWang等によりProc.Nat.Acad.Sci.USA(1989)86:9717-9721に記述されている。 定量PCR法は、Eeles等により“Polymerase Chain Reaction(PCR):The T echnique and Its Applications”(1993)6章、55−61頁、R.G.Landes Company に開示されている。 核酸増幅における偽陰性の消去法は、ヨーロッパ特許出願WO94/04706(Kiev its等)に記述されている。増幅前に内部コントロールを試料に加える。コント ロールは分析物核酸と同一の増幅試薬で増幅させることができる、分析物核酸と 識別可能な核酸、好ましくは、それを分析物核酸と区別するために突然変異させ た、分析物核酸に対応する核酸配列を有する。 Celi等は、Nucleic Acids Research(1993)21(4):1047に競合的PCR用の迅 速かつ多用途の内部標準合成法を記載している。 Gilliland等は、Proc.Natl.Acad.Sci.USA(1990)87:2725-2729に、サイトカイ ンmRNAとDNAの分析;競合的ポリメラーゼ連鎖反応による検出および定量 を記述している。 定量的PCRにおいて内部標準として使用するためのPCR模擬体:競合的D NAフラグメントは、Siebert等、Biotechniques(1993)14(2):244-249に開示さ れている。 Piatak等は、Biotechniques(1993)14(1):70-80にHIV DNAおよびRNA 種を正確に定量するための定量競合的ポリメラーゼ連鎖反応を記載している。 ウイルス学における定量PCRおよびRT−PCRは、Clementi等によりPCRm ethods and Applications(1993)2:191-196に開示されている。 内部標準を用いる競合的ポリメラーゼ連鎖反応:ウイルスDNAの定量への応 用は、Telenti等、Journal of Virological Methods(1992)39:259-268に記述さ れている。 Eckstein等、TIBS(1989)14:97-100は、分子生物学におけるホスホロチオエー ト類を報告している。 Ott等、Biochemistry(1987)26:8237-8241は、DNAポリメラーゼIによる分 解に対するオリゴヌクレオチドプライマーの保護を開示している。 核酸配列の増幅法、検出法および/またはクローニング法は、米国特許第4,68 3,195号、第4,683,202号、第4,800,159号、第4,965,188号および第5,008,182号 に開示されている。ポリメラーゼ連鎖反応による配列重合は、Saiki等、(1986 )Science,230:1350-1354に記載されている。熱安定性DNAポリメラーゼを用 いるDNAのプライマー指向性酵素的増幅は、Saiki等、Science(1988)239:487 に記載されている。 1989年1月19日および1989年8月29日にそれぞれ出願された米国特許出願第07/2 99,282号および第07/399,795号は、シングルポリヌクレオチドプライマー(AS PP)を用いる核酸増幅を記載している。1990年7月19日に出願された米国特許 出願第07/555,323号は、シングルプライマー増幅に使用するためのポリヌクレオ チドの製法を開示している。米国特許出願第07/555,968号は、分子内塩基対構造 を含有する分子の製法を記載している。シングルプライマー増幅に使用するため のポリヌクレオチドの製法は、1991年10月11日に出願された米国特許出願第07/7 76,538号に記載されている。これらの5つの出願の開示内容は、“関連技術の記 載”と題する章に挙げた文献と共に出典明示により本明細書の一部としている。 プライマーとしてランダム配列のオリゴヌクレオチドを用いる核酸配列の増幅 は、米国特許第5,043,272号に記載されている。自身にまたは他の核酸に繰り返 しハイブリダイズして増幅物を形成する能力のある一本鎖自己ハイブリダイジン グ核酸プローブは、1986年7月22日に出願された米国特許出願第888,058号に記載 されている。 発明の概要 最も広義の態様において、本発明は、増幅過程における相対的な検出能に関し て2またはそれ以上の別個のポリヌクレオチドの増幅の比較を可能とする。本発 明によれば、一方の増幅を進行させながら他方の増幅を制限することにより、一 方のポリヌクレオチドの増幅をもう一方のポリヌクレオチドの増幅に相関して制 御できる。このことは、両方のポリヌクレオチドを増幅させるため、単一のプラ イマーを用いることにより達成され、このプライマーは、一方のポリヌクレオチ ドに対するその結合部位に3'−ミスマッチを有する。この3'−ミスマッチは、 他方のポリヌクレオチドに相関する一方のポリヌクレオチドの増幅調節を可能に するものである。かかる調節の量およびタイミングは、ミスマッチプライミング 部位を持たないポリヌクレオチドの濃度を直接反映する。従って、本発明方法は 、定性的または定量的な測定または制御を提供するものである。 本発明の一実施態様は、標的ポリヌクレオチドの標的配列の多数のコピーを形 成させる方法に関する。この方法は、オリゴヌクレオチドプライマーの伸長生成 物を、少なくとも標的配列に沿って、または伸長したオリゴヌクレオチドプライ マーに沿って形成させる工程を含む。この伸長生成物は、標的配列のコピーであ る。本発明の改良法は、オリゴヌクレオチドプライマーがかかるプライマーの3 '−末端以外でハイブリダイズする第2のポリヌクレオチドの存在下で伸長生成 物を形成させることを含む。この方法の条件下、オリゴヌクレオチドプライマー は、標的配列に沿うオリゴヌクレオチドプライマーの伸長に関して、制御された 方法で第2のポリヌクレオチドに沿って伸長する。反応混合物は、第2のポリヌ クレオチドのコピーである伸長生成物について試験する。その存在は標的配列増 幅の条件および試薬が適切に機能していることを示す。標的配列のコピーである 伸長生成物の存在についても試験する。その存在は標的配列の存在を示し、その 量は、かかる第2のポリヌクレオチドの量の適切な制御のもと、標的配列の量を 示す。 本発明のその他の態様は、標的ポリヌクレオチドの標的配列の増幅法の改良に 関する。その方法は、標的ポリヌクレオチドを含有する疑いのある試料を、標的 配列が存在した場合にそれを増幅する試薬類と合わせ、その組み合わせ物を標的 配列が存在した場合にそれを増幅する条件下におくことを含む。この試薬類は、 オリゴヌクレオチドプライマーおよびポリメラーゼを含む。本発明の改良法は、 その組み合わせ物中に、オリゴヌクレオチドプライマーがそのオリゴヌクレオチ ドプライマーの3'−末端の1−10ヌクレオチド以外でハイブリダイズするコ ントロールポリヌクレオチドを含む。また、ポリメラーゼが増幅反応条件下で3 'ないし5'エクソヌクレアーゼ活性を持たない場合、その組み合わせ物中に、3 'ないし5'エクソヌクレアーゼを含ませる。このオリゴヌクレオチドプライマー は、標的配列に沿って伸長する。オリゴヌクレオチドプライマーのその他の分子 は、1−10ヌクレオチドが3'ないし5'エクソヌクレアーゼ活性により分解さ れた後にのみ、コントロールポリヌクレオチドに沿って伸長する。反応混合物は コントロールポリヌクレオチドのコピーについて試験する。その存在は、標的配 列を増幅する試薬および条件が機能的であることを示す。所望により、修飾した オリゴヌクレオチドプライマーが上記組み合わせ物中に含まれる。この修飾プラ イマーは、反応条件下、上記の1−10ヌクレオチドの3'ないし5'エクソヌク レアーゼ活性による分解を防ぐ化学修飾がその3'−末端にある以外はオリゴヌ クレオチドプライマーと実質的に同一である。 本発明のその他の実施態様は、一本鎖標的ポリヌクレオチドの標的配列(“標 的配列”)の多くのコピーを形成する方法の改良法である。その方法では、第1 のポリヌクレオチドプライマー(“第1プライマー”)を標的配列の3'−末端 に ハイブリダイズさせる。第1プライマーは、ポリメラーゼの存在下で少なくとも 標的配列に沿って伸長し、(1)その伸長第1プライマーまたは(2)伸長第2 ポリヌクレオチドプライマー(“第2プライマー”)にハイブリダイズし、そし て、それに沿って伸長する能力がある。この伸長第2プライマーは、標的配列に 相補的なポリヌクレオチド(相補的ポリヌクレオチド)にハイブリダイズし、そ してそれに沿って伸長する能力のある第2プライマーの伸長の結果得られる。伸 長第1プライマーを標的配列から解離させる。第1または第2プライマーを伸長 第1プライマーの3'−末端にハイブリダイズさせる。第1または該第2プライ マーを伸長第1プライマーに沿って伸長させる。伸長第1プライマーまたは伸長 第2プライマーを伸長第1プライマーから解離させる。第1プライマーを伸長第 1または第2プライマーの3'−末端にハイブリダイズさせる。次いで、後の3 工程を繰り返す。本発明の改良法は、上記工程にかけた同一反応混合物中に、ポ リヌクレオチドプライマーがそのプライマーの3'−末端の1−10ヌクレオチ ド以外でハイブリダイズするコントロールポリヌクレオチドを含むことからなる 。また、ポリメラーゼが3'ないし5'エクソヌクレアーゼを含まない場合、その 組み合わせ物中に3'ないし5'エクソヌクレアーゼが含まれる。オリゴヌクレオ チドプライマーは、標的配列に沿って伸長し、第2プライマーは、相補的ポリヌ クレオチドに沿って伸長する。更に、第1または第2プライマーは、1−10ヌ クレオチドがポリメラーゼの3'ないし5'エクソヌクレアーゼ活性によって分解 された後のみ、コントロールポリヌクレオチドに沿って伸長する。所望により、 修飾オリゴヌクレオチドプライマーが上記組み合わせ物中に含まれる。修飾プラ イマーは、この反応条件下、上記の1−10ヌクレオチドの分解を防ぐ化学修飾 がその3'−末端にある以外はオリゴヌクレオチドプライマーと実質的に同一で ある。 本発明のその他の実施態様は、少なくとも1種の二本鎖ポリヌクレオチド(“ ポリヌクレオチド”)の多数のコピーを形成する方法を指向し、この場合、ポリ ヌクレオチドは、一本鎖標的ポリヌクレオチド配列(“標的配列”)およびその 相補的配列を含む。この方法は、陽性内部コントロールを有する。この方法では 、 1またはそれ以上の二本鎖ポリヌクレオチドを含有する疑いのある試料を、試料 中に存在する疑いのある各標的配列の一部およびその相補的配列にハイブリダイ ズする能力のあるオリゴヌクレオチドプライマーを用いて、その標的配列および 相補的配列にプライマーをハイブリダイズさせ、そしてそれに沿ってプライマー を伸長させる条件下で、処理する。プライマーは、一方のプライマーから形成さ れた伸長生成物がその相補物から解離したときに、もう一方のプライマーの伸長 生成物形成のための鋳型として働くことができるようなものを選択する。また、 上記中に、3'ないし5'エクソヌクレアーゼおよびコントロールポリヌクレオチ ドを、少なくとも1つのプライマーがそのプライマーの3'−末端の1−10ヌ クレオチド以外でハイブリダイズする鋳型として、含む。各プライマーは、それ ぞれ、標的配列および相補的配列に沿って伸長し、プライマーの1つは、1−1 0ヌクレオチドが3'ないし5'エクソヌクレアーゼにより分解された後のみ、コ ントロールポリヌクレオチドに沿って伸長する。所望により、修飾オリゴヌクレ オチドプライマーが上記組み合わせ物中に含まれる。修飾プライマーは、その反 応条件下、上記の1−10ヌクレオチドの分解を防ぐ化学修飾がその3'−末端 にある以外はオリゴヌクレオチドプライマーと実質的に同一である。プライマー 伸長生成物をそのそれぞれの鋳型から解離させて、一本鎖分子を生成させ、これ を、生成した一本鎖を鋳型として用いてプライマー伸長生成物を形成するような 条件下、上記プライマーで処理し、その結果、標的配列および相補的配列が存在 するならば、それらを増幅させる。この条件は、コントロールポリヌクレオチド に沿ってプライマーを伸長させ、陽性内部コントロールを提供するものである。 本発明のその他の実施態様は、標的ポリヌクレオチドの標的配列の多数のコピ ーを作製する方法である。(1)標的配列であり、かつ各末端で少なくとも部分 的に相補的な第1および第2フランキング配列によりフランクされている配列を 有する一本鎖ポリヌクレオチド、(2)その少なくとも10塩基部分がその3' −末端で、一本鎖ポリヌクレオチドの3'−末端である第1および第2フランキ ング配列のメンバーにハイブリダイズする、オリゴヌクレオチドプライマー、( 3)ヌクレオシドトリホスフェート、(4)少なくとも1つのプライマーがその プ ライマーの3'−末端の1−10ヌクレオチド以外でハイブリダイズする鋳型と してのコントロールポリヌクレオチドおよび3'ないし5'エクソヌクレアーゼ、 を含む組み合わせ物を提供する。所望により、修飾オリゴヌクレオチドプライマ ーが上記組み合わせ物中に含まれる。修飾プライマーは、この反応条件下、上記 の1−10ヌクレオチドの分解を防ぐ化学修飾がその3'−末端にある以外はオ リゴヌクレオチドプライマーと実質的に同一である。 組み合わせ物を、全体的にまたは部分的に連続してかまたは同時にかのいずれ かで、(1)一本鎖ポリヌクレオチドを任意の相補的配列から解離し、(2)オ リゴヌクレオチドプライマーを一本鎖ポリヌクレオチドの3'−末端でフランキ ング配列と、およびコントロールポリヌクレオチドとハイブリダイズさせ、(3 )そのオリゴヌクレオチドプライマーを一本鎖ポリヌクレオチドに沿って伸長さ せて、第1伸長ポリヌクレオチドプライマーを提供し、コントロールポリヌクレ オチドにハイブリダイズしたオリゴヌクレオチドプライマーを分解し、分解した オリゴヌクレオチドをコントロールポリヌクレオチドに沿って伸長させ、(4) 第1伸長プライマーおよび一本鎖ポリヌクレオチドを解離し、そしてコントロー ルポリヌクレオチドおよび伸長分解プライマーを解離し、(5)第1伸長オリゴ ヌクレオチドプライマーをオリゴヌクレオチドプライマーとハイブリダイズさせ 、そのオリゴヌクレオチドプライマーをコントロールポリヌクレオチドとハイブ リダイズさせ、(6)オリゴヌクレオチドプライマーを第1伸長オリゴヌクレオ チドプライマーに沿って伸長させて、第2伸長ポリヌクレオチドプライマーを提 供し、コントロールポリヌクレオチドにハイブリダイズしたオリゴヌクレオチド プライマーを分解し、オリゴヌクレオチドプライマーをコントロールポリヌクレ オチドに沿って伸長させて伸長分解プライマーを提供し、(7)第2伸長ポリヌ クレオチドプライマーを第1伸長ポリヌクレオチドプライマーおよびコントロー ルポリヌクレオチドの伸長分解プライマーから解離し、(8)上記工程(5)〜( 7)を繰り返す、条件下でインキュベートする。反応混合物を伸長分解プライマ ーの存在について試験する。その存在は、標的ポリヌクレオチドの標的配列の多 数のコピーを作製するための試薬および条件が機能的であることを示す。 本発明のその他の実施態様は、パッケージした組み合わせ物中に、(a)オリ ゴヌクレオチドプライマー、(b)オリゴヌクレオチドプライマーがそのオリゴ ヌクレオチドプライマーの3'−末端の1−10ヌクレオチド以外でハイブリダ イズする配列を有するコントロールポリヌクレオチド、(c)3'ないし5'エク ソヌクレアーゼによる、1−10ヌクレオチドの分解を防ぐ化学修飾がその3' −末端にある以外はオリゴヌクレオチドプライマーと実質的に同一である修飾オ リゴヌクレオチドプライマー、(d)ヌクレオシドトリホスフェート、および( e)3'ないし5'エクソヌクレアーゼ、を含んでなるキットである。 図面の簡単な説明 図1および1Aは、本発明のある実施態様を示す略図である。 図2は、本発明の別の実施態様を示す略図である。 図3は、本発明の別の実施態様を示す略図である。 具体的な実施態様の説明 上記の通り、本発明は、その最も広義の態様において、増幅過程中にその相対 的な検出能に関して2またはそれ以上の別個のポリヌクレオチドの増幅の比較を 可能にするものである。両方のポリヌクレオチドを増幅させるため、単一のプラ イマー、但し、その結合部位に一方のポリヌクレオチドに対する3'−ミスマッ チを有するプライマーを用いることにより、一方のポリヌクレオチドの増幅をも う一方のポリヌクレオチドの増幅に相関して制御する。かかる調節の量およびタ イミングは、ミスマッチプライミング部位を持たないポリヌクレオチドの濃度を 直接反映する。従って、本発明は、試料中のポリヌクレオチドの定量測定または 内部定量コントロールとしての使用に有用である。例えば、標的ポリヌクレオチ ドの増幅の最中にコントロールポリヌクレオチドを本発明に従い増幅した場合、 コントロールリヌクレオチドの増幅量は、標的ポリヌクレオチドの量を直接反映 する。コントロールポリヌクレオチドは、試料または反応媒質に添加されるもの 、または既に標的ポリヌクレオチド配列含有試料中に存在するものであることが できる。 本発明は、標的ポリヌクレオチドのプライミング部位の1つおよびコントロー ルポリヌクレオチドのプライミング部位の少なくとも1つにハイブリダイズする 能力のあるプライマーを用いることによりコントロールされる陽性コントロール ポリヌクレオチド鋳型の増幅を可能にするものである。しかしながら、本発明は 、標的ポリヌクレオチドの増幅に対してコントロールポリヌクレオチドの増幅を 制御できる。これは、プライミング部位を持つコントロールポリヌクレオチドを 、プライマーが塩基対形成においてコントロールポリヌクレオチドに対する3' ミスマッチを有するが、標的ポリヌクレオチドに対するミスマッチは持たないよ うに設計することにより達成される。3'ないし5'エクソヌクレアーゼ活性を有 するポリメラーゼの存在下では、このミスマッチ配列が分解し、その際にコント ロールポリヌクレオチドの増幅が起こる。この方法では、コントロールポリヌク レオチドの増幅は、標的ポリヌクレオチドの増幅と直接的に競合しないようにコ ントロールされる。このコントロールポリヌクレオチドは標的ポリヌクレオチド の増幅を抑制する程多くの増幅試薬は消費できないようになっている。好ましく は、コントロールポリヌクレオチドの増幅の抑制は、上記オリゴヌクレオチドプ ライマーに加えて、上記オリゴヌクレオチドプライマーと実質的に同一であるが 、コントロールポリヌクレオチドにハイブリダイズするときに修飾プライマーの 分解を妨げる化学修飾がその一部にある、修飾オリゴヌクレオチドプライマーを 用いることにより制御される。従って、コントロールポリヌクレオチドの増幅を 支持するプライマーの量は調節できる。オリゴヌクレオチドプライマーと修飾オ リゴヌクレオチドプライマーの比率を制御することにより、制御オリゴヌクレオ チドに沿ったオリゴヌクレオチドプライマーの鎖伸長レベルを制御できる。本発 明の方法は、コントロールが標的増幅と競合する能力を低減することにより、相 同コントロールおよび異種コントロール両方の性能を改善するものである。 一態様において、本発明は、標的ポリヌクレオチドの標的配列の多数のコピー を形成する方法に関する。この方法は、オリゴヌクレオチドプライマーの伸長生 成物を少なくとも標的配列に沿って、または伸長オリゴヌクレオチドプライマー に沿って形成する工程を含む。この伸長生成物は、標的配列のコピーである。本 発明の改良法は、オリゴヌクレオチドプライマーがそのプライマーの3'−末端 以外でハイブリダイズするコントロールポリヌクレオチドの存在下で、伸長生成 物を形成することを含む。この方法条件下で、オリゴヌクレオチドプライマーは 、標的配列に沿ったかかるプライマーの伸長を制御された方法でコントロールポ リヌクレオチドに沿って伸長する。このようにして、コントロールポリヌクレオ チドに対応する伸長プライマーの存在が増幅試薬類および増幅条件が機能的であ ることを示すことから、陽性コントロールが提供される。 更に、本発明の具体的な実施態様の説明に進む前に、多数の用語を定義したい 。 ポリヌクレオチド分析物−−ポリマーヌクレオチドである測定すべき化合物ま たは組成物であって、無傷の自然状態では、約20ないし500,000または それ以上のヌクレオチドを有することができ、単離した状態では、約30ないし 50,000またはそれ以上のヌクレオチドを有することができ、通常は、約1 00ないし20,000ヌクレオチド、より頻繁に見られるのは500ないし1 0,000ヌクレオチドである。従って、自然状態から分析物を単離することに より、しばしば断片化が起こるのは明らかである。ポリヌクレオチド分析物は、 任意の供給源由来の核酸を精製化または未精製化形態で含んでおり、t-RNA、 m-RNA、r-RNA、ミトコンドリアDNAおよびRNA、葉緑体DNAおよび RNA、DNA−RNAハイブリッド類、またはそれらの混合物、遺伝子、染色 体、プラスミド、微生物、例えば、細菌類、酵母類、ウイルス類、ウイロイド類 、糸状菌、真菌、植物、動物、ヒト、などの生物学的材料のゲノム、およびそれ らの断片などを含むDNA(dsDNAおよびssDNA)およびRNAを包含して いる。ポリヌクレオチド分析物は、生物学的試料などの複合混合物の少量画分の みであってもよい。分析物は、当業者にはよく知られた方法により様々な生物学 的材料から得ることが出来る。かかる生物学的材料のいくつかの例は、限定では なく説明を目的として、下記表に開示している。 を包含する。 病的細胞貧血のヘモグロビン遺伝子、嚢胞性繊維症遺伝子、腫瘍形成遺伝子、 cDNAなどのような遺伝子類も含まれる。 適当なポリヌクレオチド分析物は、分析物を切断処理して、例えば、制限エン ドヌクレアーゼまたは他の部位特異的化学切断法により、剪断または処理するこ とにより、標的ポリヌクレオチド配列を含有するフラグメントを得ることが出来 る。しかしながら、本発明の利点は、ポリヌクレオチド分析物を更に切断するこ となく、その単離した状態で使用出来るという点である。 本発明の目的のために、ポリヌクレオチド分析物またはポリヌクレオチド分析 物から得られた切断フラグメントは、通常少なくとも部分的に変性しているか、 または一本鎖になっており、もしくは、変性または一本鎖になるように処理され る。かかる処理は、当業者にはよく知られており、例えば、加熱またはアルカリ 処理である。例えば、二本鎖DNAは、90−100℃で約1ないし10分間加 熱して変性物質を生成することができる。 核酸またはポリヌクレオチドの増幅−−普通は、媒質中に存在する核酸または ポリヌクレオチド分析物である、核酸またはポリヌクレオチド分子の1またはそ れ以上のコピーの形成を起こす(指数増幅)か、または核酸またはポリヌクレオ チド分子の相補物の1またはそれ以上のコピーの形成を起こす(線形増幅)方法 。 核酸またはポリヌクレオチドの指数増幅−−核酸またはポリヌクレオチド分子 、普通は、媒質中に存在する核酸またはポリヌクレオチド分析物の1またはそれ 以上のコピーの形成を起こす方法。このようなDNAの特定の二本鎖配列を酵素 的増幅する方法の1つは、上記の通り、ポリメラーゼ連鎖反応(PCR)として 知られている。このインビトロ増幅法は、変性、オリゴヌクレオチドプライマー アニーリング、および好熱性鋳型依存性ポリヌクレオチドポリメラーゼによるプ ライマー伸長、即ち、かかるプライマーの“鎖伸長”、というサイクルの繰り返 しに基づき、プライマーによりフランクされたポリヌクレオチド分析物の所望の 配列のコピー、即ち“上記プライマーの鎖伸長生成物”、の指数増加をもたらす 。DNAの相対する各鎖にアニールする2つの異なるPCRプライマーを、一方 のプライマーのポリメラーゼ触媒伸長生成物がもう一方に対する鋳型鎖として働 き得るように配置し、その長さがオリゴヌクレオチドプライマーの5'末端間の 距離で定義される別個の二本鎖フラグメントの蓄積をもたらす。 その他の増幅法は上述したものであり、シングルポリヌクレオチドプライマー を用いる一本鎖ポリヌクレオチドの増幅に関連する。増幅対象の一本鎖ポリヌク レオチドは、互いに相補的であり、かつそのため、互いにハイブリダイズしてス テム−ループ構造を形成する能力のある隣接していない2つの配列を含有する。 この一本鎖ポリヌクレオチドは、既にポリヌクレオチド分析物の部分であっても よく、また、ポリヌクレオチドが存在する成果として作製されることもある。 核酸増幅の成果を達成するその他の方法は、リガーゼ連鎖反応(LCR)とし て知られている。この方法は、リガーゼ酵素を用いて、予め形成しておいた核酸 プローブを結合させるものである。プローブは、核酸分析物が存在するならばそ れとハイブリダイズするが、リガーゼは、プローブを互いに連結させるために使 用され、そうして、次のサイクルにおいて特定の核酸配列を反復する働きができ る2つの鋳型を生じる。 核酸増幅を達成するその他の方法は、核酸配列をベースとした増幅(the nucle ic acid sequence based amplification)(NASBA)である。この方法は、 インビトロで、特定の核酸の連続的で、均質な、かつ等温の増幅を誘導するプロ モーター指向性酵素的方法である。 その他に核酸の特定の基を増幅する方法は、Q−ベータ−レプリカーゼ法であ り、これは、Q−ベータ−レプリカーゼがそのRNA基質を指数的に増幅する能 力に依存するものである。 核酸またはポリヌクレオチドの線形増幅−−核酸またはポリヌクレオチド分子 、普通は、媒質中に存在する核酸またはポリヌクレオチド分析物、の相補物のみ の1またはそれ以上のコピーの形成を起こす方法。従って、線形増幅と指数増幅 との相異点の1つは、後者がポリヌクレオチドのコピーを生成するのに対し、前 者がポリヌクレオチドの相補鎖のみを生成するということである。線形増幅では 、形成された相補物の数は、コピー数が指数関数である指数増幅とは反対に、一 定の倍数である。 標的ポリヌクレオチドの標的配列−−同定すべきヌクレオチドの配列であって 、普通は、ポリヌクレオチド分析物の部分(標的ポリヌクレオチド)または全体 中に存在しており、その同一性は、標的ポリヌクレオチド内に含有される標的配 列の増幅を実施するのに必要な様々なプライマーおよび他の分子を調製できるの に十分な程度知られている。一般に、プライマー伸長増幅において、プライマー は、標的ポリヌクレオチド内の少なくとも標的配列にハイブリダイズし、かつそ れに沿って伸長(鎖伸長)するので、標的配列は鋳型として働く。伸長したプラ イマーは、“鎖伸長生成物”である。標的配列は、普通、2つの指定配列の間に あるが、必ずしもそうである必要はない。一般に、プライマーおよび他のプロー ブポリデオキシヌクレオチドは、その指定配列と、またはかかる標的ポリヌクレ オチドの少なくとも一部、普通、その3'−末端の少なくとも10ヌクレオチド セグメント、好ましくは少なくとも15ヌクレオチドセグメント、頻繁にあるも のでは20ないし50ヌクレオチドセグメント、とハイブリダイズする。この標 的配 列は、普通、約30ないし5,000、またはそれ以上のヌクレオチド、好まし くは50ないし1,000ヌクレオチドを含有する。標的ポリヌクレオチドは、 多くの場合、ポリヌクレオチド分析物の一部である。標的ポリヌクレオチドは、 一般に、より大きい分子の断片であるか、または、実質的にその分子全体であっ てもよい。試料中の標的ポリヌクレオチド配列の存在が、試料中のポリヌクレオ チド分析物の存在を示す特異的インジケーターであることを保証するために、標 的ポリヌクレオチド配列におけるヌクレオチドの最小数を選択する。非常に大ま かには、標的ポリヌクレオチド配列の長さは、通常約1.6logLヌクレオチドよ り大きく、ここで、Lは、試料の生物源のゲノムにおける塩基対の数である。標 的ポリヌクレオチド配列におけるヌクレオチドの最大数は、通常、ポリヌクレオ チド分析物の長さ、およびそれが剪断または単離中の他の過程およびアッセイ用 試料を調製するのに必要となる何等かの操作により破壊される傾向、および配列 の検出および/または増幅効率により支配される。 オリゴヌクレオチド−−ポリヌクレオチド、普通は、一本鎖ポリヌクレオチド であり、普通は、合成ポリヌクレオチドであるが、天然発生ポリヌクレオチドで あってもよい。オリゴヌクレオチドは、普通、長さにして、少なくとも5ヌクレ オチド、好ましくは10ないし50ヌクレオチド、より好ましくは15ないし2 5ヌクレオチドの配列からなる。 オリゴヌクレオチドの調製については、様々な十分に知られた技術を採用でき る。かかる配列は、生合成により、または化学合成により得ることができる。短 い配列(約100ヌクレオチドまで)の場合、生合成よりも化学合成がより経済 的であることが多い。より長い配列では、分子生物学で使用される標準複製法を 使用でき、例えば、J.Messing,Methods Enzymol(1983)101:20-78に記載のよう に、一本鎖DNA用のM13の使用などである。 標準クローニング技術のほかに、ポリメラーゼ触媒反応などのインビトロ酵素 的方法も使用できる。RNAを調製する場合、T7 RNAポリヌクレオチドお よび適切なDNA鋳型を使用できる。DNAの場合、ポリメラーゼ連鎖反応(P CR)およびシングルプライマー増幅が便利である。 その他の化学的なポリヌクレオチドまたはオリゴヌクレオチド合成法には、ホ スホトリエステルおよびホスホジエステル法(Narang等、Meth.Enzymol(1979)68 :90)および支持体上での合成(Beaucage等、Tetrahedron(1981)Letters 22:1859 -1862)、並びに、ホスホルアミデート技術、Caruthers,M.H.,等、“Methods in Enzymology”,Vol.154,pp.287-314(1988)、および“Synthesis and Applicatio ns of DNA and RNA”,S.A.Narang編,Academic Press,New York,1987および本明 細書に含まれる文献に記載の他の方法がある。 相補的第1および第2フランキング配列を有する一本鎖ポリヌクレオチド−− 通常、互いに隣接しておらず、かつ相補的である少なくとも2つのセグメントま たはフランキング配列から成るデオキシヌクレオチド配列。これらの配列は、お 互いにハイブリダイズして、ステム−ループ構造を形成できる。その相補的配列 に結合したとき、リプレッサー、制限酵素および同等物などのレセプターに対す る特異的結合部位である1またはそれ以上の配列を含有していることもある。第 1および第2のセグメントまたはフランキング配列は、それぞれ一本鎖ポリヌク レオチド配列の3'−末端および5'−末端にあり、それぞれ、少なくとも10、 好ましくは少なくとも15のデオキシヌクレオチドおよび/またはそれらの誘導 体を含んでなる。各フランキング配列間にある一本鎖ポリヌクレオチド配列の部 分は、標的配列を含んでなる。一本鎖ポリヌクレオチド配列が相補鎖とハイブリ ダイズするとき、各末端は逆方向リピート対のメンバーを有すると思われる。 オリゴヌクレオチドの末端(End)−−本明細書に使用した場合、この文言は 、オリゴヌクレオチドの3'−または5'−向かい側のいずれかにあるヌクレオチ ド類を表し、そのターミナルヌクレオチドを含む。 オリゴヌクレオチドの終端(Terminus)−−本明細書に使用した場合、この文 言は、オリゴヌクレオチドの3'−または5'−末端のいずれかにあるターミナル ヌクレオチドを表す。 オリゴヌクレオチドプライマー−−普通、例えば、核酸の増幅などにおけるポ リヌクレオチド鋳型での鎖伸長に使用されるオリゴヌクレオチド。オリゴヌクレ オチドプライマーは、普通、その3'−末端に標的ポリヌクレオチドの指定配列 とハイブリダイズする能力のある配列を含有する、一本鎖の合成デオキシヌクレ オチドである。オリゴヌクレオチドプライマー、特にその3'−末端は、通常、 指定配列に対し、少なくとも50%、好ましくは70%、より好ましくは90% 、最も好ましくは100%の相補性を有する。標的ポリヌクレオチドにハイブリ ダイズする、オリゴヌクレオチドプライマーのハイブリダイズ可能配列のヌクレ オチド数は、オリゴヌクレオチドプライマーをハイブリダイズするのに使用した 条件が、過剰の非制御非特異的ハイブリダイゼーションを防ぐ程度にストリンジ ェンシーであるべきである。オリゴヌクレオチドプライマーのヌクレオチド数は 、普通、少なくとも標的ポリヌクレオチドの指定配列と同程度、即ち、少なくと も10ヌクレオチド、好ましくは少なくとも15ヌクレオチド、一般には、約1 0から200、好ましくは20ないし50ヌクレオチドである。 コントロールポリヌクレオチド−−オリゴヌクレオチドプライマーの一部とハ イブリダイズ可能な配列を有するポリヌクレオチド。従って、かかる配列は、鎖 伸長の開始に関わる領域、即ち、プライミング部位にある。好ましくは、コント ロールポリヌクレオチドは相同である。コントロールポリヌクレオチドは、普通 、長さにして少なくとも50ヌクレオチド、好ましくは100ないし5,000 ヌクレオチド、より好ましくは100ないし500ヌクレオチドの配列からなる 。結合がコントロールポリヌクレオチドプライミング部位内で起こるとき、結合 の効果は、標的ポリヌクレオチドに沿う鎖伸長に使用されるオリゴヌクレオチド プライマーが、コントロールポリヌクレオチドに対する3'ミスマッチ部分また は非ハイブリダイズ部分を有する程度のものである。言い換えれば、オリゴヌク レオチドプライマーの3'−末端の一部は、コントロールポリヌクレオチドにハ イブリダイズしない。そのため、かかるオリゴヌクレオチドプライマーの鎖伸長 によるコントロールポリヌクレオチドの増幅は、かかるオリゴヌクレオチドプラ イマーの鎖伸長による標的ポリヌクレオチドの増幅に比べて低い。普通、ミスマ ッチは、その3'−末端に、コントロールポリヌクレオチドとハイブリダイズし ない部分を有するオリゴヌクレオチドプライマーから得られる。この部分は、コ ントロールポリヌクレオチドのプライミング部位に関して約1ないし10ヌクレ オ チド、好ましくは3ないし5ヌクレオチドである。従って、オリゴヌクレオチド プライマーの非ハイブリダイズ部分は自身が伸長するための鋳型を持たないこと から、オリゴヌクレオチドプライマーの3'−末端の非ハイブリダイズ部分のコ ントロールポリヌクレオチドに沿った伸長は起こらない。 修飾オリゴヌクレオチドプライマー−その3'−末端に化学修飾がある以外は 、標的ポリヌクレオチドの増幅に使用されるオリゴヌクレオチドプライマーと実 質的に同一のオリゴヌクレオチドプライマー。この修飾は、3'ないし5'エクソ ヌクレアーゼ活性を有するポリメラーゼにより、コントロールポリヌクレオチド にハイブリダイズしないオリゴヌクレオチドプライマーの1ないし10ヌクレオ チドが分解されるのを妨げるものである。従って、化学修飾は、かかる1ないし 10ヌクレオチド内、普通はその位置またはその近く、または修飾オリゴヌクレ オチドの3'−終端(terminus)の1ないし5ヌクレオチド内にある。 本発明の目的を達成するあらゆる化学修飾が利用できる。かかる修飾には、例 示であって限定ではないが、ホスホロチオエート類、ホスホン酸エチル類、カル ボキサミド類、スルホンアミド類、カルバメート類、アセタール類、およびケタ ール類がある。更に、その他の修飾も本発明の開示から当業者に示唆されるであ ろう。 本発明の目的に特に好ましいのは、ホスホロチオエート修飾である。本発明に よれば、修飾オリゴヌクレオチドプライマーは、その3'−末端に、普通は、3' −終端の1ないし5ヌクレオチド内に、好ましくは3'−終端に、少なくとも1 つのホスフェートの酸素が硫黄に置換されているヌクレオチドモノホスフェート を持つ。好ましくは、1ないし5のホスフェートの酸素を、より好ましくは1な いし2のホスフェートの酸素を硫黄で置換する。硫黄は、しばしば単独でリン( ホスホロチオエート基)に結合するが、リボースの炭素原子または標識の炭素原 子とも結合できる。従って、かかる修飾オリゴヌクレオチドプライマーは、少な くとも1つの、好ましくは1ないし5の、より好ましくは1ないし2のリン−硫 黄結合を含有する。これらの硫黄含有修飾オリゴヌクレオチドプライマーは、下 記の既知技術に従って調製できる。 少なくとも1つのモノホスフェートを含有する修飾オリゴヌクレオチドプライ マーは、オリゴヌクレオチドが、例えば、Chemical and Engineering News(1994 )17(No.16):21-22に記載のものである、ヌクレオチドモノホスフェートを含んで なる。 ヌクレオシドトリホスフェート−−5'−トリホスフェート置換基を有するヌ クレオシド。ヌクレオシドは、普通、デオキシリボースまたはリボースである五 炭糖の1'−炭素に共有結合しているプリンまたはピリミジン類のいずれかの窒 素塩基の五炭糖誘導体である。プリン塩基は、アデニン(A)、グアニン(G) 、イノシンおよびそれらの誘導体および類似体を含む。ピリミジン塩基は、シト シン(C)、チミン(T)、ウラシル(U)およびそれらの誘導体および類似体 を含む。ヌクレオシドトリホスフェートには、dATP、dCTP、dGTP、 およびdTTPなどのデオキシリボヌクレオシドトリホスフェートおよびrAT P、rCTP、rGTPおよびrUTPなどのリボヌクレオシドトリホスフェート がある。“ヌクレオシドトリホスフェート類”の用語は、その誘導体および類似 体も含み、非誘導化ヌクレオシドトリホスフェートと同様の方法で、認識および 重合化されるような誘導体によって例示される。かかる誘導体または類似体の例 は、例示であって限定ではないが、リポーター基で修飾、ビオチニル化、アミン 修飾、放射性標識、アルキル化等されるものであって、ホスホロチオエート、ホ スファイト、環状原子修飾誘導体類、および同等物などを含む。リポーター基は 、フルオレセインなどの蛍光基、ルミノールなどの化学発光基、遅延蛍光などに より検出可能なN−(ヒドロキシエチル)エチレンジアミントリ酢酸などのテル ビウムキレーターなどであり得る。“ヌクレオシドトリホスフェート”の用語は 、その誘導体および類似体を含む。 ヌクレオチド−−核酸ポリマー、即ちDNAおよびRNAのモノマー単位であ る塩基−糖−ホスフェート化合物。 修飾ヌクレオチド−−増幅反応中に修飾ヌクレオシドトリホスフェートを組み 込むことにより得られ、そうして核酸ポリマーの部分となる核酸ポリマーの単位 である。 ヌクレオシド−−塩基−糖化合物またはホスフェート部分のないヌクレオチド 。 ヌクレオチドポリメラーゼ−−DNA鋳型と相補的に伸長が起こるようにDN A鋳型に沿ったオリゴヌクレオチドの伸長を形成する触媒、通常は酵素。ヌクレ オチドポリメラーゼは、鋳型依存性ポリヌクレオチドポリメラーゼであって、オ リゴヌクレオチドの3'末端の伸長のための基礎単位(building blocks)として ヌクレオシドトリホスフェートを利用し、オリゴヌクレオチドがハイブリダイズ して二本鎖を形成するポリヌクレオチドの一本鎖部分と相補的な配列を提供する ものである。通常は、触媒は、DNAポリメラーゼなどの酵素である。 3'ないし5'エクソヌクレアーゼ−−本発明の目的には、ここに意図した反応 条件下で、オリゴヌクレオチドプライマーの一部がコントロールポリヌクレオチ ドにハイブリダイズするとき、オリゴヌクレオチドプライマー3'−末端からの ハイブリダイスしなかったヌクレオチドの選択的切断を触媒する配列依存性酵素 として働き、またヌクレオチドポリメラーゼとしても働くことができる、3'な いし5'エクソヌクレアーゼであるか、または3'ないし5'エクソヌクレアーゼ 活性を有する酵素とみなす(後者の場合は、3'ないし5'エクソヌクレアーゼを 含むポリメラーゼとみなすことができる)。この酵素は、オリゴヌクレオチドプ ライマーのハイブリダイズしなかったヌクレオチドを、コントロールポリヌクレ オチドにハイブリダイズしたオリゴヌクレオチドプライマーの部分の3'−終端 でハイブリダイズしなかったヌクレオチドがない位置まで選択的に切断するが、 ハイブリダイズした部分またはコントロールポリヌクレオチドは切断しない。本 発明に有用な3'ないし5'−ヌクレアーゼは、本発明方法で使用した条件で安定 でなければならず、普通、熱安定性のヌクレオチドポリメラーゼである。このよ うな酵素は、ポリメラーゼを化学的、または遺伝子操作によって修飾し、熱安定 性および/または活性増大を与えることができる、細胞、細菌、例えば、E.コ リ、植物、動物、ウイルス、好熱性細菌、などの生物源に由来する酵素である。 このような酵素には、カリフォルニア州、ラホーヤのStratagene社のPfu DN Aポリメラーゼ(天然物または組換え物)、カリフォルニア州、フォスター・シ ティーのPerkin Elmer社のUltma DNAポリメラーゼ、ウィスコンシン州、マジ ソンのEpicentre Technologies社のr Bst DNAポリメラーゼ、マサチューセ ッツ州、ビバリーのNew England Biolabs社のVENT DNAポリメラーゼおよ びウィスコンシン州、マジソンのPromega Corp.社のTi DNAポリメラーゼ、 およびインディアナポリス州、インディアナポリスのBoehringer Mannheim社の Pwo DNAポリメラーゼ等がある。 全体的にまたは部分的に連続して−−本発明で利用した試料および様々な薬剤 を一緒(同時に)でなく合わせる場合、1つまたはそれ以上を残りの薬剤の1つ またはそれ以上と合わせて、サブコンビネーションを形成することが出来る。そ の後、各サブコンビネーションを本方法の1またはそれ以上の工程にかけること が出来る。そうして、それぞれのサブコンビネーションを、所望の結果の1また はそれ以上を達成する条件下でインキュベート出来る。 ハイブリダイゼーション(ハイブリダイズする)および結合−−本明細書には 、ヌクレオチド配列の前後にこの用語が互換的に用いられている。2つのヌクレ オチド配列が互いにハイブリダイズする能力は、2つのヌクレオチド配列の相補 性の程度に基づいており、次ぎにこれは適合した相補的ヌクレオチド対の断片に 基づいている。与えられた配列中に別の配列と相補的なヌクレオチドがより多く なると、ハイブリダイゼーションに対する条件は、ますますストリンジェントで あることが出来、2つの配列の結合は、ますます特異的になるであろう。高いス トリンジェンシーは、温度を上げること、共溶媒の比率を増やすこと、塩濃度を 下げることなどにより、達成される。 相同または実質的に同一−−一般に、同一であるか、または同じポリヌクレオ チド配列とそれぞれハイブリダイズできる2つのポリヌクレオチド配列は、相同 である。2つの配列は、各配列が、チミン(T)とウラシル(U)を同じとみな した上で同じまたは類似の塩基配列を少なくとも90%、好ましくは100%有 する場合、相同または実質的に同一である。従って、リボヌクレオチドA、U、 CおよびGは、それぞれ、デオキシヌクレオチドdA、dT、dCおよびdGに 対する類似体と見なす。相同配列は、両方DNAであるか、または一方がDNA で他がRNAであることが出来る。 相補的−−2つの配列は、1つの配列が、逆平行センスで、即ち、各配列の3 '末端がもう一方の配列の5'末端に結合し、そして、一方の配列のA、T(U)、 GおよびCそれぞれがもう一方の配列のT(U)、A、CおよびGとそれぞれ整列 する状態で、もう一方の配列と結合出来るとき、相補である。 隣接しない−−ポリヌクレオチドの2つのセグメント間の、または2つの配列 、S1およびS2間の標的ポリヌクレオチド配列に存在する少なくとも1、通常 は少なくとも10のヌクレオチドがある、隣接しない配列。 隣接する−−ポリヌクレオチドの2つのセグメント間、または2つの配列間に ヌクレオチドがない場合、隣接すると見なされる配列。 配列のコピー−−一本鎖ポリヌクレオチドの配列に相捕的である配列とは区別 されるような、一本鎖ポリヌクレオチド配列の直接同一のコピーである配列。 プライマー伸長手段−−少なくともプライマーの3'末端または両方にハイブ リダイズできる、ヌクレオチドポリメラーゼまたはその3'末端以外に配列を有 する一本鎖鋳型ポリヌクレオチド。プライマー伸長手段は、また、酵素または他 の物質に対する基質として作用できるヌクレオシドトリホスフェート類またはそ の類似体および、酵素活性に必要な条件、例えば、二価金属イオン(通常はマグ ネシウム)、pH、イオン強度、有機溶媒(ホルムアミド)等、を含んでいる。 特異的結合対のメンバー(“sbpメンバー”)−−2種の異なる分子のうち、表 面上または空洞内に、一方の分子の特定の空間的かつ極性組織に特異的に結合す る領域を有し、それ故に、それと相補であると定義されるもう一方の分子。特異 的結合対のメンバーは、リガンドとレセプター(抗リガンド)のように表される 。これらは、抗原−抗体などの免疫学的対のメンバーであり得るか、または、オ ペレーター−レセプター、ヌクレアーゼ−ヌクレオチド、ビオチン−アビジン、 ホルモン−ホルモンレセプター、核酸二本鎖分子、IgG−プロテインA、DN A−DNA、DNA−RNAなどであり得る。 リガンド−−それに対するレセプターが天然に存在するか、または製造できる 、いくつかの化合物。 レセプター(“抗リガンド”)−−分子の特定の空間的かつ極性の構造、例え ば、 エピトープまたは決定基部位、を認識できるいくつかの化合物または組成物。例 となるレセプターは、天然に生成するレセプター、例えば、チロキシン結合グロ ブリン、抗体類、酵素類、Fabフラグメント類、レクチン類、核酸類、リプレッ サー類、防御酵素類(protection enzyme)、プロテインA、補体成分C1q、D NA結合タンパク質またはリガンド類等を含む。 小さい有機分子−−分子量1500以下、このましくは100ないし1000 、より好ましくは300ないし600の化合物であって、例えば、ビオチン、フ ルオレセイン、ロダミンおよび他の染料、テトラサイクリンおよび他のタンパク 質結合分子、およびハプテン等である。小さい有機分子は、標識または支持体へ のヌクレオチド配列の結合法を提供できる。 支持体または表面−−多孔性または非多孔性の水不溶性物質。支持体は、親水 性であるか、または親水性となし得るものであり、無機粉末、例えば、シリカ、 硫酸マグネシウムおよびアルミナ;天然ポリマー物質、特にセルロース性物質お よびセルロースから誘導される物質、例えば、濾紙、クロマトグラフィー用紙等 の繊維含有紙など;合成の、または修飾した天然生成ポリマー、例えば、ニトロ セルロース、セルロースアセテート、ポリ(塩化ビニル)、ポリアクリルアミド 、架橋化デキストラン、アガロース、ポリアクリレートポリエチレン、ポリプロ ピレン、ポリ(4−メチルブテン)、ポリスチレン、ポリメタクリレート、ポリ (エチレンテレフタレート)、ナイロン、ポリ(ビニルブチレート)等;それ単 独で、または他の物質と共に使用されるいずれかのもの;バイオガラス、セラミ ック類、金属類および同種物のように利用可能なガラスを含む。天然または合成 のアセンブリー、例えば、リポソーム類、リン脂質小胞類、および細胞類もまた 採用出来る。 支持体または表面へのsbpメンバーの結合は、通常、文献により入手出来るよ く知られた技術により達成され得る。例えば、“インモビライズド・エンザイム ス”、イチロー・チバタ、ハルステッド・プレス、ニューヨーク(1978年) およびクアトレカサス、ジャーナル・オブ・バイオロジカル・ケミストリー、2 45巻、3059頁(1970年)参照。その表面は、多くの形、例えば、スト リップ状、ロッド状、ビーズおよび同種物を含む粒子状のうちのいずれか1つを 有している。 標識またはリポーター基もしくはリポーター分子−−シグナル生成系の1メン バー。通常は、標識またはリポーター基もしくは分子は、ポリヌクレオチドプロ ーブまたはポリヌクレオチドプライマーにコンジュゲートまたは結合させるもの であって、直接的または特異的結合反応によって検出される能力があり、検出可 能なシグナルを生成できる。標識類は、増幅またはライゲーション用の鋳型を提 供し、リプレッサータンパク質;ハプテン類;抗体類;アビジンなどのレセプタ ー類;ビオチンおよび同種物などのリガンドとして作用できる。好ましくは、オ リゴヌクレオチドプライマーは標識を持つか、または標識を持つ能力がある。一 般に、検出可能なあるゆる標識が使用できる。標識類は、同位元素性または非同 位元素性、通常は、非同位元素性であって、触媒、例えば、酵素、触媒をコード するポリヌクレオチド、プロモーター、染料、蛍光分子、化学発光体、補酵素、 酵素基質、放射活性基、小さい有機分子、増幅可能なポリヌクレオチド配列、粒 子、例えば、ラテックスまたは炭素粒子、金属ゾル、クリスタライト、リポソー ム、細胞等であり得る。さらに染料、触媒または他の検出可能基および同種物で 標識されてもまたはされなくても良い。標識は、シグナル生成系の1メンバーで あって、単独か、またはシグナル生成系の他のメンバーと一緒にかのいずれかで 、検出可能なシグナルを産生できる。該標識は、ヌクレオチド配列に直接結合で きるか、またはヌクレオチド配列に結合するsbpメンバーに相補なsbpメンバーに 結合させることにより、それらに結合できるようになる。 シグナル生成系−−シグナル生成系は、1またはそれ以上の成分を有すること ができ、少なくとも1つの成分は、標識またはリポーター基である。シグナル生 成系は、試料中の標的ポリヌクレオチド配列またはポリヌクレオチド分析物の存 在または量に関連するシグナルを産生するものである。シグナル生成系は、測定 可能なシグナルを生成するに必要な全ての試薬を包含している。標識をヌクレオ チド配列にコンジュゲートさせない場合、その標識は、通常、ヌクレオチド配列 に、またはその部分に結合するsbpメンバーの1つに相補なsbpメンバーに結合さ せる。シグナル生成系の他の成分は、展開溶液中に含まれていることもあり、か つ、基質類、エンハンサー類、活性化剤類、化学発光化合物類、コファクター類 、阻害剤類、スカベンジャー類、金属イオン類、シグナル産生物質の結合に必要 となる特異的結合物質、および同様物を含むことが出来る。シグナル生成系の他 の成分は、補酵素類、酵素生成物と反応する基質類、他の酵素類および触媒類お よび同種物であり得る。シグナル生成系は、外部操作、電磁放射の使用、望まし くは、目視検査により検出可能なシグナルを提供するものである。シグナル生成 系は、1990年7月19日に出願された米国特許出願第07/555,323号に記載されてお り、これと同等の開示内容が本明細書に参照として組み込まれている。 補助物質−−様々な補助物質を本発明の方法および本発明に従い実施するアッ セイでは頻繁に採用するであろう。例えば、緩衝液は、通常、アッセイ媒質の安 定剤およびアッセイ成分と同じく、アッセイ媒質中に存在するであろう。しばし ば、これらの添加物に加えて、アルブミンなどのタンパク質類、ホルムアミドな どの有機溶媒類、第4級アンモニウム塩類、硫酸デキストランなどのポリカチオ ン類、界面活性剤類、特に、非イオン性界面活性剤類、結合エンハンサー類、例 えば、ポリアルキレングリコール類または同種物が含まれ得る。 上記のように、本発明の一つの態様は、陽性コントロールを提供することによ り核酸増幅反応における改良法を提供する。従って、本発明はこのような増幅反 応における偽陰性を回避する。この方法は、一般に、少なくとも標的配列に沿っ たまたは伸長オリゴヌクレオチドプライマーに沿ったオリゴヌクレオチドプライ マーの伸長生産物を形成する工程を含む。伸長生産物は標的配列のコピーである 。本発明の改良は、オリゴヌクレオチドプライマーが、プライマーの3'−末端 の1−10ヌクレオチド以外でハイブリダイズする、コントロールポリヌクレオ チド存在下での伸長生産物の形成を含む。この方法条件下で、オリゴヌクレオチ ドプライマーは、標的配列に沿ったオリゴヌクレオチドプライマーの伸長に関連 した制御法で、コントロールポリヌクレオチドに沿って伸長する。所望により、 修飾オリゴヌクレオチドプライマーを上記組み合わせに含んでもよい。修飾プラ イマーは、この反応条件下で、上記の1−10ヌクレオチドの分解を防ぐ化学的 修飾が3'−末端にある以外、オリゴヌクレオチドプライマーと実質的に同一で ある。この試みにおいて、コントロールオリゴヌクレオチドに沿ったオリゴヌク レオチドプライマーの鎖伸長のレベルは、オリゴヌクレオチドプライマーおよび 修飾オリゴヌクレオチドプライマーの比率を制御することにより制御できる。 本発明の一つの態様を図1に記載する。この態様では、PCRによる増幅を選 択したが、例示であって限定ではない。二本鎖であり、PCRにより増幅すべき 標的配列を有する核酸または標的ポリヌクレオチド(TPN)を含む疑いのある試 料を、二つの異なるポリヌクレオチドプライマー(PP1およびPP2)、3'な いし5'エキソヌクレアーゼ活性を有するヌクレオチドポリメラーゼ(NP−EX O)、ヌクレオチドトリホスフェート(NTP)およびコントロールポリヌクレオ チド(CPN)と合わせる。CPNは、その3'−末端に、PP1の3'−末端の1 −10ヌクレオチドの部分(P1)以外、PP1とハイブリダイズできるCPNS 配列を有する。 条件は、反応混合物の温度サイクリングを達成するように選択する。このよう な条件下で、PP1は、TPNが存在する時TPNのプライマー結合部位PBS 1と、およびCPNのCPNSとハイブリダイズし、プライマーPP2は、TP Nのプライマー結合部位PBS2とハイブリダイズする。それぞれのTPNの鎖 に沿ったPP1およびPP2の伸長は、それぞれ、伸長PP1(EPP1)および 伸長PP2(EPP2)を作り、それらはTPNのそれぞれの鎖の各相補物である 。分子EPP1およびEPP2は、それぞれ、プライマーPP2およびPP1の プライマーの鋳型として働く。従って、続く温度サイクリングは標的配列の増幅 をもたらす。 加えて、PP1は、P1部分を除き、結合部位CPNSでCPNにハイブリダ イズする。従って、CPNにハイブリダイズしたPP1は、CPNにハイブリダ イズしないP1部分を、PP1の3'−末端に有する。従って、PP1の3'−末 端は、PP1の3'−末端が完全にCPNとハイブリダイズするために、P1が NP−EXOのエキソヌクレアーゼ活性によりフラグメントP1Fに分解される まで、CPNに沿った鎖伸長をすることができない。従って、温度サイクリング の間、分解PP(PP1マイナスP1(またはDPP1))分子のCPNに沿った伸 長は、PP1からP1への分解のための遅延により、TPNに沿ったPP1の伸 長に関連して制御される。コントロールの増幅は、標的配列の増幅よりも遅い。 従って、コントロールの存在は、標的ポリヌクレオチドの増幅が抑制されるほど 多くの試薬の消費をもたらさない。この方法において、有効な陽性コントロール が達成される。 コントロールポリヌクレオチドは、PP1が結合する部位以外の標的ポリヌク レオチド配列に無関係なオリゴヌクレオチドであってよい。一方、コントロール ポリヌクレオチドは、プライマーPP1の3'−末端が結合しないコントロール ポリヌクレオチドの部分以外の標的ポリヌクレオチド配列の鎖の一つに対応する ことができる。コントロールポリヌクレオチドは二本鎖であってよい。この状況 において、コントロールポリヌクレオチドと標的ポリヌクレオチド配列の間に対 応がある時、第2のプライマー、例えば、上記PP2がまたPP1が結合する鎖 以外の鎖に結合し、それに沿って伸長する(図1A参照)。 PP2と、それが結合するコントロールポリヌクレオチドの鎖の間の3'−末 端ミスマッチは、このような鎖に沿ったPP2伸長の制御および所望の陽性コン トロールの促進をもたらす。 上記のように、CPNは、下記のようなコントロールポリヌクレオチドとして 機能する。PP1は、TPNが試料に存在する時、TPNおよびCPNの両方と ハイブリダイズする。しかしながら、PP1のCPNに沿った伸長は、PP1が CPNに沿って伸長し得る前に起こるべきP1部分の分解のため、そのTPNに 沿った伸長に関して制御される。TPNに沿ったPP1の伸長は、その伸長がC PNに沿っている場合、PP1の前分解に依存しない。CPNのコピーであり、 相補物である伸長生産物を得るための、PP1とCPNのハイブリダイゼーショ ンおよびそれに沿った伸長によりもたらされるコピーおよびCPN相補物の数は 、TPNが試料に存在する時は減少する。TPNが試料に存在しない時、PP1 の伸長は、CPNに沿って起こり、TPNに沿ったPP1の伸長を含む競合反応 がないため、より多くのCPNのコピーおよび相補物が形成される。 CPNに沿ったPP1の伸長を制御できる他の方法は、PP1および/または CPNもしくはPP1およびPP2の濃度を調節することによる。 本発明の他の態様は、図2に記載する。この態様において、上記で定義の修飾 オリゴヌクレオチドプライマーである付加的プライマーMPP1を使用する。上 記のように、MPP1はPP1に対応するが、PP1をCPNとハイブリダイズ した時、P1を分解不可能にするか、また分解に対して耐性にする修飾をP1内 に含む。二本鎖の、PCRにより増幅すべき標的配列(TPNS)を有する核酸ま たは標的ポリヌクレオチド(TPN)を含有する疑いのある試料を、3つのポリヌ クレオチドプライマー(PP1、MPP1およびPP2)、好ましくは3'ないし 5'エキソヌクレオアーゼ活性を有するヌクレオチドポリメラーゼ(NP−EXO )、ヌクレオシドトリホスフェート(NTP)およびコントロールポリヌクレオチ ド(CPN)と合わせる。CPNは、その3'−末端に、PP1およびMPP1の 3'−末端の1−10ヌクレオチドの部分(P1)以外でPP1およびMPP1と ハイブリダイズできるCPNS配列を有する。 条件は、反応混合物の温度サイクリングを達成するようにに選択する。このよ うな条件下で、PP1およびMPP1は、TPNが存在する時、TPNのプライ マー結合部位PBS1と、およびCPNのCPNSとハイブリダイズし、プライ マーPP2は、TPNのプライマー結合部位PBS2とハイブリダイズする。そ れぞれのTPNの鎖に沿ったPP1、MPP1およびPP2の伸長は、それぞれ 、伸長PP1およびMPP1(それぞれEPP1およびEMPP1)および伸長P P2(EPP2)を作り、それらはTPNのそれぞれの鎖の各相補物である(EP P1およびEMPP1)。従って、続く温度サイクリングは標的配列の増幅をも たらす。一方の分子EPP1およびEMPP1、および他方のEPP2は、それ ぞれ、一方のプライマーPP2および他方のPP1およびMPP1のプライマー の鋳型として働く。 加えて、PP1は、P1部分を除き、結合部位CPNSでCPNにハイブリダ イズする。従って、CPNにハイブリダイズしたPP1は、CPNにハイブリダ イズしないP1部分を、PP1の3'−末端に有する。従って、PP1の3'末端 は、P1が、PP1の3'末端が完全にCPNとハイブリダイズするために、N P−EXOのエキソヌクレアーゼ活性によりフラグメントP1Fに分解されるま で、CPNに沿った鎖伸長をすることができない。従って、温度サイクリングの 間、分解PP(PP1マイナスP1(またはDPP1))分子のCPNに沿った伸長 は、PP1からP1への分解のための遅延により、TPNに沿ったPP1の伸長 に関連して制御される。コントロールの増幅は、標的配列の増幅と比較して遅い 。従って、コントロールの存在は、標的ポリヌクレオチド配列の増幅が抑制され るほど多くの試薬の消費をもたらさない。この方法において、有効なプラスへの 制御が達成される。 加えて、上記のように、PP1およびMPP1は、P1部分以外、CPNに、 結合部位CPNSでハイブリダイズする。従って、CPNにハイブリダイズした PP1およびMPP1は、CPNにハイブリダイズしないP1部分を、それぞれ PP1およびMPP1の3'末端に有する。従って、PP1の3'−末端は、PP 1の3'−末端が完全にCPNとハイブリダイズするために、P1が酵素のエキ ソヌクレアーゼ活性によりフラグメントP1Fに分解されるまで、CPNに沿っ た鎖伸長をすることができない。更に、MPP1は修飾Mを有するため、修飾が 起こるまでの間のみ分解される。通常、修飾は、MPP1がCPNSにハイブリ ダイズする点から1から10ヌクレオチド、好ましくは1から4ヌクレオチド以 内である。従って、MPP1がまだCPNとハイブリダイズしない部分P2を含 むため、MPP1はCPNに沿った鎖伸長ができない。従って、温度サイクリン グの間、PP1マイナスP1の分子のCPNに沿った伸長は、PP1からP1へ の分解のための遅延により、および、MPP1のCPNへの競合ハイブリダイゼ ーションにより、TPNに沿ったPP1の伸長に関連して制御される。コントロ ールポリヌクレオチドの増幅は、標的配列の増幅よりも遅い。従って、コントロ ールポリヌクレオチドの存在は、標的ポリヌクレオチド配列の増幅が抑制される ほど多くの試薬の消費をもたらさない。この方法において、有効な陽性コントロ ールが達成される。 上記態様において、コントロールポリヌクレオチドの増幅を支持するプライマ ーの量を、非修飾プライマーPP1の量により調節できる。これにより、得られ る増幅コントロールポリヌクレオチドの量が制御できる、比較的感度のよい方法 を可能にする。一般に、修飾プライマー対非修飾プライマーの比率は5:1から 1:1、好ましくは、約2.5:1である。PP1およびMPP1の両方が、標的 ポリヌクレオチド配列TPNに結合し、それに沿って伸長するため、標的感度の 減少は、修飾オリゴヌクレオチドプライマーの増幅反応への取り込みに反映され ない。 本発明の他の態様を図3に示す。この態様において、単一プライマー増幅によ る増幅を選択するが、例示であって限定ではない。標的ポリヌクレオチドTPN 'は、逆方向リピートを有する一本鎖ポリヌクレオチドであり、即ち、TPN'の 配列PBNS1'がTPN'の配列S2と相補的である。TPN'を含有する疑い のある試料を、単一オリゴヌクレオチドプライマーPP1'、好ましくは3'ない し5'エキソヌクレアーゼ活性を有するヌクレオチドポリメラーゼNP−EXO 、ヌクレオチドトリホスフェート(NTP)およびコントロールポリヌクレオチド (CPN')と合わせる。CPN'は、その3'−末端に、PP1'の3'−末端の1 −10ヌクレオチドの部分(P1')以外でPP1'とハイブリダイズできるCPN S' 配列を有する。 条件は、反応混合物の温度サイクリングを達成するように選択する。このよう な条件下で、PP1'は、TPN'が存在する時TPN'のプライマー結合部位P BS1'と、およびCPN'のCPNS'とハイブリダイズする。TPN'の鎖に沿 ったPP1'の伸長は、伸長PP1'(EPP1')を作り、それはTPN'の相補物 である。S2がPBNS'の相補物であるため、EPP1'は、S2とPP1'の 相補物であり、TPN'およびEPP1'の両方と結合でき、それに沿って伸長で きる配列CS2を含む。従って、続く温度サイクリングは、標的配列の増幅をも たらす。分子EPP1'は、プライマーPP1'の鋳型として働く。 加えて、PP1'は、P1'部分を除き、結合部位CPNS'でCPN'にハイブ リダイズする。従って、CPN'にハイブリダイズしたPP1'は、CPN'にハ イブリダイズしないP1'部分を、PP1'の3'末端に有する。従って、PP1' の3'−末端は、P1'が、PP1'の3'−末端が完全にCPN'とハイブリダイ ズするために、NP−EXOのエキソヌクレアーゼ活性によりフラグメントP1 F'に分解されるまで、CPN'に沿った鎖伸長をすることができない。従って、 温度サイクリングの間、PP1'マイナスP1'(DPP1')分子のCPN'に沿っ た伸長は、PP1'からP1'への分解のための遅延により、TPN'に沿ったP P1'の伸長に関連して制御される。コントロールの増幅は、標的配列の増幅よ りも遅い。従って、コントロールの存在は、標的ポリヌクレオチド配列の増幅が 抑制されるほど多くの試薬の消費をもたらさない。この方法において、有効な陽 性コントロールが達成される。上記の態様はまた上記のように修飾オリゴヌクレ オチドプライマーでも使用できることは明らかである。 本方法は、標的ポリヌクレオチドがDNAまたはRNAである時、使用される 。本発明の態様において、例えば、オリゴヌクレオチドプライマーのような1個 またはそれ以上の試薬を標識(レポーター分子)で標識する。レポーター分子は、 例えば、検出可能な基またはビオチンのようなバインダーまたは標的配列とハイ ブリダイズする配列以外のヌクレオチド配列であり得る。伸長プライマーは、プ ローブに共有的に結合するレポーター分子により検出できる。プローブは、プラ イ マーが結合する配列以外の標的ヌクレオチド配列の部分と相同または相補的なヌ クレオチド配列を有する。 本発明の他の態様は、ポリヌクレオチド分析物を含有する疑いのある試料中の ポリヌクレオチド分析物の存在の検出法に関する。試料を含む媒質を上記のよう に処置して、ポリヌクレオチド分析物が存在するならば、そのポリヌクレオチド 分析物から標的ポリヌクレオチドを製造するか、またはポリヌクレオチド分析物 それ自体が標的ポリヌクレオチドである。次いで、媒質を増幅を行うための試薬 と合わせるが、これは選択した特定の増幅プロトコールによる。次いで、標的ポ リヌクレオチドを、本発明に従った上記方法に付し、標的ポリヌクレオチド配列 の多数のコピーを製造し、次いでそれを検出する。試験は、その存在がポリヌク レオチド分析物の存在を示すものである伸長プライマーの存在に関して行う。増 幅は、ポリヌクレオチド分析物を正確に検出するのに充分な数の伸長プライマー の分子が得られるまで行う。選択した増幅プロトコールによるが、サイクルの数 は、少なくとも3、好ましくは少なくとも10である;通常、サイクルの数が3 0より少ないのが好ましい。ポリヌクレオチド分析物がRNAである場合、ヌク レオチドポリメラーゼは逆転写酵素を含む。 増幅を含む本発明に従った方法の実施では、水性媒質を使用する。他の極性共 溶媒、通常、アルコール、エーテル等を含む、1−6、通常1−4の炭素原子の 酸素化有機溶媒も使用し得る。通常、これらの共溶媒は、使用する場合、約70 重量%以下、より普通には、約30重量%以下で存在する。 媒質のpHは、通常、約4.5から9.5、より普通には、約5.5−8.5の範 囲、および好ましくは約6−8の範囲である。pHおよび温度は、場合により、 同時または連続した、内部ハイブリダイズ配列の分解、プライマーおよび他のプ ローブと標的ポリヌクレオチド配列のハイブリダイゼーション、ポリデオキシヌ クレオチドプライマーと標的ポリヌクレオチド配列のハイブリダイゼーション、 プライマーの伸長および伸長プライマーの分解をもたらすように選択し、変える 。ある場合、上記工程を連続してまたは同時に行うことが望ましいか否かによっ て、速度、効果およびこれらの工程の特異性を最適化することで妥協される。種 々の 緩衝液を、所望のpHを達成するためおよびpHを測定中維持するために使用し 得る。緩衝液を例示すれば、ホウ酸、リン酸、炭酸、トリス、バルビタール等が ある。用いる特定の緩衝液は本発明で重要ではないが、個々の方法において、一 つの緩衝液が他のものより好ましいことがある。 中位の温度が発明を行うために使用される。通常、方法の実施において、媒質 は2から3種の温度の間を循環する。この方法のための温度は、通常、約10か ら105℃、より普通には約40から99℃、好ましくは50から98℃である 。正確な温度は、塩濃度、pH、使用する溶媒、標的ポリヌクレオチド配列の長 さおよび組成およびプライマーによって変化し得る。約30から65℃の相対的 に低い温度が伸長工程で使用できるが、変性およびハイブリダイゼーションは、 約50から105℃の温度で行い得る。 本発明を単一プライマー増幅またはPCRに使用する場合、この方法は、伸長 プライマーまたはそれに相補的な配列のコピーの所望の数を達成するのに充分な 時間行う。この場合、これは、例えば、ポリヌクレオチド分析物のアッセイなど の、増幅を行う目的に依存する。一般に、この方法を行う時間は、1サイクル当 たり約1から10分であり、1から200以上程の、通常5から80の、頻繁に は10−60のサイクル数を使用できる。簡便さのために、サイクルの時間およ び数を減らすことが通常望ましい。一般に、所定度合いの増幅のための時間は、 例えば、ポリヌクレオチドポリメラーゼを飽和させるのに充分なヌクレオチドト リホスフェートの濃度の選択ならびにポリヌクレオチドポリメラーゼおよびポリ ヌクレオチドプライマーの濃度の増加により短くできる。一般に、この方法を行 うための時間は、約5から200分である。簡便さのために、通常時間を短くす ることが望ましい。 3'ないし5'エキソヌクレアーゼ活性を有する酵素の濃度は、コントロールポ リペプチドに沿ったプライマーの伸長の遅延を必要なレベルで実行するのに充分 であり、通常、100マイクロリットル反応量当たり約0.1から10単位であ り、好ましくは、100マイクロリットル量反応量当たり1から5単位である。 このような酵素がまたポリメラーゼとして機能する場合、このポリメラーゼの濃 度は、鎖伸長を達成するのに充分なように選択する。ポリメラーゼの濃度は、通 常、経験的に決定する。好ましくは、濃度をさらに増加しても増幅のための時間 を5倍まで、好ましくは2倍まで減少しないようにな充分な濃度を使用する。主 要な制限因子となるのは、通常、試薬の値段である。 コピーする標的ポリヌクレオチドの量は、試料中1または2分子程の低量であ ってもよいが、一般に、試料中に約102から1010、より普通には約103から 108分子、好ましくは少なくとも試料中に10-21Mおよび10-10から10-19 M、より普通には10-14から10-19Mで変化し得る。 コントロールポリヌクレオチドの量は、通常、標的ポリヌクレオチドより低く 、一般に、約10倍から10000倍、標的ポリヌクレオチドより低い。エキソ ヌクレアーゼ耐性3'−末端を有するポリヌクレオチドプライマーの場合、コン トロールポリヌクレオチドは標的ポリヌクレオチドより過剰であり得るが、一般 に、標的ポリヌクレオチドの量または濃度に関して10000倍以上過剰ではな い。 オリゴヌクレオチドプライマーの量は、少なくとも所望のコピーの数と同程度 であり、通常、試料が1−1,000mLである場合、試料当たり1×10-10か ら1×10-6モルである。通常、プライマーは少なくとも約0.1μM、好まし くは0.5μMおよびより好ましくは約1μM存在する。好ましくは、オリゴヌ クレオチドプライマーは、実質的に、好ましくは少なくとも1×1014倍、標的 ポリヌクレオチド配列の濃度より過剰である。 媒質中のデオキシヌクレオシドトリホスフェートの濃度は広範囲で変化できる ;好ましくは、これらの試薬は過剰量で存在する。デオキシヌクレオシドトリホ スフェートは通常10-6から10-2M、好ましくは10-5から10-3Mで存在す る。 組み合わせ物を形成するための種々の試薬を合わせる順序は変えてもよい。一 般に、標的ポリヌクレオチド配列は、このような配列を含む試料またはこのよう な配列を得るために処理したポリヌクレオチド分析物から得る。一般に、標的ポ リヌクレオチド配列は、デオキシヌクレオシドトリホスフェートと鋳型依存ポリ デオキシヌクレオチドポリメラーゼの予備調製組み合わせ物と組み合わせる。オ リゴヌクレオチドプライマーは、調製した組み合わせ物に含まれ得るかまたは続 いて添加し得る。しかしながら、上記全てを同時添加してもよく、また他にステ ップ−ワイズ添加または連続添加を用いてもよい。 試薬の濃度および添加順序および方法の条件は、一般に、伸長プライマーのコ ピーの数およびこのようなコピーが形成される速度を最大にしたいという願望お よび複製の忠誠度に依存する。一般に、伸長プライマーのコピーの数を、少なく とも102の率まで、好ましくは104の率まで、より好ましくは106またはそ れ以上の率まで増加させることが望ましい。 ポリヌクレオチド分析物検出への使用に関する本発明の実施において、媒質、 pH、温度および時間に関する考えは上記の通りであり得る。 種々の試薬の濃度が、一般に、対象となるポリヌクレオチド分析物の濃度範囲 により決定されるのに対し、多くの試薬の最終濃度は通常、アッセイ感度を最適 化するために対象となる範囲にわたり経験的に決定される。アッセイにおける他 の試薬の濃度は、一般に、上記と同じ概念に従って決定する。主要な考慮点は、 十分な数の伸長プライマーのコピーが、ポリヌクレオチド分析物配列に関連して 製造され、そうしてこのようなコピーが容易に検出され、かつポリヌクレオチド 分析物の正確な測定を提供することである。 伸長プラィマーのコピーは種々の方法で検出できる。例えば、本発明において 、オリゴヌクレオチドプライマーの分子は、リガンド、小有機分子、ポリヌクレ オチド配列、タンパク質、支持体、オペレーター−リプレッサー・ペアのメンバ ー、挿入色素等のリポーター分子で標識できる。核酸配列を特異的に検出する標 準法が使用できる。 核酸を検出する一つの方法は、核酸プローブの使用である。プローブを使用す る一つの方法は、1985年、9月6日に出願された米国特許出願第773,386号に記載 されており、その記載を本明細書に参考として包含させる。 他のアッセイ形式および検出形式は、それぞれ1989年1月19日および1989年8月 29日に出願された米国特許出願第07/229,282号および07/399,795号、1990年7月1 9日に出願された米国特許出願第07/555,323号、米国特許出願第07/555,968号お よび1991年10月11日に出願された米国特許出願第07/776,538号に記載され、これ らは本明細書に参考として包含させる。 特定の標識またはリポーター分子およびそれらの検出の例は、1990年7月19日 出願の米国特許出願第07/555,323号に見ることができ、その関連する記載を本明 細書に参考として包含させる。 シグナルの検出は、用いるシグナル生成系の性質に依存する。標識またはリポ ーター基が酵素である場合、シグナル生成系の更なるメンバーは酵素基質等を含 む。酵素反応の生産物は好ましくは発光生産物または、分光光学的に検出できる 蛍光または非蛍光色素、もしくは他のスペクトル的または電気的方法で検出でき る生産物である。標識が蛍光分子である場合、媒質を照射し、蛍光を測定できる 。標識が放射性基である場合、媒質をカウントし、放射能カウントを測定できる 。 本発明の他の態様は、標的ポリヌクレオチドを含有する疑いのある試料中の標 的ポリヌクレオチドの定量測定に関する。PCR増幅を例えば増幅過程中に行う 場合、増幅DNA種またはアンプリコンの初期の測定は、しばしば試料に存在す る標的DNAの量に直接関連し得る。この技術は、未知標的濃度を含む同じ反応 混合物に既知の濃度のコントロールDNAを添加することにより、より信頼でき るようになる。これら二つのアンプリコンの初期の測定は比較でき、未知の標的 の濃度の決定に使用できる。添加コントロールDNAは、従って、未知標的の内 部濃度対照として働く。 上記方法は、DNAの対照濃度が未知標的の濃度より100から1000倍多 いかまたは少なくなることができないことで制限される。反応容器中の二つのD NA濃度がこの範囲外である場合、最大濃度DNAが、低い濃度のDNAが増幅 できる前に増幅する。この場合、より低い濃度のDNAは検出されず、二つのD NA、即ち、コントロールおよび標的の比較は達成できない。標的DNAの濃度 が、ある施用の場合、1000倍以上で変化するため、実際の結果では、未知標 的濃度をコントロールDNAの濃度の100−1000倍にすることを確実にす るために、別の反応容器で、種々のコントロールDNA濃度で行うことが必要で ある。 本発明により、コントロールポリヌクレオチドは、この用語を本発明で使用す る限り、増幅反応混合物に、参考ポリヌクレオチドとして、コントロールポリヌ クレオチドが常に検出可能なレベルに増幅されるが、標的増幅のシグナルを弱め るかまたは除去する程は増幅しない濃度で、挿入する。従って、単一反応容器で 標的ポリヌクレオチドの濃度を信頼できる同定をする濃度範囲は広がる。 簡便のために、本発明で用いる予定した量の試薬を、パッケージした組み合わ せ物のキットで提供できる。キットは、パッケージにした組み合わせ物中に、( a)オリゴヌクレオチドプライマー、(b)オリゴヌクレオチドプライマーの3 '−末端の1−10ヌクレオチド以外、オリゴヌクレオチドプライマーがハイブ リダイズする配列を有するコントロールポリヌクレオチド、(c)1から10ヌ クレオチドの3'ないし5'エキソヌクレアーゼによる分解を防ぐ化学的修飾がそ の3'−末端にある以外はオリゴヌクレオチドプライマーと実質的に同一の修飾 オリゴヌクレオチドプライマー、(d)ヌクレオシドトリホスフェートおよび( e)エキソヌクレアーゼ活性を有しても有しなくてもよいヌクレオチドポリメラ ーゼを含むことができる。ヌクレオチドポリメラーゼが3'ないし5'エキソヌク レアーゼ活性を有しない事例の場合、キットは3'ないし5'エキソヌクレアーゼ 活性を有する酵素を更に含む。 標的ポリヌクレオチド配列を増幅するためのキットは、上記の材料を含み、P CRを行うためのものは、加えて、プライマーが、他のものの伸長の鋳型として 働く標的配列に沿ったものの伸長生産物に関するものである限り、第2のポリヌ クレオチドプライマーを含む。 試料中のポリヌクレオチド分析物のアッセイにおいて、本発明法で使用できる キットは、上記の他の試薬と組み合わせたパッケージに、ポリヌクレオチド分析 物から標的ポリヌクレオチド配列を形成する試薬を含むことができる。更に、オ リゴヌクレオチドプライマーは、標識し得るか、または配列標識を付与するまた は支持体に結合する基と共に提供され得る。キットは、更に、増幅標的ポリヌク レオチド配列に結合できる標識ポリヌクレオチドプローブを含むことができる。 キットは更にシグナル生成系およびまた種々の緩衝媒質(この内の幾つかは、1 個またはそれ以上の上記試薬を含み得る)を含むことができる。 キット中の種々の試薬の相対的量は、本方法に際して起こる必要のある反応を 実質的に最適化し、更に、アッセイ感度を実質的に最適化する試薬の濃度を提供 するように、広範囲で変化する。適当な条件下で、キット中の1種またはそれ以 上の試薬は、通常凍結乾燥された、賦形剤を含む乾燥粉末として提供され、溶解 して、本発明の方法またはアッセイを行うための適当な濃度を有する試薬溶液を 提供する。各試薬は別の容器にパッケージしてもよく、またはある試薬を交差反 応性および貯蔵寿命が許容される一つの容器に組み合わせてもよい。キットは、 更に、上記の本発明の方法に関する取り扱い書を含むことができる。 実施例 本発明を、更に、以下の説明的実施例により説明する。特記しない限り、温度 は摂氏(℃)で、部およびパーセントは重量で記載する。 以下の用語を定める: HPLC − 高速液体クロマトグラフィー DTT − ジチオトレイトール min − 分 sec − 秒 hr − 時間 下記実施例で使用するオリゴヌクレオチドは、Biosearch 8750 DNA合成装 置で、標準ホスホロアミダイト法で合成した。水酸化アンモニウムで脱保護後、 オリゴヌクレオチドをHPLCで精製した。 実施例1 この実施例において、二つのオリゴヌクレオチド+3'−末端に3'ホスホロチ オエート付加を有する一つのオリゴヌクレオチドを、PRC増幅のために使用し た。ホスホロチオエート付加は、オリゴヌクレオチド配列中の“*”で示す。 プライマーA−5'CGACTCACTATAGGGCGAATTGGGC3' (配列番号1) プライマーB−5'CGACTCACTATAGGGCGAATTGG*G*C3' (配列番号2) プライマーC−5'CATTAGGCACCCCAGGCTTACAC3' (配列番号3) 標的ポリヌクレオチドは、Promega Company,Madison,WIのpGem5であ った。コントロールポリヌクレオチドはまたPromega CompanyのpGem3であっ た。pGem3は、pGem5より57ヌクレオチド小さい多重クローニング部位( MCS)を有する。プライマーをこれらのプラスミドのMCSに対して設計した 。プライマーAは、プラスミド配列がpGem3と異なるpGem5のMCSの上流領 域に設計した。プライマーAはpGem5と完全に相補的であり、また3'−末端の 最後の4つのヌクレオチド以外、pGem3と相補的である。下流プライマーであ るプライマーCはpGem3および5の両方に相補的であり、全てのPCR増幅に おいて下流プライマーとして働く。プライマーAおよびプライマーCから製造さ れる増幅生産物は、pGem3では212ヌクレオチドおよびpGem5では269ヌ クレオチドであり、アガロースゲル電気泳動により容易に区別された。 PCRは、3'−エキソヌクレアーゼ活性(Stratagene,La Jolla,CA)を有 する熱安定クローンPfu DNAポリメラーゼで行った。PCR混合物の最終組 成は、10mM Tris−HCl(pH 8.8)、50mM KCl、1.5mM Mg Cl2、0.1% トリトンX−100、7.5mM DTT、各ヌクレオチドトリホ スフェート0.2mMおよびクローンPfu DNAポリメラーゼ5単位であった。 最終プライマー濃度は1.0μMであった。pGem3およびpGem5を脱イオン蒸 留水で使用前に希釈し、1μg/μlの濃度にした。適当なDNA試料を個々の試 料に最後に加えた。全ての力価測定反応は共通のマスター混合物で行った。サイ クルパラメータは、最初の5分の95℃での変性、続く60℃で1分の45サイ クル、72℃で1分の伸長および94℃で30秒の変性であった。100μLの 全PCR反応量をEricomp水−冷却サーモサイクラー(Ericomp,Inc.San Diego ,CA)で使用した。二つのプラスミド、pGem3およびpGem5を、増幅コントロ ールのレベルおよび二つの鋳型の間の競合を測定する試みにおいて、102およ び106標的分子/増幅反応で、増幅反応で力価測定した。 増幅の後、反応を、2.0%の濃度でBethesda Research Laboratories(G aithersburg,MD)の超純粋寒天から製造したアガロースゲルで分析した。エ チジウムブロミドを、紫外線光下で可視化するために、0.5mg/mlの濃度で加 えた。6×充填色素(水中の0.25%ブロモフェノールブルー、0.25%キシ レンシアノールおよび15%フィコール)と合わせた各反応の3分の1を、各ア ガロースゲルのレーンに充填し、UV放射で可視化した。結果 : 標的ポリヌクレオチドが同じか多い濃度である増幅反応において、標的ポリヌ クレオチドpGem5の増幅は、コントロールポリヌクレオチドpGem3よりも高い レベルで起こった。 表1はコントロールおよび標的ポリヌクレオチドの種々の濃度での異なる増幅 頻度を比較する。データは、プライマーAのエキソヌクレアーゼ分解が、通常、 同様の濃度の標的ポリヌクレオチドよりも低い程度で増幅されるコントロールポ リヌクレオチドに反映されることを示した(表1参照)。コントロールポリヌク レオチドの濃度が標的ポリヌクレオチドより高い場合、3'ないし5'エキソヌク レアーゼ分解による遅延を克服し、コントロールポリヌクレオチドは標的ポリヌ クレオチドと同程度がより多いレベルで増幅された。この特定の実施例において 、標的ポリヌクレオチドの増幅の促進されたレベルは、コントロールポリヌクレ オチド増加の濃度に関連して減少した。 プライマーAエキソヌクレアーゼ分解の調節は、標的ポリヌクレオチドおよび コントロールポリヌクレオチドの両方の増幅中の、コントロールポリヌクレオチ ドの増幅の割合を制御する手段であった。 標的ポリヌクレオチドおよびコントロールポリヌクレオチドの両方の、低いお よび高い標的ポリヌクレオチド濃度での共増幅は、ホスホロチオエート置換プラ イマーBの取り込みに関してより成功した(表2)。増幅反応は、ホスホロチオ レート化プライマー(プライマーB)対非ホスホロチオレート化プライマー(プ ライマーA)の2.5:1(表2)の比率で行った。標的ポリヌクレオチドおよ びコントロールポリヌクレオチドの両方の増幅は、広範囲の濃度の標的ポリヌク レオチド(100−1,000,000標的ポリヌクレオチド分子)にわたり、コ ントロールポリヌクレオチドの105から106コピーで観察された。 プライマーAを使用しない(プライマーBおよびCのみ)同じ混合物の増幅は 、コントロールポリヌクレオチドの検出可能な量の増幅なしに標的アンプリコン のみ製造した。3'ないし5'エキソヌクレアーゼ活性を欠くPfuポリメラーゼを 、全3つのプライマーの存在下に増幅の触媒として使用した場合、また標的ポリ ヌクレオチドのみが増幅された。 上記は本発明に含まれる機構に関するある理論を含む。これらの理論は、本発 明が記載の結果を達成することは証明されているので、本発明を限定するものと みなされるべきではない。 上記および実施例は、その好ましい態様を含み、本発明を十分に開示するもの である。記載した方法の修飾は、分子生物学などの分野の通常の技術者に明らか であり、関連科学は、以下の請求の範囲の範囲内であるとみなされる。
───────────────────────────────────────────────────── 【要約の続き】 幅の分野において特に有用である。

Claims (1)

  1. 【特許請求の範囲】 1.標的ポリヌクレオチドの標的配列の多数のコピーを形成させる方法であっ て、オリゴヌクレオチドプライマーの伸長生成物を少なくとも該標的配列に沿っ て、または伸長オリゴヌクレオチドプライマーに沿って形成させる工程を含み、 該伸長生成物が、該標的配列のコピーである方法において、該オリゴヌクレオチ ドプライマーが該オリゴヌクレオチドプライマーの3'−末端以外でハイブリダ イズする第2ポリヌクレオチドの存在下、該第2ポリヌクレオチドに沿った該オ リゴヌクレオチドプライマーの伸長が該標的配列に沿った該オリゴヌクレオチド プライマーの伸長に対して制御されている条件で該伸長生成物を形成させること を含んでなる、改良法。 2.標的ポリヌクレオチドの標的配列の増幅法であって、該標的ポリヌクレオ チドを含有する疑いのある試料を、標的配列が存在すればそれを増幅する試薬類 と合わせ、該組み合わせ物を該標的配列が存在すればそれを増幅する条件下にお くことを含み、該試薬類がオリゴヌクレオチドプライマーおよびポリメラーゼを 含む方法において、(a)該組み合わせ物中に、該オリゴヌクレオチドプライマ ーが該オリゴヌクレオチドプライマーの3'−末端の1−10ヌクレオチド以外 でハイブリダイズするコントロールポリヌクレオチド、および該ポリメラーゼが 3'ないし5'エクソヌクレアーゼを含まないときは3'ないし5'エクソヌクレア ーゼを含ませ、ここで該オリゴヌクレオチドプライマーは該標的配列に沿って伸 長し、該1ないし10ヌクレオチドが3'ないし5'エクソヌクレアーゼ活性を有 する該ポリメラーゼにより分解された後にのみ、該コントロールポリヌクレオチ ドに沿って伸長して該コントロールポリヌクレオチドのコピーを生成するもので あり、そして(b)該コントロールポリヌクレオチドの該コピーの存在を検出し 、その存在が該標的配列を増幅する該試薬および条件が機能的であることを示す ものであることを含んでなる、改良法。 3.該オリゴヌクレオチドプライマーが、それがハイブリダイズする該標的配 列の部分に対して十分に相補的であり、それがその3'−末端で該1ないし0ヌ クレオチド以外でハイブリダイズする該コントロールポリヌクレオチドの部分に 対して相補的である、請求の範囲第2項に記載の方法。 4.修飾したオリゴヌクレオチドプライマーが、該組み合わせ物中に含まれて おり、そこで、該修飾オリゴヌクレオチドプライマーは、該オリゴヌクレオチド プライマーと実質的に同一であるが、該3'ないし5'エクソヌクレアーゼ活性に よる該1ないし10ヌクレオチドの分解を防ぐ化学修飾をその3'−末端に含有 する、請求の範囲第2項に記載の方法。 5.該化学修飾が、ホスホロチオエート類、ホスホン酸エチル類、カルボキサ ミド類、スルホンアミド類、カルバメート類、アセタール類、およびケタール類 からなる群から選択される、請求の範囲第4項に記載の方法。 6.該化学修飾がホスホロチオエートである、請求の範囲第4項に記載の方法 。 7.該オリゴヌクレオチドプライマーが該コントロールポリヌクレオチドに該 オリゴヌクレオチドプライマーの3'−末端の3−5ヌクレオチド以外でハイブ リダイズする、請求の範囲第2項に記載の方法。 8.増幅した標的配列の存在を検出し、それが該標的ポリヌクレオチドの存在 と相関している、請求の範囲第2項に記載の方法。 9.一本鎖標的ポリヌクレオチドの標的配列(“標的配列”)の多数のコピー を形成させる方法であって、 (a)第1オリゴヌクレオチドプライマー(“第1プライマー”)を標的配列 の3'−末端にハイブリダイズさせ、 (b)該第1プライマーを、ポリメラーゼの存在下、少なくとも該標的配列に 沿って伸長させ、該第1プライマーは(1)該伸長第1プライマーまたは(2) 伸長第2オリゴヌクレオチドプライマー(“第2プライマー”)にハイブリダイ ズし、および、それに沿って伸長する能力があり、ここで、該伸長第2プライマ ーは、該標的配列に相補的であるポリヌクレオチド(相補的ポリヌクレオチド) にハイブリダイズし、そして、それに沿って伸長する能力のある第2プライマー の伸長の結果生じるものであり、 (c)該標的配列から該伸長第1プライマーを解離させ、 (d)該第1または第2プライマーを該伸長第1プライマーの3'−末端にハ イブリダイズさせ、 (e)該第1または該第2プライマーを該伸長第1プライマーに沿って伸長さ せ、 (f)該伸長第1プライマーまたは該伸長第2プライマーを該伸長第1プライ マーから解離させ、 (g)該第1プライマーを該伸長第1または第2プライマーの3'−末端にハ イブリダイズさせ、そして、 (h)工程(e)〜(g)を繰り返す、 ことを含んでなる方法において、(i)上記工程(a)〜(g)に従う同一反応 混合物内に、陽性内部コントロールとして、該第1または該第2プライマーが該 第1または該第2プライマーの3'−末端の1−10ヌクレオチド以外でハイブ リダイズするコントロールポリヌクレオチド、および該ポリメラーゼが3'ない し5'エクソヌクレアーゼを含まない場合は3'ないし5'エクソヌクレアーゼを 含ませ、ここで、該第1または第2プライマーは、該1−10ヌクレオチドが3 'ないし5'エクソヌクレアーゼ活性を有する該ポリメラーゼにより分解された後 にのみ、コントロールポリヌクレオチドに沿って伸長するものであり、そして( ii)該コントロールポリヌクレオチドの該コピーを検出することを含んでなる、 改良法。 10.該第1プライマーが、それがハイブリダイズする該標的配列の部分に対し て十分に相補的であり、かつそれがその3'−末端で該1ないし0ヌクレオチド 以外でハイブリダイズする該コントロールポリヌクレオチドの部分に対して相補 的である、請求の範囲第9項に記載の方法。 11.修飾したオリゴヌクレオチドプライマーが、該組み合わせ物中に含まれて おり、そこで、該修飾オリゴヌクレオチドプライマーは、該3'ないし5'エクソ ヌクレアーゼによる該1ないし10ヌクレオチドの分解を防ぐ化学修飾がその3 '−末端にある以外は該第1または該第2プライマーと実質的に同一である、請 求の範囲第9項に記載の方法。 12.該化学修飾が、ホスホロチオエート類、ホスホン酸エチル類、カルボキサ ミド類、スルホンアミド類、カルバメート類、アセタール類、およびケタール類 からなる群から選択される、請求の範囲第11項に記載の方法。 13.該化学修飾がホスホロチオエートである、請求の範囲第11項に記載の方 法。 14.該第1または該第2プライマーが該コントロールポリヌクレオチドに該第 1または第2プライマーの3'−末端の3−5ヌクレオチド以外でハイブリダイ ズする、請求の範囲第9項に記載の方法。 15.該伸長第1プライマーおよび/または該伸長第2プライマーの存在を検出 し、それが該標的ポリヌクレオチドの存在と相関している、請求の範囲第9項に 記載の方法。 16.該コントロールポリヌクレオチドが長さ50ないし5000ヌクレオチド である、請求の範囲第9項に記載の方法。 17.該コントロールポリヌクレオチドが反応混合物中、約1pMから100pM の濃度で存在する、請求の範囲第9項に記載の方法。 18.工程(e)〜(g)の繰り返しは、温度サイクリングを繰り返すことにより達 成される、請求の範囲第9項に記載の方法。 19.温度サイクリングが少なくとも3回繰り返される、請求の範囲第9項に記 載の方法。 20.該標的ポリヌクレオチドがDNAである、請求の範囲第9項に記載の方法 。 21.該伸長がヌクレオシドトリホスフェートの存在下で実施される、請求の範 囲第9項に記載の方法。 22.該コントロールポリヌクレオチドが標的配列にはない少なくとも15ヌク レオチド配列を含有する、請求の範囲第9項に記載の方法。 23.該第1および該第2プライマーが異なっており、該コントロールポリヌク レオチドがその5'−末端に該第2プライマーの5'−末端の配列と同一である配 列を含有する、請求の範囲第9項に記載の方法。 24.該第1および該第2プライマーが異なっており、該伸長第1プライマーが 該第2プライマーの鋳型であり、該伸長第2プライマーが該第1プライマーの鋳 型である、請求の範囲第9項に記載の方法。 25.少なくとも1種の二本鎖ポリヌクレオチド(“ポリヌクレオチド”)の多 数のコピーを形成させる方法であって、該ポリヌクレオチドが一本鎖標的ポリヌ クレオチド配列(“標的配列”)およびその相補的配列(相補的配列)を含み、 陽性内部コントロールを有し、該方法が、 (a)1またはそれ以上の該二本鎖ポリヌクレオチドを含有する疑いのある試 料を、(i)該標的配列および該相補的配列に該プライマーをハイブリダイズさ せ、そしてそれに沿ってプライマーを伸長させる条件下で各標的配列の一部およ び該試料中に存在する疑いのあるその相補的配列にハイブリダイズする能力のあ るオリゴヌクレオチドプライマー、但し、該プライマーは、一方のプライマーか ら形成された伸長生成物がその相補物から解離したときに、もう一方のプライマ ーの伸長生成物形成のための鋳型として働くことができるようなものを選択され るものである、(ii)該プライマーの1つが該プライマーの該1つの3'−末端の 1−10ヌクレオチド以外でハイブリダイズする鋳型としてのコントロールポリ ヌクレオチド、および(iii)該プライマーがそれぞれ該標的配列および該相補 的配列に沿って伸長し、該プライマーの該1つが、該1−10ヌクレオチドが該 3'ないし5'エクソヌクレアーゼにより分解された後にのみ、該コントロールポ リヌクレオチドに沿って伸長する、3'ないし5'エクソヌクレアーゼ、で処理し 、 (b)プライマー伸長生成物をそのそれぞれの鋳型から解離させて、一本鎖分 子を生成させ、そして、 (c)工程(b)において生成した一本鎖分子を工程(a)のプライマーで、 工程(b)で生成した一本鎖を鋳型として用いてプライマー伸長生成物が形成さ れるような条件下で処理し、その結果、標的配列および相補的配列が存在するな らば、それらの増幅を生成させ、該条件により該コントロールポリヌクレオチド に沿って該プライマーの該1つを伸長させて該陽性内部コントロールを提供でき る、 ことを含んでなる、方法。 26.該各プライマーの該一方が、それがハイブリダイズする該標的配列の部分 に対して十分に相補的であり、かつそれがその3'−末端で該1ないし0ヌクレ オチド以外でハイブリダイズする該コントロールポリヌクレオチドの部分に対し て相補的である、請求の範囲第25項に記載の方法。 27.修飾したオリゴヌクレオチドプライマーが、該組み合わせ物中に含まれて おり、そこで、該修飾オリゴヌクレオチドプライマーは、該3'ないし5'エクソ ヌクレアーゼによる該1ないし10ヌクレオチドの分解を防ぐ化学修飾がその3 '−末端にある以外は該プライマーの該1つと実質的に同一である、請求の範囲 第25項に記載の方法。 28.該化学修飾が、ホスホロチオエート類、ホスホン酸エチル類、カルボキサ ミド類、スルホンアミド類、カルバメート類、アセタール類、およびケタール類 からなる群から選択される、請求の範囲第27項に記載の方法。 29.該化学修飾がホスホロチオエートである、請求の範囲第27項に記載の方 法。 30.該プライマーの該1つが該コントロールポリヌクレオチドにその3'−末 端の3−5ヌクレオチド以外でハイブリダイズする、請求の範囲第25項に記載 の方法。 31.プライマー伸長生成物の存在を検出し、それが該標的ポリヌクレオチドの 存在と相関している、請求の範囲第25項に記載の方法。 32.該コントロールポリヌクレオチドが長さ50ないし5000ヌクレオチド である、請求の範囲第25項に記載の方法。 33.該コントロールポリヌクレオチドが反応混合物中、約1pMから100pM の濃度で存在する、請求の範囲第25項に記載の方法。 34.工程(a)〜(c)の繰り返しは、温度サイクリングを繰り返すことにより達 成される、請求の範囲第25項に記載の方法。 35.温度サイクリングが少なくとも3回繰り返される、請求の範囲第34項に 記載の方法。 36.該標的ポリヌクレオチドがDNAである、請求の範囲第25項に記載の方 法。 37.該伸長がヌクレオシドトリホスフェートの存在下で実施される、請求の範 囲第25項に記載の方法。 38.工程(c)の生成物に、該配列にハイブリダイズする能力のある増幅中の 各配列に対する標識オリゴヌクレオチドプローブまたはその変異体を加え、該ハ イブリダイゼーションが起こったがどうかを測定することを含む、請求の範囲第 25項に記載の方法。 39.標的ポリヌクレオチドの標的配列の多数のコピーを作製する方法であって 、 (a)組み合わせ物中に、(1)該標的配列であり、かつ各末端で少なくとも 部分的に相補的な第1および第2フランキング配列によりフランクされている配 列を有する一本鎖ポリヌクレオチド、(2)その少なくとも10塩基部分がその 3'−末端で、該一本鎖ポリヌクレオチドの3'−末端である該第1および該第2 フランキング配列のメンバーにハイブリダイズする、オリゴヌクレオチドプライ マー、(3)ヌクレオシドトリホスフェート、(4)該オリゴヌクレオチドプラ イマーが該オリゴヌクレオチドプライマーの3'−末端の1−10ヌクレオチド 以外でハイブリダイズする鋳型としてのコントロールポリヌクレオチド、および (5)3'ないし5'エクソヌクレアーゼを供給し、但し、該プライマーは、該標 的配列に沿って伸長し、該プライマーは、該1−10ヌクレオチドが3'ないし 5'エクソヌクレアーゼにより分解された後にのみ該コントロールポリヌクレオ チドに沿って伸長するものであり、 (b)該組み合わせ物を、全体的または部分的に、連続してかまたは同時にか のいずれかで、(1)該一本鎖ポリヌクレオチドを任意の相補的配列から解離さ せ、(2)該オリゴヌクレオチドプライマーを該一本鎖ポリヌクレオチドの3' −末端でフランキング配列と、および該コントロールポリヌクレオチドとハイブ リダイズさせ、(3)該オリゴヌクレオチドプライマーを該一本鎖ポリヌクレオ チドに沿って伸長させて、第1伸長オリゴヌクレオチドプライマーを提供し、該 コントロールポリヌクレオチドにハイブリダイズした該オリゴヌクレオチドプラ イマーを分解しさせ該分解したオリゴヌクレオチドを該コントロールポリヌクレ オチドに沿って伸長させ、(4)該第1伸長プライマーおよび該一本鎖ポリヌク レ オチドを解離させ、そして該コントロールポリヌクレオチドおよび該伸長分解プ ライマーを解離させ、(5)該第1伸長オリゴヌクレオチドプライマーを該オリ ゴヌクレオチドプライマーとハイブリダイズさせ、該オリゴヌクレオチドプライ マーおよび該コントロールポリヌクレオチドをハイブリダイズさせ、(6)該オ リゴヌクレオチドプライマーを該第1伸長オリゴヌクレオチドプライマーに沿っ て伸長させて、第2伸長ポリヌクレオチドプライマーを提供し、該コントロール ポリヌクレオチドにハイブリダイズした該オリゴヌクレオチドプライマーを分解 させ、該オリゴヌクレオチドプライマーを該コントロールポリヌクレオチドに沿 って伸長させて伸長分解プライマーを提供し、(7)該第2伸長オリゴヌクレオ チドプライマーを該第1伸長オリゴヌクレオチドプライマーから、および該伸長 分解プライマーを該コントロールポリヌクレオチドから解離させる条件下でイン キュベートし、そして(8)上記工程(5)〜(7)を繰り返し、 (c)該伸長分解プライマーの存在、その存在は、標的ポリヌクレオチドの該 標的配列の多数のコピーを作製するための試薬および条件が機能的であることを 示すものである、を検出する、 ことを含んでなる、方法。 40.該オリゴヌクレオチドプライマーが、それがハイブリダイズする該標的配 列の部分に対して十分に相補的であり、かつそれがその3'−末端で該1ないし 0ヌクレオチド以外でハイブリダイズする該コントロールポリヌクレオチドの部 分に対して相補的である、請求の範囲第39項に記載の方法。 41.修飾したオリゴヌクレオチドプライマーが、該組み合わせ物中に含まれて おり、そこで、該修飾オリゴヌクレオチドプライマーは、該3'ないし5'エクソ ヌクレアーゼによる該1ないし10ヌクレオチドの分解を防ぐ化学修飾がその3 '−末端にある以外は該オリゴヌクレオチドプライマーと実質的に同一である、 請求の範囲第39項に記載の方法。 42.該化学修飾が、ホスホロチオエート類、ホスホン酸エチル類、カルボキサ ミド類、スルホンアミド類、カルバメート類、アセタール類、およびケタール類 からなる群から選択される、請求の範囲第41項に記載の方法。 43.該化学修飾がホスホロチオエートである、請求の範囲第41項に記載の方 法。 44.該オリゴヌクレオチドプライマーが該コントロールポリヌクレオチドにそ の3'−末端の3−5ヌクレオチド以外でハイブリダイズする、請求の範囲第3 9項に記載の方法。 45.伸長オリゴヌクレオチドプライマーの存在を検出し、それが該標的ポリヌ クレオチドの存在と相関している、請求の範囲第39項に記載の方法。 46.該コントロールポリヌクレオチドが長さ50ないし5000ヌクレオチド である、請求の範囲第39項に記載の方法。 47.該コントロールポリヌクレオチドが反応混合物中、約1pMから100pM の濃度で存在する、請求の範囲第39項に記載の方法。 48.工程(5)〜(7)の繰り返しは、温度サイクリングを繰り返すことにより達 成される、請求の範囲第39項に記載の方法。 49.温度サイクリングが少なくとも3回繰り返される、請求の範囲第48項に 記載の方法。 50.該標的ポリヌクレオチドがDNAである、請求の範囲第39項に記載の方 法。 51.工程(c)の生成物に、該配列にハイブリダイズする能力のある標識オリ ゴヌクレオチドプローブまたはその変異体を加え、該ハイブリダイゼーションが 起こったがどうかを測定することを含む、請求の範囲第39項に記載の方法。 52.該オリゴヌクレオチドプライマーをリポーター基で標識する、請求の範囲 第39項に記載の方法。 53.パッケージした組み合わせ物中に: (a)オリゴヌクレオチドプライマー、 (b)該オリゴヌクレオチドプライマーが該オリゴヌクレオチドプライマーの 3'−末端の1−10ヌクレオチド以外でハイブリダイズする配列を有するコン トロールポリヌクレオチド、 (c)3'ないし5'エクソヌクレアーゼによる、該1−10ヌクレオチドの分 解を防ぐ化学修飾をその3'−末端に施した以外は該オリゴヌクレオチドプライ マーと実質的に同一である修飾オリゴヌクレオチドプライマー、 (d)ヌクレオシドトリホスフェート、および、 (e)3'ないし5'エクソヌクレアーゼ、 を含んでなるキット。 54.該オリゴヌクレオチドプライマーが、それがその3'−末端で該1ないし 0ヌクレオチド以外でハイブリダイズする該コントロールポリヌクレオチドの部 分に対して相補的である、請求の範囲第53項に記載のキット。 55.該化学修飾が、ホスホロチオエート類、ホスホン酸エチル類、カルボキサ ミド類、スルホンアミド類、カルバメート類、アセタール類、およびケタール類 からなる群から選択される、請求の範囲第53項に記載のキット。 56.該化学修飾がホスホロチオエートである、請求の範囲第53項に記載のキ ット。 57.該オリゴヌクレオチドプライマーが該コントロールポリヌクレオチドにそ の3'−末端の3−5ヌクレオチド以外でハイブリダイズする、請求の範囲第5 3項に記載の方法。
JP52745197A 1996-02-01 1997-01-30 ポリヌクレオチド増幅の陽性コントロール Expired - Fee Related JP4104657B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1094896P 1996-02-01 1996-02-01
US60/010,948 1996-02-01
PCT/IB1997/000226 WO1997028279A2 (en) 1996-02-01 1997-01-30 Positive controls for use in polynucleotide amplification

Publications (2)

Publication Number Publication Date
JPH11513888A true JPH11513888A (ja) 1999-11-30
JP4104657B2 JP4104657B2 (ja) 2008-06-18

Family

ID=21748174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52745197A Expired - Fee Related JP4104657B2 (ja) 1996-02-01 1997-01-30 ポリヌクレオチド増幅の陽性コントロール

Country Status (5)

Country Link
EP (1) EP0819181B1 (ja)
JP (1) JP4104657B2 (ja)
CA (1) CA2217143A1 (ja)
DE (1) DE69714526T2 (ja)
WO (1) WO1997028279A2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482590B1 (en) 1996-12-20 2002-11-19 Aventis Behring Gmbh Method for polynucleotide amplification
US6365346B1 (en) 1998-02-18 2002-04-02 Dade Behring Inc. Quantitative determination of nucleic acid amplification products
US6200757B1 (en) * 1999-01-19 2001-03-13 Dade Behring Inc. Method for controlling the extension of an oligonucleotide
US6274353B1 (en) 1999-09-22 2001-08-14 Genecopoeia, Inc. Method and compositions for improved polynucleotide synthesis
DE102004033987B4 (de) * 2004-07-14 2006-08-31 Biofocus Gesellschaft für biologische Analytik mbH Verfahren zum spezifischen Nachweis des Bakteriums Taylorella equigenitalis und entsprechendes Kit
DE102005047617A1 (de) * 2005-10-05 2007-04-19 Qiagen Gmbh Polymerase-Kettenreaktions-Verfahren unter Einsatz einer DNA-Polymerase mit Proofreading-Eigenschaft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA936015B (en) * 1992-08-24 1994-03-10 Akzo Nv Elimination of false negatives in nuleic acid detection.
US5882857A (en) * 1995-06-07 1999-03-16 Behringwerke Ag Internal positive controls for nucleic acid amplification

Also Published As

Publication number Publication date
EP0819181A2 (en) 1998-01-21
DE69714526T2 (de) 2003-03-20
DE69714526D1 (de) 2002-09-12
WO1997028279A2 (en) 1997-08-07
JP4104657B2 (ja) 2008-06-18
CA2217143A1 (en) 1997-08-07
WO1997028279A3 (en) 1997-10-09
EP0819181B1 (en) 2002-08-07

Similar Documents

Publication Publication Date Title
EP0300796B1 (en) Amplification method for polynucleotide assays
EP0379369B1 (en) Nucleic acid amplification using single primer
EP0652973B1 (en) Method for introducing defined sequences at the 3' end of polynucleotides
EP0469755B1 (en) Method producing a polynucleotide for use in single primer amplification
US5804375A (en) Reaction mixtures for detection of target nucleic acids
EP1288313B1 (en) System and method for assaying nucleic acid molecules
US5837442A (en) Oligonucleotide primers for amplifying HCV nucleic acid
AU2002210862B2 (en) Method for the amplification and optional characterisation of nucleic acids
EP0549107A1 (en) Method for producing a polynucleotide for use in single primer amplification and phosphorothioate-containing oligonucleotides as primers in nucleic acid amplification
JP2002536981A (ja) 核酸標的配列の存在を測定する方法およびその応用
EP1147230B1 (en) Method for controlling the extension of an oligonucleotide
WO2000070095A2 (en) Homogeneous isothermal amplification and detection of nucleic acids using a template switch oligonucleotide
AU2002210862A1 (en) Method for the amplification and optional characterisation of nucleic acids
JPH08205894A (ja) 核酸の高感度検出方法
CA2308368C (en) Specific and sensitive nucleic acid detection method
JP2015526069A (ja) Rnaテンプレートから開始する等温dna増幅用のキット
JP2001512301A (ja) 核酸増幅のための内部陽性対照
KR100901392B1 (ko) 캐리어 핵산에 의한 핵산 증폭 특이성의 증진
US5605796A (en) Method for preventing amplification of nucleic acid contaminants in amplification mixtures using nuclease-receptor conjugates
JP4104657B2 (ja) ポリヌクレオチド増幅の陽性コントロール
CA2093647C (en) Method for the sensitive detection of nucleic acids
US20060257885A1 (en) Homogeneous assay system
US7070962B1 (en) Positive controls in polynucleotide amplification

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees