JPH1150104A - Production of powder coated with non-magnetic stainless steel - Google Patents

Production of powder coated with non-magnetic stainless steel

Info

Publication number
JPH1150104A
JPH1150104A JP9204046A JP20404697A JPH1150104A JP H1150104 A JPH1150104 A JP H1150104A JP 9204046 A JP9204046 A JP 9204046A JP 20404697 A JP20404697 A JP 20404697A JP H1150104 A JPH1150104 A JP H1150104A
Authority
JP
Japan
Prior art keywords
stainless steel
coating layer
powder
mass
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9204046A
Other languages
Japanese (ja)
Inventor
Junji Saida
淳治 才田
Eiki Takeshima
鋭機 竹島
Masato Araiyama
政人 新井山
Yasusuke Tanaka
庸介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP9204046A priority Critical patent/JPH1150104A/en
Publication of JPH1150104A publication Critical patent/JPH1150104A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively produce a powder coated with non-magnetic stainless steel, having stabilized austenitic structure while obviating the necessity of the use of a target containing large amounts of expansive Ni, by incorporating N effective as an austenite-forming element from an atmosphere into a coating layer. SOLUTION: Powder grains are coated with stainless steel by a sputtering method while rotating a rotating barrel charged with the powder grains at >=0.1 m/min peripheral speed. At this time, N2 gas is mixed at 5-50% partial pressure ratio into the reduced-pressure atmosphere during sputtering to form a coating layer where the crystallite diameter computed from the half-width of X-ray diffraction peak of coating layer is regulated to 5-100 nm and also the Ni equipment Nieq , computed from Nieq =[%Ni]+30×[%C]+0.5×[% Mn]+25×[%M], is regulated to 6-30 mass %. The coating layer has a stainless steel composition containing, e.g. by mass >=4% Ni, 12-30% Cr, and >=0.05% N.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子機器部品,磁気記
録媒体及びそれらの周辺構造物等として有用な非磁性ス
テンレス鋼被覆を施した粉末を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder coated with non-magnetic stainless steel, which is useful as electronic equipment parts, magnetic recording media and their peripheral structures.

【0002】[0002]

【従来の技術】鋼板,ガラス基板,金属部材,セラミッ
クス部材等に耐食性,表面性状に優れたステンレス鋼被
覆をスパッタリング法で施すことは従来から知られてい
る。しかし、金属,ガラス,セラミックス等の粉末に対
するコーティングは、一般的でない。この点、本出願人
が開発した粉末スパッタリング法(特開平2−1530
68号公報,特開平5−271920号公報参照)は粉
末に対する被覆方法として適したものといえる。この方
法では、粉末を充填した回転バレルの回転によって粉末
の流動層を形成し、この流動層にスパッタリングするこ
とにより、粉末粒子表面に金属等の被覆を施している。
このとき、目標とする被覆層の組成に応じてターゲット
の組成や組合せを調整することにより、目標とする組成
をもつ被覆層が粉末粒子の表面に形成される。
2. Description of the Related Art It has been known that a stainless steel coating excellent in corrosion resistance and surface properties is applied to a steel plate, a glass substrate, a metal member, a ceramic member, and the like by a sputtering method. However, coating on powders such as metal, glass, and ceramics is not common. In this respect, a powder sputtering method developed by the present applicant (Japanese Patent Laid-Open No.
No. 68, JP-A-5-271920) can be said to be suitable as a method for coating powder. In this method, a fluidized bed of powder is formed by rotation of a rotary barrel filled with powder, and the fluidized bed is subjected to sputtering to coat the surface of powder particles with a metal or the like.
At this time, a coating layer having the target composition is formed on the surface of the powder particles by adjusting the composition and combination of the target according to the target composition of the coating layer.

【0003】[0003]

【発明が解決しようとする課題】しかし、オーステナイ
ト系ステンレス鋼をターゲットとして用いたスパッタリ
ング法で非磁性ステンレス鋼被覆を形成しようとする
と、NiのスパッタリングレートがCrよりも低いた
め、被覆層の組成が低Ni側にシフトする。また、高エ
ネルギー状態で粉末粒子表面に被着した被覆層構成材料
が一種の急冷効果を受けて被覆層となるため、形成され
た被覆層に大きな内部歪みが発生し易い。その結果、被
覆層が加工誘起マルテンサイト変態を起こし磁性体にな
ることがある。すなわち、非磁性材を狙ってNi量を高
くしても、結果的にマルテンサイト変態によって磁性を
生じ、目標とする特性が得られない。
However, when a nonmagnetic stainless steel coating is formed by a sputtering method using an austenitic stainless steel as a target, the composition of the coating layer is low because the sputtering rate of Ni is lower than that of Cr. Shift to low Ni side. In addition, since the coating layer constituent material applied to the surface of the powder particles in a high energy state becomes a coating layer by receiving a kind of quenching effect, a large internal strain is easily generated in the formed coating layer. As a result, the coating layer may undergo a work-induced martensitic transformation to become a magnetic material. That is, even if the amount of Ni is increased for a non-magnetic material, magnetism is eventually generated by martensitic transformation, and the desired characteristics cannot be obtained.

【0004】被覆層の磁性体化は、Niを多量に含むタ
ーゲットを使用し、被覆層のNi含有量を高くすること
により防止される。しかし、高価なNiを多量に消費す
ることから、製造コスト、ひいては被覆粉末のコストを
上昇させる原因となる。本発明は、このような問題を解
消すべく案出されたものであり、N2 分圧が高いスパッ
タリング雰囲気を使用し、オーステナイト形成元素とし
て有効なNを雰囲気から被覆層に取り込むことにより、
高価なNiを多量に含むターゲットを使用しなくても、
オーステナイト構造が安定化された非磁性ステンレス鋼
被覆粉末を安価に製造することを目的とする。
[0004] The formation of a magnetic material in the coating layer can be prevented by using a target containing a large amount of Ni and increasing the Ni content of the coating layer. However, a large amount of expensive Ni is consumed, which causes an increase in the manufacturing cost and thus the cost of the coating powder. The present invention has been devised to solve such a problem. By using a sputtering atmosphere having a high N 2 partial pressure and incorporating N effective as an austenite forming element from the atmosphere into the coating layer,
Even without using expensive Ni-rich targets,
An object of the present invention is to inexpensively produce a nonmagnetic stainless steel-coated powder having a stabilized austenite structure.

【0005】[0005]

【課題を解決するための手段】本発明は、その目的を達
成するため、粉末粒子を装入した回転バレルを周速0.
1m/分以上で回転させながらスパッタリング法で粉末
粒子をステンレス鋼で被覆する際、スパッタリング中の
減圧雰囲気にN2 ガスを分圧比5〜50%で混入させ、
被覆層のX線回折ピーク半価幅から計算される結晶子径
が5〜100nm以下であり、Nieq=[%Ni]+3
0×[%C]+0.5×[%Mn]+25×[%N]で
算出されるNi当量Nieqが6〜30質量%の範囲にあ
る被覆層を形成することを特徴とする。被覆層のNi当
量Nieqは、7〜15質量%の範囲にあることが好まし
い。被覆層は、たとえばNi:4質量%以上,Cr:1
2〜30質量%,N:0.05質量%以上を含むステン
レス鋼組成をもつ。このような被覆層は、スパッタリン
グレートを考慮して組成を調整したステンレス鋼や混合
物,複数の金属を組み合わせた複合電極等をターゲット
電極に使用することにより形成される。
According to the present invention, in order to achieve the object, a rotating barrel loaded with powder particles is rotated at a peripheral speed of 0.
When coating the powder particles with stainless steel by sputtering while rotating at a speed of 1 m / min or more, N 2 gas is mixed in a reduced pressure atmosphere during sputtering at a partial pressure ratio of 5 to 50%,
The crystallite diameter calculated from the X-ray diffraction half width at half maximum of the coating layer is 5 to 100 nm or less, and Nieq = [% Ni] +3
The coating layer is characterized in that the coating layer has a Ni equivalent Ni eq calculated by 0 × [% C] + 0.5 × [% Mn] + 25 × [% N] in the range of 6 to 30% by mass. The Ni equivalent Ni eq of the coating layer is preferably in the range of 7 to 15% by mass. The coating layer is, for example, Ni: 4% by mass or more, Cr: 1
It has a stainless steel composition containing 2 to 30% by mass and N: 0.05% by mass or more. Such a coating layer is formed by using as a target electrode a stainless steel or a mixture whose composition is adjusted in consideration of a sputtering rate, a composite electrode combining a plurality of metals, or the like.

【0006】[0006]

【実施の形態】粉末スパッタリングには、たとえば図1
に示す装置が使用される。この粉末スパッタリング装置
は、回転バレル1を2本のロール2で支持し、その一方
のロール2をモーター3で回転させるようになってい
る。回転バレル1の内部には、2個のスパッタリング源
4が配置されている。スパッタリング源4には、被覆層
の目標組成に対応する組成に調整されたオーステナイト
系ステンレス鋼,混合物や、複数の異種金属を組み合わ
せた複合電極等がターゲットとして使用される。回転バ
レル1の内部は、分圧比で5〜50%のN2 を含む雰囲
気に維持されている。分圧比の調整によって、オーステ
ナイト構造安定化に必要なNが被覆層に取り込まれる。
5%未満の分圧比では、被覆層に導入されるNが少な
く、形成された被覆層が磁性体になり易い。しかし、5
0%を超える分圧比では、皮膜構造が不規則化し、内部
応力の上昇や未反応ガスの混入が生じ、被覆状態が劣化
すると共に被覆速度も低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For powder sputtering, for example, FIG.
The following device is used. In this powder sputtering apparatus, a rotary barrel 1 is supported by two rolls 2, and one of the rolls 2 is rotated by a motor 3. Inside the rotary barrel 1, two sputtering sources 4 are arranged. As the sputtering source 4, an austenitic stainless steel or a mixture adjusted to a composition corresponding to a target composition of the coating layer, a composite electrode combining a plurality of different metals, or the like is used as a target. Internal rotating barrel 1 is maintained at a partial pressure ratio in an atmosphere containing 5-50% of N 2. By adjusting the partial pressure ratio, N necessary for stabilizing the austenite structure is taken into the coating layer.
At a partial pressure ratio of less than 5%, less N is introduced into the coating layer, and the formed coating layer tends to become a magnetic material. But 5
If the partial pressure ratio exceeds 0%, the coating structure becomes irregular, the internal stress increases, and unreacted gas is mixed. As a result, the coating state deteriorates and the coating speed decreases.

【0007】回転バレル1の上方には、外周に加熱コイ
ル6を有する減圧処理室7が配置されている。減圧処理
室7の底部は、バルブ8を備えた供給管9を介して回転
バレル1に接続されている。バルブ8よりも下方の位置
で、供給管9の内部に二重管構造のガス導入管10が挿
入されている。ガス導入管10は、側面から回転バレル
1の内部に挿入され、先端が回転バレル1の底部に延び
ている。バルブ8よりも下方の位置で、供給管9に分岐
管11が設けられ、分岐管11の先端が流体ジェットミ
ル12に接続されている。流体ジェットミル12の出側
は、循環管13を介して減圧処理室7の上部に接続され
ている。分岐管11,循環管13にはバルブ14,バル
ブ15が組み込まれており、循環管13には固気分離装
置16が接続されている。
Above the rotary barrel 1, a decompression processing chamber 7 having a heating coil 6 on its outer periphery is arranged. The bottom of the decompression processing chamber 7 is connected to the rotary barrel 1 via a supply pipe 9 provided with a valve 8. At a position below the valve 8, a gas introduction pipe 10 having a double pipe structure is inserted inside the supply pipe 9. The gas introduction pipe 10 is inserted into the inside of the rotary barrel 1 from the side, and the tip extends to the bottom of the rotary barrel 1. A branch pipe 11 is provided in the supply pipe 9 at a position below the valve 8, and a tip of the branch pipe 11 is connected to the fluid jet mill 12. The outlet side of the fluid jet mill 12 is connected to the upper part of the decompression processing chamber 7 via the circulation pipe 13. A valve 14 and a valve 15 are incorporated in the branch pipe 11 and the circulation pipe 13, and a solid-gas separation device 16 is connected to the circulation pipe 13.

【0008】回転バレル1に装入される粉末原料5は、
特にその種類や材質に制約を受けるものではないが、ガ
ラス,酸化チタン,アルミナ,チタン,アルミニウム,
マイカ等が使用される。回転バレル1に所定量の粉末原
料5を装入し、減圧処理室7を減圧した後、N2 を含む
Arガスをガス導入管10から回転バレル内に導入す
る。粉末原料5は、分岐管11、流体ジェットミル12
及び循環管13経由で減圧処理室7で加熱コイル6によ
り加熱され、乾燥・脱ガス後に、回転バレル1に落下さ
れる。この条件下で回転バレル1を0.1m/分以上の
周速で回転させながら、減圧雰囲気下でスパッタリング
源4により粉末原料5をスパッタリングする。回転バレ
ル1の周速は、粉末原料5の撹拌状態に大きく影響す
る。スパッタリングに好適な流動状態を形成する上で
は、0.1m/分以上の周速が必要である。0.1m/
分に達しない周速では、粉末原料5が十分に流動化せ
ず、未被覆の粉末粒子が残存する割合が高くなる。
The powder raw material 5 charged in the rotary barrel 1 is
Although there is no particular restriction on the type and material, glass, titanium oxide, alumina, titanium, aluminum,
Mica or the like is used. After a predetermined amount of the powder raw material 5 is charged into the rotary barrel 1 and the pressure in the decompression processing chamber 7 is reduced, an Ar gas containing N 2 is introduced into the rotary barrel from the gas introduction pipe 10. The powder raw material 5 includes a branch pipe 11, a fluid jet mill 12
Then, it is heated by the heating coil 6 in the decompression processing chamber 7 via the circulation pipe 13, and after being dried and degassed, dropped into the rotary barrel 1. The powder material 5 is sputtered by the sputtering source 4 under a reduced pressure atmosphere while rotating the rotary barrel 1 at a peripheral speed of 0.1 m / min or more under these conditions. The peripheral speed of the rotary barrel 1 greatly affects the stirring state of the powder raw material 5. In order to form a flow state suitable for sputtering, a peripheral speed of 0.1 m / min or more is required. 0.1m /
At a peripheral speed that does not reach the minimum, the powder raw material 5 does not sufficiently fluidize, and the ratio of uncoated powder particles remaining increases.

【0009】所定時間経過後にスパッタリングを中止
し、減圧処理室7を減圧にすると共に、ガス導入管10
からArとN2 の混合ガスを導入し、粉末原料5を流体
ジェットミル12経由で減圧処理室7に吸引返送し、ス
パッタリング中に塊状になった粉末原料5をできるだけ
個々の粒子にほぐす。このスパッタリング操作を数回繰
り返すことにより、所定厚みの被覆層が粉末原料5の表
面に形成される。所定厚みまで被覆層が形成した粉末
は、固気分離装置16から回収される。このようなスパ
ッタリングによって粉末原料5に非磁性ステンレス鋼被
覆層を形成するとき、被覆層のX線回折ピーク半価幅か
ら計算される結晶子径を5〜100nmにすることが均
一な被覆層を形成するために必要である。被覆層のX線
回折ピーク半価幅から計算される結晶子径は、被覆層を
構成する結晶粒径と対応しており、一般に本方法のよう
な蒸着組織の場合では基材上に柱状又は粒状に析出す
る。したがって、結晶子径は、このような柱状又は粒状
結晶相の大きさを意味し、これを100nm以下とする
ことにより基材への均一被覆を阻害する粗大柱状晶や粗
大粒状晶の発生が抑制され、良好な被覆を形成すること
ができる。
After a predetermined time has elapsed, the sputtering is stopped, the pressure in the decompression processing chamber 7 is reduced, and
, A mixed gas of Ar and N 2 is introduced, and the powder raw material 5 is sucked and returned to the decompression processing chamber 7 via the fluid jet mill 12 to loosen the powder raw material 5 which has been agglomerated during sputtering as much as possible into individual particles. By repeating this sputtering operation several times, a coating layer having a predetermined thickness is formed on the surface of the powder raw material 5. The powder having the coating layer formed to a predetermined thickness is recovered from the solid-gas separation device 16. When a non-magnetic stainless steel coating layer is formed on the powdered raw material 5 by such sputtering, the coating layer having a uniform crystallite diameter of 5 to 100 nm calculated from the X-ray diffraction peak half width of the coating layer is required. Needed to form. The crystallite diameter calculated from the half-width of the X-ray diffraction peak of the coating layer corresponds to the crystal grain size constituting the coating layer. In general, in the case of a vapor deposition structure such as the present method, a columnar or Precipitates in granular form. Therefore, the crystallite diameter means the size of such a columnar or granular crystal phase, and by setting this to 100 nm or less, the generation of coarse columnar crystals or coarse granular crystals that hinder uniform coating on the substrate is suppressed. And a good coating can be formed.

【0010】結晶子径が100nmを超えると蒸着層の
自由エネルギが下がり、より平衡状態に近付く結果、非
平衡に固溶しオーステナイト構造を安定化させているN
の固溶量が減少して磁性が発現する。逆に結晶子径が5
nmに達しないと内部応力が増大し、加工誘起マルテン
サイトの析出により磁性が発現され易くなる。また、結
晶子径が理論上0nmと見做すことができる非晶質構造
の場合、本発明で規定した組成範囲では磁性が発現しな
くなる。また、Nieq=[%Ni]+30×[%C]+
0.5×[%Mn]+25×[%N]で算出されるNi
当量Nieqは、オーステナイト構造を安定化させる上か
ら6〜30質量%の範囲に調整されている。Ni当量N
eqをこのように規制するとき、多量のNiを含むター
ゲットを使用する必要なく、安定してオーステナイト系
非磁性被覆層が形成される。Ni当量Nieqが6質量%
未満では、被覆層が磁性体化し易い。逆に30質量%を
超えるNi当量Nieqでは、非磁性には有効であるもの
の、多量のNiを必要とすることからコスト高になる。
When the crystallite diameter exceeds 100 nm, the free energy of the deposited layer decreases and approaches a more equilibrium state. As a result, N forms a non-equilibrium solid solution to stabilize the austenite structure.
Decreases in the amount of solid solution and magnetism develops. Conversely, the crystallite diameter is 5
If the thickness does not reach nm, the internal stress increases, and magnetism is easily developed by the precipitation of work-induced martensite. Further, in the case of an amorphous structure in which the crystallite diameter can be considered to be 0 nm in theory, magnetism is not exhibited in the composition range specified in the present invention. Ni eq = [% Ni] + 30 × [% C] +
Ni calculated by 0.5 × [% Mn] + 25 × [% N]
The equivalent Ni eq is adjusted in the range of 6 to 30% by mass from the viewpoint of stabilizing the austenite structure. Ni equivalent N
When i eq is regulated in this manner, the austenitic nonmagnetic coating layer is formed stably without the need to use a target containing a large amount of Ni. Ni equivalent Ni eq is 6% by mass
If it is less than 3, the coating layer is likely to be magnetic. Conversely, a Ni equivalent Ni eq exceeding 30% by mass is effective for non-magnetism, but requires a large amount of Ni, resulting in an increase in cost.

【0011】被覆層の組成としては、Ni:4質量%以
上,Cr:12〜30質量%,N:0.05質量%以上
を含むステンレス鋼組成が掲げられる。ステンレス鋼を
構成する主な元素と構造との関係は一般にシェフラーの
組織図(図2)で示されるが、N2 を含むスパッタリン
グガスで蒸着した皮膜の場合には非平衡組織となり、且
つオーステナイト安定化元素であるNが過飽和に飽和さ
れる結果、オーステナイト相が大きく拡張される。本発
明で規定した条件でスパッタリングしたときには、Ni
当量が6質量%以上であるとマルテンサイトやフェライ
トの生成が抑制される。しかしながら、この場合でもN
iが4質量%以上含まれていないと、Fe−N化合物の
形成により磁性が発現する。また、Ni含有量が4質量
%以上の場合でN含有量が0.08質量%以上になる
と、Ni当量Nieqが6質量%以上となり、他のC,M
n等の元素がなくてもオーステナイト相が十分に安定化
する。なお、Cr含有量が12質量%に満たないと、マ
ルテンサイト相の析出により磁性が発現する虞れがある
と共に、ステンレス鋼としての耐食性が低下する。しか
し、Cr含有量が30質量%を超えると、フェライト相
が析出し易くなり、コスト上昇の原因にもなる。
Examples of the composition of the coating layer include a stainless steel composition containing Ni: 4% by mass or more, Cr: 12 to 30% by mass, and N: 0.05% by mass or more. The relationship between the main elements constituting stainless steel and the structure is generally shown by the structure diagram of Schaeffler (FIG. 2). In the case of a film deposited with a sputtering gas containing N 2 , a non-equilibrium structure is obtained and austenite stability is obtained. As a result, the austenite phase is greatly expanded. When sputtering under the conditions specified in the present invention, Ni
When the equivalent is 6% by mass or more, the formation of martensite and ferrite is suppressed. However, even in this case N
If i is not contained in an amount of 4% by mass or more, magnetism develops due to the formation of the Fe—N compound. Further, when the N content is 0.08% by mass or more when the Ni content is 4% by mass or more, the Ni equivalent Nieq becomes 6% by mass or more, and other C, M
Even without an element such as n, the austenite phase is sufficiently stabilized. If the Cr content is less than 12% by mass, magnetism may be developed due to precipitation of a martensite phase, and the corrosion resistance of stainless steel decreases. However, when the Cr content exceeds 30% by mass, a ferrite phase is likely to precipitate, which causes an increase in cost.

【0012】[0012]

【実施例】【Example】

実施例1:本発明で規定した条件を満足するステンレス
鋼組成の合金で種々の粒径の粉末を粉末スパッタリング
法で被覆し、磁性及び被覆状態を調査した。磁性につい
ては、被覆粉末の透磁率を測定し、透磁率が1.00〜
1.01の範囲にあるものを非磁性ステンレス層○,
1.01を超える透磁率を示したものを磁性をもつもの
×と判定した。被覆状態については、絶縁性原料を用い
た場合にのみ調査し、ステンレス鋼被覆粉末とJIS規
格SUS304又は316Lの平均粒径50μmの粉末
を等量で内径10mmの絶縁性ダイスに装入し、圧力1
0MPaで加圧した後、上下電極間の抵抗を測定した。
そして、ステンレス鋼被覆粉末の電気抵抗値がステンレ
ス鋼粉末の電気抵抗値の90%以上である場合を被覆状
態が特に良好◎,70〜90%の場合を被覆状態良好
○,70%未満の場合を被覆状態不良×と判定した。表
1〜4の調査結果にみられるように、本発明で規定した
条件下で作製したステンレス鋼被覆粉末は、何れも良好
な非磁性状態を呈し、且つ被覆状態も良好であった。
Example 1 Powders of various particle sizes were coated with an alloy having a stainless steel composition satisfying the conditions specified in the present invention by a powder sputtering method, and the magnetism and coating state were investigated. Regarding magnetism, the magnetic permeability of the coated powder was measured, and the magnetic permeability was 1.00 to 1.00.
In the range of 1.01, the non-magnetic stainless steel layer ○,
Those exhibiting a magnetic permeability exceeding 1.01 were determined to be those having magnetism x. The coating state was investigated only when an insulating raw material was used, and an equivalent amount of stainless steel coating powder and JIS standard SUS304 or 316L powder having an average particle diameter of 50 μm were charged into an insulating die having an inner diameter of 10 mm, and the pressure was measured. 1
After pressing at 0 MPa, the resistance between the upper and lower electrodes was measured.
When the electric resistance value of the stainless steel coating powder is 90% or more of the electric resistance value of the stainless steel powder, the coating state is particularly good. When the electric resistance value is 70% to 90%, the coating state is good. Was determined to be poor in coating condition. As can be seen from the investigation results in Tables 1 to 4, all of the stainless steel-coated powders produced under the conditions specified in the present invention exhibited a good non-magnetic state and a good coating state.

【0013】 [0013]

【0014】 [0014]

【0015】 [0015]

【0016】 [0016]

【0017】実施例2:絶縁性セラミック粉末として平
均粒径1μmのAl23 に、JIS規格SUS304
相当の組成をもつステンレス鋼をスパッタリング法で被
覆し、Ni当量10〜23質量%の皮膜を形成した。ス
パッタリング中にN2 ガスの分圧比を一定値50%に維
持し、バレル周速を変化させた。得られたステンレス鋼
被覆粉末は、非磁性で、結晶子径が全て100nm以下
であった。被覆状態を実施例1と同様にして評価し、バ
レルの周速で整理したところ、図3に示すようにバレル
周速が0.1m/分以上になると何れも良好な被覆状態
を示していることが判った。
Embodiment 2: JIS standard SUS304 as Al 2 O 3 having an average particle size of 1 μm as an insulating ceramic powder.
Stainless steel having a considerable composition was coated by a sputtering method to form a film having a Ni equivalent of 10 to 23% by mass. During the sputtering, the partial pressure ratio of the N 2 gas was maintained at a constant value of 50%, and the barrel peripheral speed was changed. The obtained stainless steel-coated powder was nonmagnetic and had a crystallite diameter of 100 nm or less. When the coating state was evaluated in the same manner as in Example 1, and arranged by the peripheral speed of the barrel, as shown in FIG. 3, when the peripheral speed of the barrel became 0.1 m / min or more, all showed a good coating state. It turns out.

【0018】実施例3:絶縁性粉末として平均粒径15
0μmのフレーク状ガラス粉末に、JIS規格SUS3
04相当の組成をもつステンレス鋼をスパッタリング法
で被覆し、Ni当量10〜23質量%の皮膜を形成し
た。バレル周速を一定値0.1m/分に維持し、N2
スの分圧比を変化させた。得られたステンレス鋼被覆粉
末の磁性を測定し、非磁性とN2 ガスの分圧比との関係
を調査した。図4の調査結果にみられるように、N2
スの分圧が5〜50%で良好な非磁性状態及び被覆状態
が得られていた。なかでも、N2 ガス分圧が30〜50
%の範囲にあるとき、特に良好な被覆状態になってい
た。
Example 3 Average particle size of 15 as insulating powder
JIS standard SUS3 on flake glass powder of 0 μm
A stainless steel having a composition equivalent to 04 was coated by a sputtering method to form a film having a Ni equivalent of 10 to 23% by mass. The barrel peripheral speed was maintained at a constant value of 0.1 m / min, and the partial pressure ratio of N 2 gas was changed. The magnetism of the obtained stainless steel coated powder was measured, and the relationship between the non-magnetism and the partial pressure ratio of N 2 gas was investigated. As can be seen from the investigation results in FIG. 4, when the partial pressure of the N 2 gas was 5 to 50%, a favorable non-magnetic state and a coated state were obtained. In particular, the partial pressure of N 2 gas is 30-50.
%, A particularly good coating state was obtained.

【0019】実施例4:絶縁性粉末として平均粒径15
0μmのフレーク状ガラス粉末に、JIS規格SUS3
04相当の組成をもつステンレス鋼をスパッタリング法
で被覆し、Ni当量10〜23質量%の皮膜を形成し
た。バレル周速を一定値0.1m/分に、N2 ガス分圧
を一定値50%に維持し、スパッタリング条件によって
被覆層の結晶子径を変化させた。得られたステンレス鋼
被覆粉末の磁性及び被覆状態を調査し、結晶子径との関
係で整理した。図5の結果にみられるように、結晶子径
が5〜100nmの範囲にあるとき良好な非磁性状態及
び被覆状態が得られていることが判る。なかでも、5〜
30nmの結晶子径で優れた被覆状態になっていた。
Example 4: Average particle size of 15 as insulating powder
JIS standard SUS3 on flake glass powder of 0 μm
A stainless steel having a composition equivalent to 04 was coated by a sputtering method to form a film having a Ni equivalent of 10 to 23% by mass. The barrel peripheral speed was maintained at a constant value of 0.1 m / min, the N 2 gas partial pressure was maintained at a constant value of 50%, and the crystallite diameter of the coating layer was changed depending on the sputtering conditions. The magnetism and the coating state of the obtained stainless steel coating powder were investigated and arranged in relation to the crystallite diameter. As can be seen from the results in FIG. 5, when the crystallite diameter is in the range of 5 to 100 nm, a favorable non-magnetic state and a coated state are obtained. Above all, 5
An excellent coating state was obtained with a crystallite diameter of 30 nm.

【0020】実施例5:絶縁性粉末として平均粒径15
0μmのフレーク状ガラス粉末に、種々の組成をもつス
テンレス鋼をスパッタリング法で被覆した。バレル周速
を一定値0.1m/分に、N2 ガス分圧を一定値50%
に維持し、皮膜中のNi当量を変化させた。なお、本実
施例では、結晶子径を何れも5〜100nmの範囲に調
整した。得られたステンレス鋼被覆粉末の磁性を測定
し、皮膜中のNi当量との関係を調査した。図6の調査
結果にみられるように、6質量%以上のNi当量で良好
な非磁性粉末になっていることが判る。しかし、Ni当
量が30質量%を超えると、N2 ガスの導入を省略でき
るものの、得られたステンレス鋼被覆粉末のコストが非
常に高くなる。
Example 5: Insulating powder having an average particle size of 15
Stainless steel having various compositions was coated on a 0 μm flake glass powder by a sputtering method. Barrel peripheral speed at a constant value of 0.1 m / min, N 2 gas partial pressure at a constant value of 50%
, And the Ni equivalent in the film was changed. In this example, the crystallite diameter was adjusted to a range of 5 to 100 nm. The magnetism of the obtained stainless steel coated powder was measured, and the relationship with the Ni equivalent in the coating was investigated. As can be seen from the investigation results in FIG. 6, it is understood that a good nonmagnetic powder is obtained when the Ni equivalent is 6% by mass or more. However, when the Ni equivalent exceeds 30% by mass, introduction of N 2 gas can be omitted, but the cost of the obtained stainless steel-coated powder becomes extremely high.

【0021】実施例6:絶縁性粉末として平均粒径15
0μmのフレーク状ガラス粉末に、種々の組成をもつス
テンレス鋼をスパッタリング法で被覆した。バレル周速
を一定値0.1m/分に、N2 ガス分圧を一定値50%
に維持し、皮膜中のNi量及びN量を変化させた。な
お、本実施例では、結晶子径を何れも5〜100nmの
範囲に、Cr量を18〜20質量%の範囲に調整した。
得られたステンレス鋼被覆粉末の磁性を測定し、皮膜中
のNi量及びN量との関係を調査した。図7の調査結果
にみられるように、6質量%以上のNi当量で且つNi
量が4質量%以上,N量が0.05質量%以上のとき、
良好な非磁性粉末になっていることが判る。
Example 6: Insulating powder having an average particle size of 15
Stainless steel having various compositions was coated on a 0 μm flake glass powder by a sputtering method. Barrel peripheral speed at a constant value of 0.1 m / min, N 2 gas partial pressure at a constant value of 50%
, And the amounts of Ni and N in the film were changed. In this example, the crystallite diameter was adjusted to 5 to 100 nm, and the Cr content was adjusted to 18 to 20% by mass.
The magnetism of the obtained stainless steel coated powder was measured, and the relationship between the amount of Ni and the amount of N in the film was investigated. As can be seen from the survey results in FIG.
When the amount is 4% by mass or more and the N amount is 0.05% by mass or more,
It turns out that it has become a favorable nonmagnetic powder.

【0022】実施例7:絶縁性粉末として平均粒径15
0μmのフレーク状ガラス粉末に、種々の組成をもつス
テンレス鋼をスパッタリング法で被覆した。バレル周速
を一定値0.1m/分に、N2 ガス分圧を一定値50%
に維持し、皮膜中のNi当量及びCr量を変化させた。
なお、本実施例では、結晶子径を何れも5〜100nm
の範囲に調整した。得られたステンレス鋼被覆粉末の磁
性を測定し、皮膜中のNi当量及びCr量との関係を調
査した。図8の調査結果にみられるように、Ni当量が
6〜30質量%で且つCr量が本発明で規定した範囲に
あるとき、良好な非磁性粉末になっていることが判る。
Example 7: Insulating powder having an average particle size of 15
Stainless steel having various compositions was coated on a 0 μm flake glass powder by a sputtering method. Barrel peripheral speed at a constant value of 0.1 m / min, N 2 gas partial pressure at a constant value of 50%
, And the Ni equivalent and the Cr amount in the film were changed.
In this example, the crystallite diameter was 5 to 100 nm.
Was adjusted to the range. The magnetism of the obtained stainless steel coated powder was measured, and the relationship between the Ni equivalent and the Cr content in the coating was investigated. As can be seen from the investigation results in FIG. 8, when the Ni equivalent is 6 to 30% by mass and the Cr content is within the range specified in the present invention, it is understood that the nonmagnetic powder is good.

【0023】[0023]

【発明の効果】以上に説明したように、本発明において
は、N2 分圧比が高い雰囲気下でスパッタリングするこ
とにより、雰囲気から被覆層にNを取り込み、Ni含有
量が比較的低いターゲットを使用した場合にあっても安
定してオーステナイト構造をもつ非磁性被覆層を粉末粒
子の表面に形成させている。このようにして得られた非
磁性ステンレス鋼被覆粉末は、基材となる粉末の種類や
粒径を自由に選択でき、表面組成も選択できることか
ら、耐食性,コスト等の制約を満足し、良好な非磁性を
呈する粉末となる。また、1μm以下の微粉末では、塗
料や樹脂組成物に添加することによって、小型電子部
品,磁気記録媒体等のケースや表面処理用に用いられ
る。他方、100μmを超えるような大きな被覆粉末
は、ケースや表面処理用は勿論、大型の電子部品やケー
ス等にも使用され、更には低電気抵抗であることを活用
し高周波電磁波シール,電波吸収等の用途にも適用でき
る。
As described above, in the present invention, by sputtering in an atmosphere having a high N 2 partial pressure ratio, N is taken into the coating layer from the atmosphere and a target having a relatively low Ni content is used. Even in this case, a nonmagnetic coating layer having an austenite structure is stably formed on the surface of the powder particles. The nonmagnetic stainless steel-coated powder obtained in this manner can freely select the type and particle size of the base powder and can also select the surface composition, so that it satisfies the constraints of corrosion resistance, cost, etc. It becomes a nonmagnetic powder. Fine powder of 1 μm or less is used for cases and surface treatment of small electronic components, magnetic recording media, etc. by being added to paints and resin compositions. On the other hand, large coating powders exceeding 100 μm are used not only for cases and surface treatment, but also for large electronic components and cases, and furthermore, by utilizing their low electrical resistance, high frequency electromagnetic wave seals, radio wave absorption, etc. It can also be applied to applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 粉末スパッタリングに使用する装置の一例FIG. 1 shows an example of an apparatus used for powder sputtering.

【図2】 シェフラーの組織図Fig. 2 Organization chart of Schaeffler

【図3】 バレルの周速が被覆状態に及ぼす影響を表し
たグラフ
FIG. 3 is a graph showing an effect of a peripheral speed of a barrel on a coating state.

【図4】 N2 ガス分圧比が非磁性及び被覆状態に及ぼ
す影響を表したグラフ
FIG. 4 is a graph showing the effect of the N 2 gas partial pressure ratio on the non-magnetic state and the coating state.

【図5】 被覆層の結晶子径が非磁性及び被覆状態に及
ぼす影響を表したグラフ
FIG. 5 is a graph showing the effect of the crystallite diameter of the coating layer on the non-magnetic state and the coating state.

【図6】 Ni当量が非磁性及び被覆状態に及ぼす影響
を表したグラフ
FIG. 6 is a graph showing the effect of Ni equivalent on non-magnetic and coated states.

【図7】 Ni量及びN量が非磁性に及ぼす影響を表し
たグラフ
FIG. 7 is a graph showing the effects of the amounts of Ni and N on non-magnetism.

【図8】 Ni当量及びCr量が非磁性に及ぼす影響を
表したグラフ
FIG. 8 is a graph showing the effect of Ni equivalent and Cr content on non-magnetism.

【符号の説明】[Explanation of symbols]

1:回転バレル 2:ロール 3:モーター
4:スパッタリング源 5:粉末原料 6:加熱コイル 7:減圧処理室
8:バルブ 9:供給管 10:ガス導入管 11:分岐管
12:流体ジェットミル 13:循環管 14:バルブ 15:バルブ 1
6:固気分離装置
1: rotating barrel 2: roll 3: motor
4: sputtering source 5: powder raw material 6: heating coil 7: decompression processing chamber
8: Valve 9: Supply pipe 10: Gas introduction pipe 11: Branch pipe
12: Fluid jet mill 13: Circulation pipe 14: Valve 15: Valve 1
6: Solid-gas separation device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // G11B 23/04 G11B 23/04 E 33/14 33/14 E (72)発明者 田中 庸介 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI // G11B 23/04 G11B 23/04 E 33/14 33/14 E (72) Inventor Yosuke Tanaka 7 Takatani-Shimmachi, Ichikawa-shi, Chiba No. 1 Nisshin Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉末粒子を装入した回転バレルを周速
0.1m/分以上で回転させながらスパッタリング法で
粉末粒子をステンレス鋼で被覆する際、スパッタリング
中の減圧雰囲気にN2 ガスを分圧比5〜50%で混入さ
せ、被覆層のX線回折ピーク半価幅から計算される結晶
子径が5〜100nm以下であり、Ni eq=[%Ni]
+30×[%C]+0.5×[%Mn]+25×[%
N]で算出されるNi当量Nieqが6〜30質量%の範
囲にある被覆層を形成することを特徴とする非磁性ステ
ンレス鋼被覆を施した粉末の製造方法。
1. A rotating barrel loaded with powder particles is rotated at a peripheral speed.
Sputtering while rotating at 0.1m / min or more
When coating powder particles with stainless steel, sputtering
N in a reduced pressure atmosphereTwo Gas mixed at a partial pressure ratio of 5-50%
And the crystal calculated from the half width of the X-ray diffraction peak of the coating layer.
Having a diameter of 5 to 100 nm or less and Ni eq= [% Ni]
+ 30 × [% C] + 0.5 × [% Mn] + 25 × [%
N] Ni equivalent calculated by N]eqIs in the range of 6 to 30% by mass.
Forming a surrounding coating layer.
Method for producing powder coated with stainless steel.
【請求項2】 Ni:4質量%以上,Cr:12〜30
質量%,N:0.05質量%以上を含むステンレス鋼被
覆層を形成する請求項1記載の非磁性ステンレス鋼被覆
を施した粉末の製造方法。
2. Ni: 4% by mass or more, Cr: 12 to 30
The method for producing a powder coated with a non-magnetic stainless steel according to claim 1, wherein a stainless steel coating layer containing at least 0.05% by mass of N and 0.05% by mass is formed.
JP9204046A 1997-07-30 1997-07-30 Production of powder coated with non-magnetic stainless steel Withdrawn JPH1150104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9204046A JPH1150104A (en) 1997-07-30 1997-07-30 Production of powder coated with non-magnetic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9204046A JPH1150104A (en) 1997-07-30 1997-07-30 Production of powder coated with non-magnetic stainless steel

Publications (1)

Publication Number Publication Date
JPH1150104A true JPH1150104A (en) 1999-02-23

Family

ID=16483864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9204046A Withdrawn JPH1150104A (en) 1997-07-30 1997-07-30 Production of powder coated with non-magnetic stainless steel

Country Status (1)

Country Link
JP (1) JPH1150104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199819A1 (en) * 2016-05-19 2017-11-23 株式会社日本製鋼所 Iron-based sintered alloy and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199819A1 (en) * 2016-05-19 2017-11-23 株式会社日本製鋼所 Iron-based sintered alloy and method for producing same
JP2017206749A (en) * 2016-05-19 2017-11-24 株式会社日本製鋼所 Iron-based sintered alloy and manufacturing method therefor
US10907240B2 (en) 2016-05-19 2021-02-02 The Japan Steel Works, Ltd. Iron-based sintered alloy and method for producing same

Similar Documents

Publication Publication Date Title
CN103038388B (en) Ferromagnetic material sputtering target
TWI449801B (en) Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
CN104221085B (en) Sputtering target for forming magnetic recording film and process for producing same
CN104105812B (en) Ferromagnetic sputtering target with minimized particle generation
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
KR20080065211A (en) Sputtering targets and methods for fabricating sputtering targets having multiple materials
CN102333905A (en) Ferromagnetic-material sputtering target of nonmagnetic-material particle dispersion type
CN103270554A (en) Fe-pt-based sputtering target with dispersed c grains
CN103180481B (en) Ferromagnetic sputtering target
CN102471876A (en) Ferromagnetic material sputtering target
US20030228238A1 (en) High-PTF sputtering targets and method of manufacturing
CN103003468A (en) Ferromagnetic material sputtering target with little particle generation
JP6084711B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
JP5801496B2 (en) Sputtering target
TWI746540B (en) Alloy for seed layer of magnetic recording medium, sputtering target material and magnetic recording medium
JP6815214B2 (en) Flat powder used at high frequency and magnetic sheet containing it
JP6437427B2 (en) Sputtering target for magnetic recording media
JP3482420B2 (en) Graphite-coated metal particles and method for producing the same
CN106029943B (en) Sputtering target
JPH1150104A (en) Production of powder coated with non-magnetic stainless steel
Mendoza-Suarez et al. Magnetic properties of Zn-Sn-substituted Ba-ferrite powders prepared by ball milling
JP2008251993A (en) Magnetic material and magnet using the same
JP7157573B2 (en) Ni-based alloy for seed layer of magnetic recording media
JP4196392B2 (en) Soft magnetic flat powder and method for producing the same
JP2000063999A (en) FLAT Fe-BASE ALLOY POWDER FOR MAGNETIC SHIELD

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005