JPH1149705A - Production of lower olefin - Google Patents

Production of lower olefin

Info

Publication number
JPH1149705A
JPH1149705A JP9220977A JP22097797A JPH1149705A JP H1149705 A JPH1149705 A JP H1149705A JP 9220977 A JP9220977 A JP 9220977A JP 22097797 A JP22097797 A JP 22097797A JP H1149705 A JPH1149705 A JP H1149705A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
oxygen
raw material
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9220977A
Other languages
Japanese (ja)
Other versions
JP3072347B2 (en
Inventor
Yuji Yoshimura
雄二 葭村
Takashi Hayakawa
孝 早川
Kunio Suzuki
邦夫 鈴木
Katsuomi Takehira
勝臣 竹平
Goro Sawada
悟郎 澤田
Kenichi Wakui
顕一 涌井
Mitsuharu Shiozawa
光治 塩沢
Koichi Sato
浩一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Idemitsu Petrochemical Co Ltd
Maruzen Petrochemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
Agency of Industrial Science and Technology
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Idemitsu Petrochemical Co Ltd
Maruzen Petrochemical Co Ltd
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tonen Sekiyu Kagaku KK, Tonen Chemical Corp, Idemitsu Petrochemical Co Ltd, Maruzen Petrochemical Co Ltd, Nippon Petrochemicals Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP9220977A priority Critical patent/JP3072347B2/en
Publication of JPH1149705A publication Critical patent/JPH1149705A/en
Application granted granted Critical
Publication of JP3072347B2 publication Critical patent/JP3072347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a lower olefin that is useful as a basic raw material for a variety of chemicals by catalytically decomposing a hydrocarbon raw material using a catalyst of a rare earth element oxide in the presence of oxygen as the formation of aromatic and heavy side-products is inhibited. SOLUTION: (A) A hydrocarbon raw material (of 2-30 carbon atoms, preferably of 2-20 carbon atoms, particularly ethane) is catalytically decomposed by using (B) a catalyst of a rare earth element oxide such as oxide of lanthanum or neodymium preferably containing an alkali metal and/or alkaline earth metal (lithium or magnesium) as a cocatalyst, in the presence of (C) oxygen at a mixed ratio of the component A to the component C in terms of an atomic ratio of the oxygen/the carbon atoms of 0.01-3 at 500-800 deg.C, preferably 550-780 deg.C to obtain the objective olefin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素原料を触
媒を使用して接触分解することにより低級オレフィン、
主としてエチレン及びプロピレンを製造する方法に関す
る。
The present invention relates to a catalyst for catalytically cracking a hydrocarbon feedstock using a catalyst to produce a lower olefin,
It mainly relates to a method for producing ethylene and propylene.

【0002】[0002]

【従来の技術】エチレン、プロピレン等の低級オレフィ
ンは各種化学品の基礎原料として重要な物質である。従
来、これらの低級オレフィンの製造方法としては、エタ
ン、プロパン、ブタン等のガス状炭化水素あるいはナフ
サ等の液状炭化水素を原料とし、外熱式の管状炉内で水
蒸気雰囲気下に加熱分解する方法が広く実施されてい
る。しかしながら、この方法では、ガス化率を高めるた
め800℃以上の高温を必要とすること、重質物等の副
生が多いこと、さらには分解時に析出する炭素が分解炉
内のコーキングの発生を引き起こすこと等の問題があっ
た。そこで、このような問題を解決する手段として、種
々の触媒を利用した接触分解法が提案されている。例え
ば、酸化クロムと酸化マグネシウムの混合物に、酸化ア
ルミニウム、二酸化珪素、酸化鉄、酸化カルシウム及び
酸化カリウムの少なくとも1種を添加したものを触媒と
し、水蒸気の存在下に炭化水素原料を接触分解する方法
(特公昭53−23806号公報)、希土類を希土酸化
物として20〜100重量%含有する触媒を使用して水
蒸気の存在下に接触分解する方法(特公昭56−299
19号公報)、アルカリ土類金属酸化物のチタン酸塩
に、酸化リチウム、酸化ナトリウム及び酸化カリウムの
中から選ばれる少なくとも一種を混合した混合酸化物触
媒を使用し、水蒸気の存在下に接触分解する方法(特公
昭57−42672号公報)、酸化チタン等の耐火性担
体、周期律表第VIb族金属の酸化物及びアルカリ金属酸
化物から成る触媒を使用し、水蒸気の存在下に接触分解
する方法(特開昭59−193834号公報)、マンガ
ン又は鉄の酸化物と、マグネシウム、ランタン系金属も
しくはニオブの少なくとも1種の酸化物とから成る触媒
を使用し、水蒸気の存在下に接触分解する方法(特公平
7−68151号公報)等が開示されている。これらの
方法はコーキングの発生を低減し、原料のガス化率を高
めることができるという効果を有するものであるが、触
媒活性の発現のため加熱分解の場合と同程度に高い反応
温度を必要とすること、また、いずれの方法も原料とほ
ぼ同量のスチームを原料に混合するため、スチームの加
熱に多大なエネルギーを消費すること等、エネルギー効
率の点で課題があった。一方、結晶性アルミノシリケー
トゼオライトや、ZSM−5類、ZSM−11類等のゼ
オライト系触媒を使用して接触分解する方法(例えば特
開昭61−7218号公報、特開平6−192134号
公報等)が開示されている。これらの方法においては、
スチームを使用することなく比較的低温でオレフィン類
を製造することができるが、いずれも芳香族炭化水素の
併産を目的としているため、エチレン、プロピレン等の
低級オレフィンの選択的製造を行う場合には不適当であ
った。
2. Description of the Related Art Lower olefins such as ethylene and propylene are important substances as basic raw materials for various chemical products. Conventionally, as a method for producing these lower olefins, a method in which a gaseous hydrocarbon such as ethane, propane, butane or a liquid hydrocarbon such as naphtha is used as a raw material and is thermally decomposed in a steam furnace in an externally heated tubular furnace. Is widely practiced. However, in this method, a high temperature of 800 ° C. or more is required to increase the gasification rate, there are many by-products such as heavy substances, and carbon precipitated during decomposition causes coking in the decomposition furnace. There were problems. Therefore, as a means for solving such a problem, a catalytic cracking method using various catalysts has been proposed. For example, a method in which a mixture of chromium oxide and magnesium oxide to which at least one of aluminum oxide, silicon dioxide, iron oxide, calcium oxide and potassium oxide is added as a catalyst is used to catalytically decompose a hydrocarbon raw material in the presence of steam. (JP-B-53-23806), a method of catalytically cracking in the presence of steam using a catalyst containing 20 to 100% by weight of a rare earth oxide as a rare-earth oxide (JP-B-56-299).
No. 19), using a mixed oxide catalyst obtained by mixing at least one selected from lithium oxide, sodium oxide and potassium oxide with a titanate of an alkaline earth metal oxide, and performing catalytic cracking in the presence of steam (JP-B-57-42672), using a catalyst comprising a refractory carrier such as titanium oxide, an oxide of a Group VIb metal of the periodic table and an alkali metal oxide, and catalytically cracking in the presence of steam. Process (JP-A-59-193834), using a catalyst comprising an oxide of manganese or iron and at least one oxide of magnesium, a lanthanum-based metal or niobium, and catalytically cracking in the presence of steam. A method (Japanese Patent Publication No. 7-68151) and the like are disclosed. These methods have the effect of reducing the occurrence of coking and increasing the gasification rate of the raw material, but require a reaction temperature as high as in the case of thermal decomposition for the development of catalytic activity. In addition, there is a problem in terms of energy efficiency, such as that in each method, almost the same amount of steam as the raw material is mixed with the raw material, so that a large amount of energy is consumed for heating the steam. On the other hand, a method of catalytic cracking using a crystalline aluminosilicate zeolite or a zeolite catalyst such as ZSM-5 or ZSM-11 (for example, JP-A-61-7218, JP-A-6-192134, etc.) ) Is disclosed. In these methods,
Olefins can be produced at a relatively low temperature without using steam.However, since all of them are aimed at co-production of aromatic hydrocarbons, when performing selective production of lower olefins such as ethylene and propylene, Was inappropriate.

【0003】[0003]

【発明が解決しようとする課題】本発明は、触媒を使用
して炭化水素原料を接触分解してエチレン、プロピレン
等の低級オレフィンを製造するに際し、芳香族炭化水素
や重質物等の副生物の生成を抑制し、しかも低級オレフ
ィンをエネルギーコスト的に有利に製造する方法を提供
することをその課題とする。
DISCLOSURE OF THE INVENTION The present invention relates to the production of lower olefins such as ethylene and propylene by catalytic cracking of a hydrocarbon raw material using a catalyst, and the production of lower by-products such as aromatic hydrocarbons and heavy substances. It is an object of the present invention to provide a method for producing a lower olefin in an advantageous manner in terms of energy cost while suppressing the production.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を進めた結果、希土類元素酸化物
を主成分とする触媒を使用し、酸素の存在下で接触分解
することにより、工業的に有利な低温で、高選択的にエ
チレン及びプロピレンを製造できることを見出し本発明
を完成した。すなわち、本発明によれば、炭化水素原料
を、希土類元素酸化物触媒を使用し、酸素の存在下に接
触分解させることを特徴とする低級オレフィンの製造方
法が提供される。また、本発明によれば、炭化水素原料
を、アルカリ金属及び/又はアルカリ土類金属を含有す
る希土類元素酸化物からなる触媒を使用し、酸素の存在
下に接触分解させることを特徴とする低級オレフィンの
製造方法が提供される。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, the catalyst was decomposed in the presence of oxygen using a catalyst containing a rare earth element oxide as a main component. As a result, they have found that ethylene and propylene can be produced selectively at a low temperature that is industrially advantageous, and have completed the present invention. That is, according to the present invention, there is provided a method for producing a lower olefin, which comprises catalytically cracking a hydrocarbon raw material in the presence of oxygen using a rare earth oxide catalyst. Further, according to the present invention, a hydrocarbon material is catalytically cracked in the presence of oxygen using a catalyst comprising a rare earth element oxide containing an alkali metal and / or an alkaline earth metal. An olefin production method is provided.

【0005】[0005]

【発明の実施の形態】本発明で使用する炭化水素原料と
しては、常温、常圧でガス状又は液状の炭化水素類が使
用できる。一般的には、炭素数2〜30、好ましくは、
2〜20のパラフィン又はこれを主成分(10wt%以
上)とする炭化水素原料が用いられる。このような炭化
水素原料としては、例えば、エタン、プロパン、ブタ
ン、ペンタン、ヘキサン等のパラフィン類、あるいはナ
フサ、軽油等の軽質炭化水素留分を挙げることができ
る。また、原料成分は飽和炭化水素に限定されるもので
はなく、不飽和結合を有する成分を含有するものでも使
用できる。
BEST MODE FOR CARRYING OUT THE INVENTION As the hydrocarbon raw material used in the present invention, gaseous or liquid hydrocarbons at normal temperature and normal pressure can be used. Generally, it has 2 to 30 carbon atoms, preferably
2 to 20 paraffins or a hydrocarbon raw material containing the same as a main component (10 wt% or more) are used. Examples of such hydrocarbon raw materials include paraffins such as ethane, propane, butane, pentane and hexane, and light hydrocarbon fractions such as naphtha and light oil. The raw material components are not limited to saturated hydrocarbons, and those containing components having unsaturated bonds can also be used.

【0006】本発明の触媒は、希土類元素酸化物を主成
分とする。希土類元素としては、どのようなものでも使
用可能であるが、好ましくは、ランタン、ネオジム、サ
マリウム、ユウロピウム、ガドリニウム、ジスプロシウ
ム、ホルミウム等を挙げることができ、これらを酸化ラ
ンタン、酸化ネオジム、酸化サマリウム等の酸化物とし
て使用する。希土類元素酸化物は、それぞれを単独で使
用しても、また、2種以上を混合して使用してもよい。
触媒の調製は、希土類元素の酸化物又はその種々の塩、
例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸
塩、あるいはアルコキシド、アセチルアセトナト等を、
酸素の存在下に600〜1,000℃の温度で焼成する
ことにより容易に実施できる。
The catalyst of the present invention contains a rare earth element oxide as a main component. As the rare earth element, any can be used, but preferably, lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holmium and the like can be mentioned. Used as an oxide of The rare earth element oxides may be used alone or in combination of two or more.
The preparation of the catalyst comprises a rare earth element oxide or various salts thereof,
For example, acetate, nitrate, halide, sulfate, carbonate, or alkoxide, acetylacetonate,
It can be easily carried out by firing at a temperature of 600 to 1,000 ° C. in the presence of oxygen.

【0007】本発明の前記希土類元素酸化物からなる触
媒は、助触媒として、アルカリ金属及び/又はアルカリ
土類金属を含有することができる。このような助触媒の
使用により、エチレン及びプロピレンの選択率をさらに
高めることができる。前記助触媒において、アルカリ金
属としては、リチウム、ナトリウム、カリウム及びセシ
ウムが挙げられ、アルカリ土類金属としては、マグネシ
ウム、カルシウム、ストロンチウム及びバリウムが挙げ
られる。本発明の触媒において、助触媒は、酸化物、水
酸化物の他、炭酸塩等の金属化合物の形態で存在するこ
とができる。本発明の触媒において、助触媒の使用割合
は、希土類元素の1原子当り、アルカリ金属の場合、
0.01〜10原子、好ましくは0.1〜5原子であ
り、アルカリ土類金属の場合、0.01〜100原子、
好ましくは0.1〜50原子の割合である。
The catalyst comprising the rare earth element oxide according to the present invention may contain an alkali metal and / or an alkaline earth metal as a promoter. Use of such a cocatalyst can further increase the selectivity of ethylene and propylene. In the cocatalyst, the alkali metal includes lithium, sodium, potassium and cesium, and the alkaline earth metal includes magnesium, calcium, strontium and barium. In the catalyst of the present invention, the co-catalyst can be present in the form of a metal compound such as a carbonate in addition to an oxide and a hydroxide. In the catalyst of the present invention, the proportion of the cocatalyst used per atom of the rare earth element is, in the case of an alkali metal,
0.01 to 10 atoms, preferably 0.1 to 5 atoms, and in the case of an alkaline earth metal, 0.01 to 100 atoms,
Preferably, the ratio is 0.1 to 50 atoms.

【0008】助触媒を含有する希土類元素酸化物からな
る触媒を調製する方法としては、粉末混合法、湿式混合
法、含浸法、共沈法、ゾルゲル法等を採用することがで
きる。本発明の触媒の形状は特に限定されず、粉末や成
形品等のいずれの形状のものでもよい。また、これらの
触媒には、シリカ、アルミナ、マグネシアあるいは石英
砂等の充填剤を混合して使用してもよい。
As a method for preparing a catalyst comprising a rare earth element oxide containing a cocatalyst, a powder mixing method, a wet mixing method, an impregnation method, a coprecipitation method, a sol-gel method and the like can be adopted. The shape of the catalyst of the present invention is not particularly limited, and may be any shape such as a powder or a molded product. These catalysts may be used by mixing a filler such as silica, alumina, magnesia or quartz sand.

【0009】本発明による低級オレフィンの製造方法
は、本発明触媒の存在下、炭化水素原料を酸素の存在下
に分解反応させる方法である。この場合、酸素を反応系
に存在させることにより、重質物の生成を抑制し、コー
キングを防止し、さらには低温における触媒の活性を高
めることができる。酸素源は、特に高純度の酸素に限定
されるものではなく、空気を用いても良い。炭化水素原
料と酸素の混合比は、酸素/炭素の原子比で0.01〜
3の範囲、好ましくは0.1〜2の範囲であり、通常は
爆発範囲の範囲外である。酸素/炭素比を3より高くす
ると、一酸化炭素及び二酸化炭素の生成が増加するため
低級オレフィンの選択率が低下し、また、0.01より
低いと触媒の活性が低く原料のガス化率が低下するか、
又は反応温度が高い場合には通常の加熱分解と同様の結
果となりコーキングの発生を招くことになる。
The method for producing a lower olefin according to the present invention is a method of decomposing a hydrocarbon raw material in the presence of the catalyst of the present invention in the presence of oxygen. In this case, by causing oxygen to be present in the reaction system, generation of heavy substances can be suppressed, coking can be prevented, and the activity of the catalyst at low temperatures can be increased. The oxygen source is not particularly limited to high-purity oxygen, and air may be used. The mixing ratio of the hydrocarbon raw material and oxygen is 0.01 to 0.01 atomic ratio of oxygen / carbon.
3, preferably in the range of 0.1 to 2, usually outside the explosion range. When the oxygen / carbon ratio is higher than 3, the production of carbon monoxide and carbon dioxide increases, so that the selectivity of the lower olefin decreases. When the oxygen / carbon ratio is lower than 0.01, the activity of the catalyst is low and the gasification rate of the raw material is low. Decrease or
Alternatively, when the reaction temperature is high, the result is the same as that of ordinary thermal decomposition, which causes coking.

【0010】本発明の接触分解反応は、固定床、流動床
等の形式の反応器を使用し、上記の触媒を充填した触媒
層へ炭化水素原料と酸素の混合流体を供給することによ
り行われる。このとき混合流体は、窒素、水蒸気、ヘリ
ウムあるいはアルゴン等で希釈されていてもよい。反応
温度は500〜800℃、好ましくは550〜780
℃、さらに好ましくは600〜700℃の範囲である。
800℃を超える温度でも実施できるが、この場合には
一酸化炭素及び二酸化炭素の生成が顕著になり、また、
混合流体の酸素/炭素比が低い場合には酸素がほぼ完全
に消費され、熱分解によってコーキングの発生を招くお
それがある。本発明では低温でも十分な触媒活性が発現
できるため、上記範囲の反応温度で十分である。反応圧
力は常圧、減圧あるいは加圧下のいずれでも実施できる
が、通常は常圧が採用される。以上のような条件下に本
発明の方法を実施すれば、低温で炭化水素原料を効率良
く分解でき、コーキング等の問題を回避してエチレン、
プロピレン等の低級オレフィンを選択的に製造すること
ができる。
The catalytic cracking reaction of the present invention is carried out by using a fixed bed, a fluidized bed or the like type reactor and supplying a mixed fluid of a hydrocarbon raw material and oxygen to the catalyst bed filled with the catalyst. . At this time, the mixed fluid may be diluted with nitrogen, steam, helium, argon, or the like. The reaction temperature is 500-800 ° C, preferably 550-780.
° C, more preferably in the range of 600 to 700 ° C.
Although it can be carried out at a temperature exceeding 800 ° C., in this case, formation of carbon monoxide and carbon dioxide becomes remarkable, and
When the oxygen / carbon ratio of the mixed fluid is low, oxygen is almost completely consumed, and there is a possibility that coking may occur due to thermal decomposition. In the present invention, a sufficient catalytic activity can be exhibited even at a low temperature, and thus a reaction temperature in the above range is sufficient. The reaction can be carried out at normal pressure, reduced pressure or increased pressure, but normal pressure is usually employed. If the method of the present invention is carried out under the above conditions, hydrocarbon feedstock can be efficiently decomposed at a low temperature, and ethylene,
Lower olefins such as propylene can be selectively produced.

【0011】なお、本発明では原料に酸素を混合するた
め、原料の一部は一酸化炭素及び二酸化炭素として排出
されることになる。しかしながら、本発明では、従来の
加熱分解法に比較すると、反応温度を100℃以上低下
させることが可能であり、従って、生成物として排出さ
れる二酸化炭素の量は、反応温度の低下分の燃料の燃焼
から発生すると想定される二酸化炭素の量と比較すれば
圧倒的に微量であり、従って、プラント全体を考慮すれ
ば排出される全二酸化炭素量は大幅に削減されることに
なる。
In the present invention, since oxygen is mixed with the raw material, a part of the raw material is discharged as carbon monoxide and carbon dioxide. However, in the present invention, it is possible to lower the reaction temperature by 100 ° C. or more as compared with the conventional thermal decomposition method. The amount of carbon dioxide is extremely small compared to the amount of carbon dioxide expected to be generated from the combustion of the plant. Therefore, the total amount of carbon dioxide emitted is greatly reduced in consideration of the entire plant.

【0012】[0012]

【実施例】以下に本発明を実施例を挙げてさらに詳細に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0013】実施例1〜7 中央に3cmの触媒層を形成し得るように作製された石
英製直管型反応器(内径10mm、長さ30cm)に触
媒の粉末0.2gと石英砂2.2gを機械的に混合した
ものを充填し、固定床流通式反応器を作製した。この触
媒層は、これを、前処理として空気雰囲気下、800℃
で1時間焼成した。その後、この触媒層に対し、n−ブ
タン1.4体積%、酸素1.5体積%、窒素5.7体積
%、ヘリウム91.4体積%の混合流体(酸素/炭素原
子比=0.5)を、反応温度600℃、流量97cc/
minで流通した。反応生成物の分析をガスクロマトグ
ラフィーにより行い、生成ガス収率、原料転化率及び酸
素転化率を次式により算出した。 生成ガス収率(重量%)=各成分重量/供給原料重量×
100 原料転化率(%)=(1−未反応原料重量/供給原料重
量)×100 酸素転化率(%)=(1−未反応酸素重量/供給酸素重
量)×100 触媒として酸化ランタン、酸化ネオジム、酸化サマリウ
ム、酸化ユウロピウム、酸化ガドリニウム、酸化ジスプ
ロシウム、酸化ホルミウムを用いた場合の結果を表1に
示す。
Examples 1 to 7 0.2 g of catalyst powder and quartz sand were placed in a quartz straight tube reactor (inner diameter 10 mm, length 30 cm) made so as to form a catalyst layer of 3 cm in the center. A mixture obtained by mechanically mixing 2 g was filled to prepare a fixed bed flow reactor. This catalyst layer was treated at 800 ° C. in an air atmosphere as a pretreatment.
For 1 hour. Thereafter, a mixed fluid of 1.4% by volume of n-butane, 1.5% by volume of oxygen, 5.7% by volume of nitrogen, and 91.4% by volume of helium (oxygen / carbon atom ratio = 0.5%) was added to the catalyst layer. ) At a reaction temperature of 600 ° C. and a flow rate of 97 cc /
min distributed. The reaction product was analyzed by gas chromatography, and the product gas yield, raw material conversion, and oxygen conversion were calculated by the following equations. Product gas yield (% by weight) = weight of each component / weight of feedstock ×
100 Conversion rate of raw material (%) = (1−weight of unreacted raw material / weight of feed material) × 100 Oxygen conversion rate (%) = (1−weight of unreacted oxygen / weight of supplied oxygen) × 100 Lanthanum oxide, neodymium oxide as catalyst Table 1 shows the results when samarium oxide, europium oxide, gadolinium oxide, dysprosium oxide, and holmium oxide were used.

【0014】比較例1、2 実施例1と同様の条件下において、触媒層に酸化マグネ
シウム又は石英砂をそれぞれ単独で充填した場合の結果
を表1に併せて示す。
Comparative Examples 1 and 2 The results obtained when the catalyst layer was filled with magnesium oxide or quartz sand alone under the same conditions as in Example 1 are also shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の結果から、本発明の触媒を用いた場
合には、エチレン、プロピレンの収率が高く、原料を効
率よく分解することがわかる。
From the results shown in Table 1, it can be seen that when the catalyst of the present invention was used, the yields of ethylene and propylene were high and the raw materials were decomposed efficiently.

【0017】実施例8〜10、比較例3 原料混合流体の酸素/炭素原子比を表2に示す比に変化
させ、反応温度が700℃である以外は実施例1と同様
にして反応を行った。その結果を表2に示す。エチレ
ン、プロピレンの収率は酸素の混合比によって影響され
るが、O/C原子比を適切に規定することにより高収率
で得られること、及び酸素なしの条件下では原料転化率
及びオレフィン収率が低く、触媒の活性が十分に発揮さ
れないことがわかる。
Examples 8 to 10 and Comparative Example 3 The reaction was carried out in the same manner as in Example 1 except that the oxygen / carbon atom ratio of the raw material mixed fluid was changed to the ratio shown in Table 2, and the reaction temperature was 700 ° C. Was. Table 2 shows the results. Although the yields of ethylene and propylene are affected by the mixing ratio of oxygen, they can be obtained in high yields by properly defining the O / C atomic ratio. This shows that the activity of the catalyst is not sufficiently exhibited.

【0018】比較例4 原料混合流体の酸素に代えてスチームを混合した以外は
実施例10と同様に反応を行った。その結果を表2に併
せて示す。スチームを混合した場合でも酸素が存在しな
い条件では、原料転化率及びオレフィン収率が低いこと
がわかる。
Comparative Example 4 A reaction was carried out in the same manner as in Example 10 except that steam was mixed instead of oxygen in the raw material mixed fluid. The results are also shown in Table 2. It can be seen that the raw material conversion and the olefin yield are low under the condition that oxygen is not present even when steam is mixed.

【0019】[0019]

【表2】 [Table 2]

【0020】実施例11〜16 酸化マグネシウム、酸化カルシウム、酸化バリウムのそ
れぞれの粉末に酸化ランタンの粉末を重量比1:1で、
少量の水とともにメノウ乳鉢を用いて混合し、120℃
で一晩乾燥した後、500℃で2時間、引き続き700
℃で2時間焼成し、(i)酸化ランタン/酸化マグネシ
ウム、(ii)酸化ランタン/酸化カルシウム及び(iii)
酸化ランタン/酸化バリウム混合触媒を調製した。それ
ぞれの触媒を使用し、前処理を700℃で1時間の焼成
とし、反応温度を600℃又は700℃とした以外は実
施例1と同様の方法で、n−ブタンの分解反応を行っ
た。その結果を、反応温度600℃の場合を表3に、7
00℃の場合を表4にそれぞれ示す。アルカリ土類金属
酸化物を混合した場合には希土類酸化物単独の場合より
も、エチレンおよびプロピレンの収率が更に向上した。
Examples 11 to 16 Each powder of magnesium oxide, calcium oxide and barium oxide was mixed with a powder of lanthanum oxide in a weight ratio of 1: 1.
Mix in agate mortar with a small amount of water, 120 ° C
After drying overnight at 500 ° C. for 2 hours,
C. for 2 hours, (i) lanthanum oxide / magnesium oxide, (ii) lanthanum oxide / calcium oxide and (iii)
A lanthanum oxide / barium oxide mixed catalyst was prepared. The decomposition reaction of n-butane was performed in the same manner as in Example 1 except that the pretreatment was performed at 700 ° C. for 1 hour using each catalyst, and the reaction temperature was set at 600 ° C. or 700 ° C. Table 3 shows the results at a reaction temperature of 600 ° C.
Table 4 shows the case at 00 ° C. When the alkaline earth metal oxide was mixed, the yield of ethylene and propylene was further improved as compared with the case of the rare earth oxide alone.

【0021】実施例17〜19、比較例5 硝酸リチウム1.1gの水溶液に酸化ランタンの粉末
2.5gを加えて含浸し、水を除去した後、120℃で
一晩乾燥し、500℃で2時間、引き続き700℃で2
時間焼成し、リチウム/酸化ランタン混合触媒を調製し
た。この場合、リチウムは酸化リチウムとして含まれて
いた。同触媒を使用し、触媒量0.69g、前処理を7
00℃で1時間、反応温度を600℃又は700℃とし
た以外は実施例1と同様の方法で、n−ブタンの分解反
応を行った。その結果を、反応温度600℃の場合を表
3に、700℃の場合を表4にそれぞれ示す。また、実
施例19では触媒量を1.26g、前処理を700℃で
1時間、表5に示す組成の原料混合流体の流量を2.3
cc/minとした以外は実施例1と同様にして反応温
度600℃で反応を行った。結果を表5に示す。また、
実施例19と同様の条件下において、触媒層に石英砂の
みを充填して反応を行った場合の結果を表5に併せて示
す。
Examples 17 to 19, Comparative Example 5 An aqueous solution of lithium nitrate (1.1 g) was impregnated with 2.5 g of lanthanum oxide powder, and after removing water, dried at 120 ° C. overnight and dried at 500 ° C. 2 hours, followed by 2 hours at 700 ° C
The mixture was calcined for a period of time to prepare a lithium / lanthanum oxide mixed catalyst. In this case, lithium was included as lithium oxide. Using the same catalyst, a catalyst amount of 0.69 g and a pretreatment of 7
The decomposition reaction of n-butane was performed in the same manner as in Example 1 except that the reaction temperature was set at 600 ° C. or 700 ° C. at 00 ° C. for 1 hour. Table 3 shows the results at a reaction temperature of 600 ° C., and Table 4 shows the results at a reaction temperature of 700 ° C. In Example 19, the amount of the catalyst was 1.26 g, the pretreatment was at 700 ° C. for 1 hour, and the flow rate of the raw material mixed fluid having the composition shown in Table 5 was 2.3.
The reaction was carried out at a reaction temperature of 600 ° C. in the same manner as in Example 1 except that cc / min was used. Table 5 shows the results. Also,
Table 5 also shows the results when the reaction was carried out under the same conditions as in Example 19 by filling the catalyst layer only with quartz sand.

【0022】実施例20、21 硝酸リチウム0.5g及び硝酸ランタン六水和物3.4
gの混合水溶液に酸化カルシウム1gを加えて含浸し、
水を除去した後、120℃で一晩乾燥し、500℃で2
時間、引き続き700℃で2時間焼成し、リチウム/酸
化ランタン/酸化カルシウム混合触媒を調製した。この
場合、リチウムは酸化リチウムとして含まれていた。同
触媒を使用し、触媒量0.68g、前処理を700℃で
1時間、反応温度を600℃又は700℃とした以外は
実施例1と同様の方法で、n−ブタンの分解反応を行っ
た。その結果を、反応温度600℃の場合を表3に、7
00℃の場合を表4にそれぞれ示す。
Examples 20 and 21 0.5 g of lithium nitrate and 3.4 of lanthanum nitrate hexahydrate
1 g of calcium oxide to the mixed aqueous solution of
After removing water, dry at 120 ° C. overnight,
After that, the mixture was calcined at 700 ° C. for 2 hours to prepare a lithium / lanthanum oxide / calcium oxide mixed catalyst. In this case, lithium was included as lithium oxide. Using the same catalyst, the decomposition amount of n-butane was performed in the same manner as in Example 1 except that the catalyst amount was 0.68 g, the pretreatment was 700 ° C. for 1 hour, and the reaction temperature was 600 ° C. or 700 ° C. Was. Table 3 shows the results at a reaction temperature of 600 ° C.
Table 4 shows the case at 00 ° C.

【0023】実施例22 表5に示した組成の原料混合流体を流量2.33cc/min
で流通した以外は実施例20と同様にして反応を行っ
た。その結果を表5に示す。アルカリ金属化合物との混
合触媒は、一酸化炭素及び二酸化炭素の生成を抑制し、
工業的に有用なオレフィン類をさらに選択的に製造でき
ることがわかる。
Example 22 A raw material mixed fluid having the composition shown in Table 5 was supplied at a flow rate of 2.33 cc / min.
The reaction was carried out in the same manner as in Example 20, except that the reaction was conducted. Table 5 shows the results. A mixed catalyst with an alkali metal compound suppresses the production of carbon monoxide and carbon dioxide,
It can be seen that industrially useful olefins can be produced more selectively.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【発明の効果】本発明の方法によれば、ガス状あるいは
液状炭化水素を原料とし、重質物等の副生を少なく、コ
ーキングの発生を防止して、エチレン、プロピレン等の
低級オレフィンを選択的に製造することができる。さら
に、従来の加熱分解法に比較すると、本発明の場合、反
応温度を100℃以上低下させることが可能である。
According to the method of the present invention, gaseous or liquid hydrocarbons are used as raw materials, by-products such as heavy substances are reduced, coking is prevented, and lower olefins such as ethylene and propylene are selectively produced. Can be manufactured. Furthermore, in the case of the present invention, it is possible to lower the reaction temperature by 100 ° C. or more as compared with the conventional thermal decomposition method.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000183657 出光石油化学株式会社 東京都港区芝五丁目6番1号 (71)出願人 000221627 東燃化学株式会社 東京都渋谷区広尾一丁目1番39号 (71)出願人 000231682 日本石油化学株式会社 東京都千代田区内幸町1丁目3番1号 (74)上記5名の代理人 弁理士 池浦 敏明 (72)発明者 葭村 雄二 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 早川 孝 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 鈴木 邦夫 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 竹平 勝臣 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 澤田 悟郎 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内 (72)発明者 涌井 顕一 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内 (72)発明者 塩沢 光治 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内 (72)発明者 佐藤 浩一 東京都千代田区霞が関三丁目2番6号 社 団法人日本化学工業協会内 ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 000183657 Idemitsu Petrochemical Co., Ltd. 5-6-1 Shiba, Minato-ku, Tokyo (71) Applicant 000221627 Tonen Chemical Co., Ltd. 1-1-39 Hiroo, Shibuya-ku, Tokyo (71) Applicant 000231682 Nippon Petrochemical Co., Ltd. 1-3-1, Uchisaiwai-cho, Chiyoda-ku, Tokyo (74) The above five agents Patent Attorney Toshiaki Ikeura (72) Inventor Yuji Yoshimura 1-1-1, Higashi, Tsukuba, Ibaraki Inside the Institute of Materials Science and Technology, Institute of Industrial Science and Technology (72) Inventor Takashi Hayakawa 1-1-1, Higashi, Tsukuba, Ibaraki Prefecture Inside the Institute of Materials Science and Technology, Institute of Industrial Science (72) Kunio Suzuki 1-1-1, Higashi, Tsukuba, Ibaraki Industry (72) Inventor Katsuomi Takehira 1-1-1 Higashi, Tsukuba City, Ibaraki Pref. (72) Inventor Goro Sawada 3-6-1 Kasumigaseki, Chiyoda-ku, Tokyo Japan Chemical Industry Association (72) Inventor Kenichi Wakui 3-6-1 Kasumigaseki, Chiyoda-ku, Tokyo Within the Japan Chemical Industry Association (72) Inventor Koji Shiozawa 3-2-6 Kasumigaseki, Chiyoda-ku, Tokyo (72) Within the Japan Chemical Industry Association (72) Koichi Sato 3-2-2, Kasumigaseki, Chiyoda-ku, Tokyo Japan Chemical Industry Association

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素原料を、希土類元素酸化物から
なる触媒を使用し、酸素の存在下に接触分解させること
を特徴とする低級オレフィンの製造方法。
1. A process for producing lower olefins, comprising subjecting a hydrocarbon raw material to catalytic cracking in the presence of oxygen using a catalyst comprising a rare earth element oxide.
【請求項2】 炭化水素原料を、アルカリ金属及び/又
はアルカリ土類金属を含有する希土類元素酸化物からな
る触媒を使用し、酸素の存在下に接触分解させることを
特徴とする低級オレフィンの製造方法。
2. A process for producing a lower olefin comprising catalytically cracking a hydrocarbon raw material in the presence of oxygen using a catalyst comprising a rare earth element oxide containing an alkali metal and / or an alkaline earth metal. Method.
【請求項3】 該アルカリ金属及び/又はアルカリ土類
金属が、酸化物、水酸化物又は炭酸塩である請求項2に
記載の方法。
3. The method according to claim 2, wherein said alkali metal and / or alkaline earth metal is an oxide, hydroxide or carbonate.
【請求項4】 炭化水素原料と酸素の混合比が、酸素/
炭素の原子比で0.01〜3の範囲である請求項1〜3
のいずれかに記載の方法。
4. The mixing ratio of the hydrocarbon material and oxygen is oxygen / oxygen.
The atomic ratio of carbon is in the range of 0.01 to 3.
The method according to any of the above.
【請求項5】 接触分解反応を、500〜800℃の反
応温度で行う請求項1〜4のいずれかに記載の方法。
5. The method according to claim 1, wherein the catalytic cracking reaction is carried out at a reaction temperature of 500 to 800 ° C.
JP9220977A 1997-08-01 1997-08-01 Method for producing lower olefin Expired - Lifetime JP3072347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9220977A JP3072347B2 (en) 1997-08-01 1997-08-01 Method for producing lower olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9220977A JP3072347B2 (en) 1997-08-01 1997-08-01 Method for producing lower olefin

Publications (2)

Publication Number Publication Date
JPH1149705A true JPH1149705A (en) 1999-02-23
JP3072347B2 JP3072347B2 (en) 2000-07-31

Family

ID=16759542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9220977A Expired - Lifetime JP3072347B2 (en) 1997-08-01 1997-08-01 Method for producing lower olefin

Country Status (1)

Country Link
JP (1) JP3072347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203225A (en) * 2020-01-09 2020-05-29 中国石油大学(华东) Catalyst for preparing low-carbon olefin by catalytic cracking of hydrocarbon and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203225A (en) * 2020-01-09 2020-05-29 中国石油大学(华东) Catalyst for preparing low-carbon olefin by catalytic cracking of hydrocarbon and preparation method thereof
CN111203225B (en) * 2020-01-09 2023-07-04 中国石油大学(华东) Catalyst for preparing low-carbon olefin by hydrocarbon catalytic pyrolysis and preparation method thereof

Also Published As

Publication number Publication date
JP3072347B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US5087786A (en) Halogen-assisted conversion of lower alkanes
JP4933397B2 (en) Integrated catalyst process for converting alkanes to alkenes and catalysts useful in the process
US4176140A (en) Dehydrogenation of hydrocarbons with zinc titanate catalyst
US7531706B2 (en) Process for producing olefin by catalytic cracking of hydrocarbon
JPH0729058B2 (en) Chemical methods and catalysts
US5126502A (en) Process for dehydrogenation of C2 -C10 paraffin to yield alkene product
JP5061852B2 (en) Alkene production method
JP3072348B2 (en) Method for producing lower olefin
US4228040A (en) Lithium- or magnesium-promoted zinc titanate catalyst for dehydrogenation of hydrocarbons
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
US3424808A (en) Dehydrogenation and methanation catalyst and process
US5220092A (en) Process for the preparation of alkenes
US5759946A (en) Catalysts for oxidative dehydrogenation of hydrocarbons
JP6426711B2 (en) Method for producing unsaturated hydrocarbon
JP3072347B2 (en) Method for producing lower olefin
JP2007516078A (en) Hydrocarbon cracking catalyst and method for producing the same
JP4414169B2 (en) Olefin production method
JP2005314339A (en) Method for production of lower olefin
KR20110099112A (en) Process for oxidative dehydrogenation of paraffinic lower hydrocarbons
JPS61289049A (en) Production of propylene
US3761536A (en) Process for coupling propylene and isobutylene
US3879486A (en) Conversion of non-cyclic C{HD 3{B -C{HD 5 {B alkanes and alkenes to aromatic hydrocarbons
RU2004120548A (en) HYDROCARBON STEAM CRACKING CATALYST FOR PRODUCING OLEFINS, METHOD FOR ITS PREPARATION AND METHOD FOR PRODUCING OLEFINS USING THIS CATALYST
JP2946034B1 (en) Method for producing lower olefins
US3855154A (en) Catalyst for conversion of non-cyclic c{11 -c{11 {11 alkanes to aromatic hydrocarbons

Legal Events

Date Code Title Description
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080602

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term