JPH1147812A - Method for preventing sheet camber in hot rolling - Google Patents

Method for preventing sheet camber in hot rolling

Info

Publication number
JPH1147812A
JPH1147812A JP9204660A JP20466097A JPH1147812A JP H1147812 A JPH1147812 A JP H1147812A JP 9204660 A JP9204660 A JP 9204660A JP 20466097 A JP20466097 A JP 20466097A JP H1147812 A JPH1147812 A JP H1147812A
Authority
JP
Japan
Prior art keywords
warpage
sheet
rolling
amount
pass line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9204660A
Other languages
Japanese (ja)
Other versions
JP3298465B2 (en
Inventor
Takeo Yazawa
武男 矢澤
Yasumasa Ichiyanagi
安正 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20466097A priority Critical patent/JP3298465B2/en
Publication of JPH1147812A publication Critical patent/JPH1147812A/en
Application granted granted Critical
Publication of JP3298465B2 publication Critical patent/JP3298465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a preventing method of sheet camber by which the sheet camber generated in the hot rolling of a thick plate and hot strip is effectively prevented. SOLUTION: This method is a method for preventing the generation of the sheet camber in rolling of the next pass by calculating the position of the pass line and the circumferential speed difference between upper and lower work rolls which are necessary to prevent the generation of the sheet camber having the measured amount of the sheet camber and controlling either or both of the position of the pass line and the circumferential speed difference between the upper and lower rolls based on the calculated position of the pass line and the circumferential speed difference between the upper and lower work rolls. The shape ratio in rolling of the next pass is calculated and, in the case that shape ratio is 0.8-1.2, the sheet camber is prevented by applying the position control of the pass line and, in the case that shape ratio is over 1.2, by applying either or combination of both of the position control of the pass line and control of the circumferential speed difference between the upper and lower work rolls.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リバース圧延にお
ける厚板圧延やホットストリップの粗圧延で鋼板の先端
部に発生する板反りを防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing a warpage of a steel sheet from being generated at a tip end of a steel sheet in a thick plate rolling or a hot strip rough rolling in a reverse rolling.

【0002】[0002]

【従来の技術】厚板圧延やホットストリップ粗圧延にお
けるリバース圧延で発生する鋼板先端部の上下反り(以
下板反りと記す)は、ストリッパガイドの破損等の設備
トラブル、下反りの発生により生じる腰折れ等の表面
疵、制御圧延材等での冷却むらの発生による品質劣化等
様々な弊害をもたらす。
2. Description of the Related Art The vertical warpage (hereinafter referred to as "sheet warpage") of a steel plate tip caused by reverse rolling in thick plate rolling or hot strip rough rolling is caused by equipment trouble such as breakage of a stripper guide and waist bending caused by downward warpage. Etc., and various adverse effects such as quality deterioration due to generation of uneven cooling in a controlled rolled material or the like.

【0003】このような非常に大きな操業上の諸問題を
もたらす板反りは、鋼板上下面の温度差、摩擦係数差、
上下ワークロールの周速差、下ワークロールのピックア
ップ量等非常に多くの要因が複雑に重なりあって発生す
るため、その防止方法は困難を極め、従来より多くの研
究が行われているにもかかわらず、完全に防止できてい
ないのが現状である。
[0003] Sheet warpage that causes such extremely large operational problems is caused by a temperature difference between the upper and lower surfaces of the steel sheet, a difference in friction coefficient,
Because many factors such as the difference in peripheral speed between the upper and lower work rolls and the amount of pickup of the lower work roll are complicatedly overlapped, the prevention method is extremely difficult, and even though more research has been conducted than before. Nevertheless, it has not been completely prevented.

【0004】特公平02−30761号公報には、パス
ラインを最適位置に設定した上で、測定した被圧延材の
上下面温度差に基づき発生すると思われる板反り量を予
測し、この予測した板反りを防止するのに必要な上下ワ
ークロール周速差をワークロールに付与して圧延するこ
とにより、板反りを防止する方法が開示されている。し
かしながら、周速差と板反り量の関係を求める際に、形
状比が考慮されていないので、条件によっては板反りの
助長を引き起こす場合があった。
[0004] Japanese Patent Publication No. 02-30761 discloses that after setting a pass line at an optimum position, a sheet warpage amount expected to be generated based on a measured difference between upper and lower surface temperatures of a material to be rolled is predicted. There is disclosed a method for preventing sheet warpage by imparting a difference in peripheral speed between upper and lower work rolls necessary for preventing sheet warpage to a work roll and rolling the work roll. However, when the relationship between the peripheral speed difference and the sheet warpage amount is obtained, the shape ratio is not taken into consideration, so that the sheet warpage may be promoted depending on conditions.

【0005】なお、形状比とは接触弧長(圧延中に被圧
延材と接触している部分のロール周長)と平均板厚の
比、すなわち、接触弧長/平均板厚 をいう。
[0005] The shape ratio refers to the ratio of the contact arc length (the roll circumference of the portion in contact with the material to be rolled during rolling) and the average sheet thickness, ie, contact arc length / average sheet thickness.

【0006】平均板厚(hm)は、圧延機入側板厚を
H、圧延機出側板厚をhとすると、hm=(H+h)/
2である。これに対し、特公平04−62806号公報
には、形状比、上下ワークロール周速比と板反り量の関
係を予め求めておき、形状比が1.0以上2.0未満の
場合には反りが発生する側のワークロールを他方のワー
クロールより高速にし、形状比が2.0以上の場合に
は、反りが発生する側のワークロールを他方のワークロ
ールより低速にして圧延することで板反りの発生を防止
する方法が開示されている。
[0006] The average thickness (h m ) is given by h m = (H + h) / H, where H is the thickness at the entrance to the rolling mill and h is the thickness at the exit side of the rolling mill.
2. On the other hand, in Japanese Patent Publication No. 04-62806, the relationship between the shape ratio, the peripheral speed ratio of the upper and lower work rolls and the amount of sheet warpage is obtained in advance, and when the shape ratio is 1.0 or more and less than 2.0, The work roll on the side where warpage occurs is made faster than the other work roll, and when the shape ratio is 2.0 or more, the work roll on the side where warpage occurs is made slower than the other work roll to perform rolling. A method for preventing the occurrence of warpage is disclosed.

【0007】しかしながら、この方法は、上下ワークロ
ール周速差制御のみで板反りの発生を防止する方法であ
り、ワークロール周速差制御のみで板反りを十分防止す
ることは困難であった。
However, this method is a method for preventing the occurrence of sheet warpage only by controlling the upper and lower work roll peripheral speed differences, and it has been difficult to sufficiently prevent the sheet warpage only by controlling the work roll peripheral speed difference.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
問題に鑑みなされたもので、厚板やホットストリップの
熱間圧延において発生する板反りを効果的に防止するこ
とのできる板反り防止方法を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above-described problems. Accordingly, the present invention has been made in view of the above circumstances. It is an object to provide a method.

【0009】[0009]

【課題を解決するための手段】本発明者らは、板反りが
材料のワークロール噛み込み時に発生する非定常現象で
あることから、従来から試みられてきた有限要素法等の
厳密な数値解析では、実際の現象を正確に捉えることが
きわめて困難であると考え、実圧延での反り発生挙動を
詳細に調査、検討をおこなった。その結果、次のような
知見を得た。
Means for Solving the Problems The inventors of the present invention have conducted rigorous numerical analysis such as the finite element method, which has been conventionally attempted, since the plate warpage is an unsteady phenomenon that occurs when a material is engaged with a work roll. Then, we thought that it was extremely difficult to accurately grasp the actual phenomena, and investigated and examined the warpage generation behavior in actual rolling in detail. As a result, the following findings were obtained.

【0010】1)板反りの発生防止には、上下ワークロ
ールの周速差制御、パスライン位置制御の単独または組
み合わせによる圧延が好適であるが、圧延中の形状比を
考慮しなければ板反りを効果的に防止することができな
い。
1) In order to prevent the occurrence of sheet warpage, it is preferable to perform rolling by controlling the peripheral speed difference between the upper and lower work rolls and controlling the pass line position alone or in combination. Cannot be prevented effectively.

【0011】2)上下ワークロールの周速差制御圧延
を、形状比が0.8〜1.2の圧延に適用しても、板反
りの発生を防止することができない場合が多い。
2) Even if the peripheral speed difference control rolling of the upper and lower work rolls is applied to rolling having a shape ratio of 0.8 to 1.2, occurrence of sheet warpage cannot often be prevented.

【0012】3)パスライン位置制御は、形状比の大き
さに関係なく板反り防止に効果がある。
3) Pass line position control is effective in preventing board warpage regardless of the shape ratio.

【0013】4)高圧水によるデスケーリングを行った
後の圧延では、デスケーリングの板反りにおよぼす影響
があり、その影響を考慮したパスライン位置、ロール周
速制御圧延により板反りをより確実に防止できる。
4) In rolling after descaling using high-pressure water, there is an effect on the sheet warpage due to the descaling, and the sheet warpage is more reliably controlled by controlling the pass line position and roll peripheral speed in consideration of the influence. Can be prevented.

【0014】本発明は、このような知見に基づきなされ
たもので、その要旨は、以下の通りである。
The present invention has been made based on such findings, and the gist thereof is as follows.

【0015】(1)リバース熱間圧延機で鋼板を圧延し
た後、板反り検出器で鋼板先端部に発生した板反り量を
実測し、予め求めておいたパスライン位置と板反り量と
の関係または上下ワークロールの周速差と板反り量との
関係から、前記実測板反り量の板反りの発生を防止する
のに必要なパスライン位置、上下ワークロールの周速差
を算出し、算出したパスライン位置、上下ワークロール
の周速差に基づきパスライン位置と上下ワークロールの
周速のどちらか一方または双方を制御して、次パスの圧
延での板反の発生を防止する方法であって、次パスの圧
延での形状比を算出し、その形状比が0.8以上1.2
以下の場合には、パスライン位置制御圧延を適用し、形
状比が0.8未満または1.2を超える場合にはパスラ
イン位置制御圧延と上下ワークロール周速差圧延のどち
らか一方、または両者の組み合わせを適用して板反りを
防止することを特徴とする熱間圧延における板反り防止
方法。
(1) After a steel sheet is rolled by a reverse hot rolling mill, the amount of warpage generated at the front end of the steel sheet is actually measured by a sheet warpage detector, and the path line position and the sheet warpage amount determined in advance are determined. From the relationship or the relationship between the peripheral speed difference between the upper and lower work rolls and the amount of sheet warpage, the path line position required to prevent the occurrence of the plate warpage of the measured plate warpage amount, and the peripheral speed difference between the upper and lower work rolls, A method of controlling one or both of the pass line position and the peripheral speed of the upper and lower work rolls based on the calculated pass line position and the peripheral speed difference between the upper and lower work rolls to prevent the occurrence of sheet reversal in rolling in the next pass. The shape ratio in the rolling of the next pass is calculated, and the shape ratio is 0.8 or more and 1.2
In the following cases, pass line position control rolling is applied, and if the shape ratio is less than 0.8 or exceeds 1.2, either one of pass line position control rolling and upper and lower work roll peripheral speed difference rolling, or A method for preventing sheet warpage in hot rolling, comprising applying a combination of the two to prevent sheet warpage.

【0016】(2)リバース熱間圧延機で鋼板を圧延し
た後、板反り検出器で鋼板先端部に発生した板反り量を
実測し、次パスの圧延前にデスケーリングを行わない場
合は、前記実測板反り量を次パスの圧延で発生する想定
板反り量とし、また次パスの圧延前にデスケーリングを
おこなう場合は、前記実測板反り量を予め求めておいた
デスケーリングにより変化する板反り量で補正した板そ
り量を次パスの圧延で発生する想定板反り量とし、予め
求めておいたパスライン位置と板反り量との関係または
上下ワークロールの周速差と板反り量との関係から、前
記想定板反り量の板反りの発生を防止するのに必要なパ
スライン位置、上下ワークロールの周速差を算出し、算
出したパスライン位置、上下ワークロールの周速差に基
づきパスライン位置と上下ワークロールの周速のどちら
か一方または双方をを制御して、次パスの圧延で板反り
の発生を防止する方法であって、次パスの圧延での形状
比を算出し、その形状比が0.8以上1.2以下の場合
には、パスライン位置制御圧延を適用し、形状比が0.
8未満または1.2を超える場合にはパスライン位置制
御圧延と上下ワークロール周速差圧延のどちらか一方、
または両者の組み合わせを適用して板反りを防止するこ
とを特徴とする熱間圧延における板反り防止方法。
(2) After rolling a steel sheet with a reverse hot rolling mill, the amount of warpage generated at the front end of the steel sheet is measured by a sheet warpage detector, and if descaling is not performed before rolling in the next pass, The measured plate warpage amount is assumed to be the warpage amount generated in the next pass rolling, and when descaling is performed before rolling in the next pass, the actual measured plate warpage amount is changed by descaling obtained in advance. The amount of warpage corrected by the amount of warpage is assumed to be the amount of warpage generated in the rolling of the next pass, and the relationship between the pass line position and the amount of warpage determined in advance or the peripheral speed difference between the upper and lower work rolls and the amount of warpage is determined. From the relationship, the path line position required to prevent the occurrence of the plate warpage of the assumed plate warpage amount, the peripheral speed difference between the upper and lower work rolls are calculated, and the calculated pass line position, the peripheral speed difference between the upper and lower work rolls are calculated. Pass line rank based on A method of controlling one or both of the peripheral speeds of the upper and lower work rolls to prevent the occurrence of sheet warpage in the rolling of the next pass. When the ratio is 0.8 or more and 1.2 or less, pass line position control rolling is applied, and the shape ratio is set to 0.
If less than 8 or more than 1.2, either pass line position control rolling or upper and lower work roll peripheral speed difference rolling,
Alternatively, a method for preventing sheet warpage in hot rolling, comprising applying a combination of the two to prevent sheet warpage.

【0017】なお、形状比とは、接触弧長と平均板厚の
比、すなわち接触弧長/平均板厚をいう。ここで、触弧
長は、圧延中に被圧延材と接触している部分のワークロ
ールの周長であり、平均板厚 (hm)は、圧延機入側板
厚をH、圧延機出側板厚をhとすると、hm=(H+
h)/2である。
The shape ratio refers to the ratio of the contact arc length to the average plate thickness, that is, the contact arc length / average plate thickness. Here, Sawakocho is circumferential length of the work roll in the portion provided in contact with the material to be rolled during rolling, the average thickness (h m) is the rolling mill entry side thickness of the H, the side plates out rolling mill Assuming that the thickness is h, h m = (H +
h) / 2.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳述する。
Embodiments of the present invention will be described below in detail.

【0019】板反り検出器で圧延後に発生した鋼板先端
部の板反り量を実測するのは、実測板反り量を次パスの
圧延時に発生する板反り量と仮定するためである。
The reason for actually measuring the amount of sheet warpage at the front end of the steel sheet after rolling by the sheet warp detector is to assume that the actually measured sheet warpage is the amount of sheet warpage generated during rolling in the next pass.

【0020】リバース圧延では、前パスで発生した板反
り量と次パスで発生する板反り量とはほぼ同じとなるの
で、前パスの板反り量を次パスの圧延で発生する反り量
と想定する。
In reverse rolling, since the amount of sheet warpage generated in the previous pass and the amount of sheet warpage generated in the next pass are substantially the same, the amount of sheet warpage in the previous pass is assumed to be the amount of warpage generated in the next pass rolling. I do.

【0021】次に、予め求めておく上下ワークロールの
周速差と板反り量との関係およびパスラインと板反り量
との関係、この関係から板反りの発生を防止するのに必
要なパスライン位置、上下ワークロールの周速差を算出
する方法および形状比が0.8以上1.2以下の場合に
は、パスライン位置制御圧延を適用し、形状比が0.8
未満または1.2を超える場合にはパスライン位置制御
圧延と上下ワークロール周速差圧延のどちらか一方、ま
たは両者の組み合わせを適用することについて以下に説
明する。
Next, the relationship between the peripheral speed difference between the upper and lower work rolls and the amount of sheet warpage, the relationship between the pass line and the amount of sheet warpage, and the path required to prevent the occurrence of sheet warpage from this relationship. When the line position, the method of calculating the peripheral speed difference between the upper and lower work rolls and the shape ratio are 0.8 or more and 1.2 or less, pass line position control rolling is applied, and the shape ratio is 0.8
If less than or more than 1.2, application of either one of pass line position control rolling and upper and lower work roll peripheral speed difference rolling or a combination of both will be described below.

【0022】(1)上下ワークロールの周速差と板反り
量との関係 上下ワークロールの周速差と板反り量との関係を調べる
ため、上下ワークロールの周速差を種々変えて下記条件
でリバース圧延した。
(1) Relationship between peripheral speed difference between upper and lower work rolls and sheet warpage In order to examine the relationship between peripheral speed difference between upper and lower work rolls and sheet warpage, the peripheral speed difference between upper and lower work rolls was variously changed as follows. Reverse rolling was performed under the conditions.

【0023】ワークロール直径: 200mm 加熱温度: 1150℃ 圧下率 : 2.5〜45% 図1は、形状比が0.72の圧延における周速差と反り
量との関係を示す図である。
Work roll diameter: 200 mm Heating temperature: 1150 ° C. Reduction rate: 2.5 to 45% FIG. 1 is a diagram showing the relationship between the peripheral speed difference and the amount of warpage in rolling at a shape ratio of 0.72.

【0024】図2は、形状比が1.63の圧延における
周速差と反り量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the peripheral speed difference and the amount of warpage in rolling at a shape ratio of 1.63.

【0025】図3は、形状比0.93と1.07の圧延
における周速差と反り量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the peripheral speed difference and the amount of warpage in rolling at a shape ratio of 0.93 and 1.07.

【0026】これら各図の横軸は、上下ワークロールの
周速差を異速率に置き換えて表記し、板反り量は反り曲
率[1/曲率半径ρ:(1/mm)]で示している。
In each of these figures, the horizontal axis represents the difference between the peripheral speeds of the upper and lower work rolls replaced with a different velocity, and the amount of warpage is represented by the curvature [1 / radius of curvature ρ: (1 / mm)]. .

【0027】異速率△Vとは、下記の通り上ロール速度
uと下ロール速度VLの比を表す。 △V=(VL−Vu)/Vu×100 (%) また、形状比とは、前述の通り接触弧長/平均板厚をい
い、接触弧長は圧延中に被圧延材と接触している部分の
ワークロールの円周長である。
The differential speed ΔV represents the ratio between the upper roll speed Vu and the lower roll speed VL as described below. △ V = The (V L -V u) / V u × 100 (%), the shape ratio, refers to the previously described contact arc length / average thickness, the contact arc length is in contact with the material to be rolled during rolling It is the circumferential length of the work roll in the part where it does.

【0028】接触弧長ldは、次式で求めることができ
る。
The contact arc length ld can be obtained by the following equation.

【0029】[0029]

【数1】 (Equation 1)

【0030】平均板厚hmは、hm=(H+h)/2で求
められる。なお、Hは圧延機入側板厚、hは圧延機出側
板厚である。
The average plate thickness h m is obtained by h m = (H + h) / 2. In addition, H is the thickness of the rolling mill entrance side, and h is the thickness of the rolling mill exit side.

【0031】また、形状比Xは、次式(1)で求められ
る。
The shape ratio X is obtained by the following equation (1).

【0032】[0032]

【数2】 (Equation 2)

【0033】ここで、R:ワークロール半径 △h:圧下量=H−h hm:平均板厚=(H+h)/2 H:入側板厚 h:出側板厚 図1および図2から明らかなように、上下ワークロール
周速差と反り曲率に一定の関係があり、またその関係も
形状比により異なっている。すなわち、図1に示すよう
に形状比が0.72と小さい場合には低速ロール側に反
りが発生し、図2に示すように形状比が1.63と大き
い場合には高速ロール側に反りが発生する。
[0033] Here, R: the work roll radius △ h: reduction ratio = H-h h m: average thickness = (H + h) / 2 H: thickness at entrance side h: apparent from out side thickness FIGS. 1 and 2 As described above, there is a certain relationship between the difference between the circumferential speeds of the upper and lower work rolls and the curvature, and the relationship also differs depending on the shape ratio. That is, when the shape ratio is as small as 0.72 as shown in FIG. 1, warpage occurs on the low-speed roll side, and when the shape ratio is as large as 1.63 as shown in FIG. Occurs.

【0034】ところが、図3に示すように形状比1前後
の周速度差圧延では、高速ロール側、低速ロール側両方
向に反りが発生する不安定現象となる。
However, as shown in FIG. 3, in the peripheral speed difference rolling with a shape ratio of about 1, an unstable phenomenon occurs in which warpage occurs in both the high-speed roll side and the low-speed roll side.

【0035】この理由は、周速度差圧延での反りは、低
速ロール側に板反りを発生しようとする力と高速ロール
側に反りを発生しようとする力が混在しており、形状比
1.0付近でその両者の力がちょうどバランスしてしま
うために、少しの条件の変化で高速ロール側、低速ロー
ル側両方向に反りが発生したものと考えられる。
The reason for this is that, in the warpage in the peripheral speed difference rolling, a force for generating sheet warpage on the low-speed roll side and a force for generating warpage on the high-speed roll side are mixed. It is probable that because the two forces just balanced near 0, warpage occurred in both the high-speed roll side and the low-speed roll side with a slight change in conditions.

【0036】図4は、上下ワークロール周速度差を固定
して、広範囲に形状比を変化させて圧延した場合の反り
発生挙動を示す図である。
FIG. 4 is a view showing the warpage generation behavior when rolling is performed while changing the shape ratio over a wide range while fixing the peripheral speed difference between the upper and lower work rolls.

【0037】図4より、周速度差圧延での反り発生挙動
として、形状比<0.8では低速ロール側に板反りが発
生し、形状比>1.2では高速ロール側に反りが発生
し、0.8<形状比<1.2では低速ロール側、高速ロ
ール側両方向に反りが発生する不安定現象となることが
わかる。
FIG. 4 shows that the warpage in the peripheral speed difference rolling is such that when the shape ratio is <0.8, sheet warpage occurs on the low-speed roll side, and when the shape ratio is> 1.2, warpage occurs on the high-speed roll side. , 0.8 <shape ratio <1.2, an unstable phenomenon occurs in which warpage occurs in both the low-speed roll side and the high-speed roll side.

【0038】このように、形状比が0.8〜1.2以外
での圧延では、ワークロール周速度を制御することによ
り板反りの発生を防止することが可能であることが分か
る。次式(2)、(3)は、板反りの発生を防止するの
に必要な上下ワークロール周速差を算出するための板反
り量(反り曲率κ)と上下ワークロール周速差との関係
式で、広範な試験により求めたものである。
As described above, it can be seen that in rolling at a shape ratio other than 0.8 to 1.2, it is possible to prevent the occurrence of sheet warpage by controlling the peripheral speed of the work roll. The following expressions (2) and (3) are used to calculate the difference between the sheet warpage amount (warp curvature κ) and the upper and lower work roll peripheral speed difference for calculating the difference between the upper and lower work roll peripheral speeds required to prevent the occurrence of sheet warpage. Relational equation, determined by extensive testing.

【0039】0<X<0.8の場合:When 0 <X <0.8:

【0040】[0040]

【数3】 (Equation 3)

【0041】1.2<Xの場合:If 1.2 <X:

【0042】[0042]

【数4】 (Equation 4)

【0043】ここで、X:形状比 △V:上下ワークロール周速差 a1 〜a5 :定数 また、sign(△V)は符号の付け替えを行う関数で、 △V<0の場合:sign(△V)=−1 △V≧0の場合:sign(△V)=+1 となる。Here, X: shape ratio ΔV: difference in peripheral speed between upper and lower work rolls a 1 to a 5 : constant Further, sign (ΔV) is a function for changing the sign, and when ΔV <0: sign (△ V) = − 1 When ΔV ≧ 0: sign (△ V) = + 1.

【0044】(2)パスライン位置と反り発生量との関
係 図5は、パスライン位置と反り曲率との関係を示す図で
ある。この図は、パスラインを上下10mmの範囲で種
々変化させてリバース圧延し、発生した反り曲率を測定
した結果を示す図である。
(2) Relationship between pass line position and amount of warpage FIG. 5 is a diagram showing the relationship between the pass line position and warpage curvature. This figure is a diagram showing the result of measuring the generated curvature by performing reverse rolling while changing the pass line variously in the range of 10 mm up and down.

【0045】パスラインを種々変更した場合の反り発生
挙動は、図5から明らかなように、被圧延材を斜め下側
から挿入すれば下反りが発生し、斜め上側から挿入すれ
ば上反りが発生する。また、異周速圧延で生じた形状比
1.0付近の不安定現象はパスライン制御圧延では発生
しない。さらに、形状比を大きく変更しても板反りの発
生量はほぼ同一の値となっており、板反りを制御する制
御因子としては、異周速圧延よりパスライン制御圧延が
適しているといえる。
As apparent from FIG. 5, the warpage generation behavior when the pass line is variously changed is such that when the material to be rolled is inserted obliquely from below, downward warpage occurs, and when it is inserted obliquely from above, upward warpage occurs. Occur. In addition, the unstable phenomenon near the shape ratio of 1.0 caused by the different peripheral speed rolling does not occur in the pass line controlled rolling. Furthermore, even if the shape ratio is largely changed, the amount of occurrence of sheet warpage is almost the same value, and as a control factor for controlling sheet warpage, it can be said that pass line controlled rolling is more suitable than rolling at different peripheral speeds. .

【0046】しかしながら、パスラインは圧延機の機構
上の問題からその変更範囲に限界があり、大きな板反り
を修正する場合には、パスライン位置を大きく変更する
ことができず、板反り制御能力が不足することが考えら
れる。従って、板反りを十分制御するためにはパスライ
ン制御圧延と異周速圧延の両者を組み合わせて適用する
ことが望ましい。
However, the pass line has a limited range of change due to mechanical problems of the rolling mill. When correcting a large sheet warpage, the pass line position cannot be largely changed, and the sheet warpage control ability is not available. May be insufficient. Therefore, in order to sufficiently control the sheet warpage, it is desirable to apply both the pass line control rolling and the different peripheral speed rolling in combination.

【0047】板反り量(反り曲率κ)とパスライン位置
との関係は次式(4)で表せる。
The relationship between the plate warpage (warp curvature κ) and the pass line position can be expressed by the following equation (4).

【0048】κ=b(X−△h/2)・・・・(4) ここで、△h:圧下量(入側板厚−出側板厚) b :定数 X :形状比 パスライン制御圧延で、制御可能な板反り曲率の上限κ
pは次式(5)により求めることができる。
Κ = b (X−Δh / 2) (4) where Δh: amount of reduction (inlet-side sheet thickness−outlet-side sheet thickness) b: constant X: shape ratio Pass-line controlled rolling , Controllable upper limit of plate warpage κ
p can be obtained by the following equation (5).

【0049】κp=g(△h,h) ・・・・(5) ここで、 △h:圧下量=H−h h:出側板厚 H:入側板厚 g:定数 なお、κp は圧延機により異なるので、使用する圧延機
毎に予め求めておかなければならない。
Κ p = g (△ h, h) (5) where Δh: reduction amount = H−h h: outlet side plate thickness H: inlet side plate thickness g: constant where κ p is Since it differs depending on the rolling mill, it must be determined in advance for each rolling mill to be used.

【0050】図1、図2、図4および図5中の点線で示
した曲線は、上述した関係式(2)、(3)および
(4)式で求めた線で、実際の熱間圧延で発生する板反
り量をきわめて精度良く表現できることがわかる。
The curves shown by the dotted lines in FIGS. 1, 2, 4 and 5 are the lines obtained by the above-mentioned equations (2), (3) and (4), and represent the actual hot rolling. It can be understood that the amount of warpage generated by the above can be expressed with high accuracy.

【0051】次に、圧延前に高圧水でデスケーリングを
おこなった場合の板反りについて説明する。
Next, a description will be given of sheet warpage when descaling is performed with high-pressure water before rolling.

【0052】本発明者らは、熱間圧延の実操業で発生す
る板反りの発生挙動について詳細に調査、検討を行った
結果、同一の圧延条件であってもデスケーリングを施し
て圧延した場合と、施さないで圧延した場合とでは、板
反り発生量が異なることを見いだした。図6に、その一
例を示すが、この例ではデスケーリングを実施すること
で、発生する板反り量が約50%増加している。
The present inventors have conducted detailed investigations and studies on the behavior of sheet warpage occurring in the actual operation of hot rolling. As a result, even when rolling was performed under the same rolling conditions, It was found that the amount of sheet warpage was different between the case where the steel sheet was rolled without being subjected to the heat treatment. FIG. 6 shows an example of this. In this example, the amount of warpage generated is increased by about 50% by performing descaling.

【0053】この理由は、1)デスケーリングを実施し
た際に上面側と下面側では板表面への水のり状態が異な
り、上面側の方が下面側よりも温度が低くなること、
2)デスケーリングにより上下面の表面状態が異なるこ
と、などが考えられる。
The reasons are as follows: 1) When descaling is performed, the state of water flowing to the plate surface is different between the upper surface side and the lower surface side, and the temperature is lower on the upper surface side than on the lower surface side.
2) The surface condition of the upper and lower surfaces may be different due to descaling.

【0054】このデスケーリングによる反り発生状況の
変化を理論的に解明し、定量化することは困難である
が、本発明者では、デスケーリングを実施したパスで
は、前パスで求めた板反り量に補正項αを付与すること
で精度良く予測することができる。
Although it is difficult to theoretically elucidate and quantify the change in the state of the warpage due to the descaling, the present inventor has determined that, in the path where the descaling is performed, the sheet warpage amount obtained in the previous pass is used. Can be predicted with high accuracy by adding the correction term α to.

【0055】この補正項αは板厚や圧下率などにより変
化するが、次式(6)に示す関数式で表すことがでる。
The correction term α varies depending on the sheet thickness, the rolling reduction, and the like, but can be expressed by the following functional equation (6).

【0056】α=f(H,h,T,R)・・・(6) ここで、H:入側板厚 h:出側板厚 T:圧延温度 R:ワークロール径 である。Α = f (H, h, T, R) (6) where, H: incoming plate thickness h: outgoing plate thickness T: rolling temperature R: work roll diameter

【0057】ただし、この式で示す関数fは、圧延機固
有の関数で、かつデスケーリングの条件などで変動する
ため、そのような状況が発生した場合にはその都度校正
する必要がある。
However, since the function f shown in this equation is a function specific to the rolling mill and fluctuates due to descaling conditions and the like, it is necessary to calibrate whenever such a situation occurs.

【0058】以下、実際の圧延における板反り防止方法
について説明する。
Hereinafter, a method for preventing sheet warpage in actual rolling will be described.

【0059】図7は、デスケーリングの補正を加える場
合のパスラインおよび上下ワークロールの周速を制御す
る手法を示すフローチャートである。
FIG. 7 is a flowchart showing a method for controlling the peripheral speeds of the pass line and the upper and lower work rolls when the descaling is corrected.

【0060】まず、熱間圧延機の前後面の少なくとも一
方に設置した板反り検出器で圧延後の鋼板先端部の板反
り量を検出し、反り曲率κを定量化する。次に、次パス
の圧延でデスケーリングを実施するか否かを判断する。
デスケーリングを実施する場合には、(5)式に基づき
補正項αを算出し、この補正項を前記定量化した反り曲
率κに付加して、実際に次パスで発生する反り曲率κ´
を推定する。デスケーリングを実施しない場合には、前
記定量化した反り曲率κが次パスでも同等量発生するも
のとする。
First, the sheet warpage at the tip of the steel sheet after rolling is detected by a sheet warp detector installed on at least one of the front and rear surfaces of the hot rolling mill, and the warpage curvature κ is quantified. Next, it is determined whether or not to perform the descaling in the rolling of the next pass.
When descaling is performed, a correction term α is calculated based on the equation (5), and this correction term is added to the quantified warpage curvature κ to actually generate a warpage curvature κ ′ generated in the next pass.
Is estimated. When the descaling is not performed, it is assumed that the quantified warpage curvature κ is generated by the same amount in the next pass.

【0061】次いで、次パスの圧延での形状比Xを前記
(1)式に基づき算出する。前記求めた反り曲率κ´
(デスケーリングを実施する場合には補正項αを付加し
た曲率)が、パスライン制御で修正可能な曲率かどうか
を判断する。修正可能な上限の曲率κpは上記式(4)
から求めることができる。
Next, the shape ratio X in the rolling of the next pass is calculated based on the above equation (1). The obtained curvature κ ′
It is determined whether (the curvature to which the correction term α is added when the descaling is performed) is a curvature that can be corrected by the pass line control. The upper limit of curvature κ p that can be corrected is given by the above equation (4).
Can be obtained from

【0062】前記求めた反り曲率κ´がκpより小さい
場合には、パスライン制御圧延を適用して、板反り修正
を図る。
[0062] When the obtained warpage curvature κ'is kappa p less than applies the pass line controlled rolling, achieving a correction plate warpage.

【0063】逆に反り曲率κ´が、κp より大きい場合
には、引き続き前記算出した形状比Xが0.8<X<
1.2の範囲に含まれるか否かを判断し、含まれる場合
にはパスライン制御圧延を適用し、含まれていない場合
にはパスライン制御圧延と異周速圧延を組み合わせて適
用する。
On the other hand, when the warpage curvature κ ′ is larger than κ p , the calculated shape ratio X continues to be 0.8 <X <
It is determined whether or not it is included in the range of 1.2. If it is included, pass line controlled rolling is applied. If it is not included, pass line controlled rolling and different peripheral speed rolling are applied in combination.

【0064】以上説明した手順に従って、圧延完了まで
繰り返し板反り制御を実施することで、板反りの防止を
図ることができる。
By performing the sheet warpage control repeatedly until the rolling is completed according to the procedure described above, the sheet warpage can be prevented.

【0065】[0065]

【実施例】板厚140mm、幅200mmの低炭素厚鋼
板を下記の4段熱間圧延機を用いて、表1に示す10パ
スのパススケジュールでリバース圧延をおこなった。
EXAMPLE A low-carbon thick steel plate having a thickness of 140 mm and a width of 200 mm was reverse-rolled by using the following four-stage hot rolling mill according to a 10-pass schedule shown in Table 1.

【0066】ワークロール径:1010mm バックアップロール径:2020mm デスケーリングは、1、3、4、および10パスの各入
側で下記の条件で実施した。
Work roll diameter: 1010 mm Backup roll diameter: 2020 mm Descaling was performed on each entry side of 1, 3, 4, and 10 passes under the following conditions.

【0067】デスケーリング圧力:130kg/cm2 デスケーラ設置位置 :テーブルローラ天面から500
mm 本発明例としてデスケーリングをおこなっても、その板
反りにおよぼす影響を補正しないでパスラインまたはワ
ークロールの周速を制御した場合と、補正した場合の2
回の圧延を実施した。また、比較例としてなにも制御を
しない圧延をおこなった。各パスで適用した制御手段お
よび制御条件は、表1に示す通りである。
Descaling pressure: 130 kg / cm 2 Descaler installation position: 500 from table roller top surface
mm Even when descaling is performed as an example of the present invention, the peripheral speed of the pass line or the work roll is controlled without correcting the influence on the sheet warpage, and the correction is performed in two cases.
Rolling was carried out. As a comparative example, rolling without any control was performed. The control means and control conditions applied in each pass are as shown in Table 1.

【0068】[0068]

【表1】 [Table 1]

【0069】各パスの圧延後に測定した板反り曲率を表
1に併せて示す。
Table 1 also shows the curvature of the sheet measured after rolling in each pass.

【0070】表1から明らかなように、デスケーリング
の有無を考慮しなかった本発明例の場合でも、反り制御
を実施しなかった場合に比較して板反り量の低減効果が
得られている。デスケーリングの有無を考慮し、デスケ
ーリングの影響を補正した本発明例では、全パスにおい
て反り制御効果がよく現れており、最終製品の板反り量
も0.2×10-4(1/mm)と大幅に低減している。
As is apparent from Table 1, even in the case of the present invention in which the presence or absence of descaling is not considered, the effect of reducing the amount of sheet warpage is obtained as compared with the case where the warpage control is not performed. . In the example of the present invention in which the influence of the descaling is corrected in consideration of the presence or absence of the descaling, the warpage control effect is well exhibited in all the passes, and the sheet warpage amount of the final product is also 0.2 × 10 −4 (1 / mm). ) And greatly reduced.

【0071】[0071]

【発明の効果】本発明の板反り防止方法によれば、実圧
延から得られた反り発生挙動に基づく最適な反り制御手
段の選択および正確な反り制御量の決定ができ、板反り
を効果的に防止、軽減することができる。
According to the method for preventing sheet warpage of the present invention, it is possible to select an optimum warpage control means based on the warpage generation behavior obtained from actual rolling and to determine an accurate warpage control amount, thereby effectively reducing sheet warpage. Prevention and reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】異速率と反り曲率の関係(形状比:0.72)
を示す図である。
FIG. 1 is a relationship between a different speed ratio and a curvature (shape ratio: 0.72)
FIG.

【図2】異速率と反り曲率の関係(形状比:1.63)
を示す図である。
FIG. 2 shows a relationship between an abnormal speed ratio and a warpage curvature (shape ratio: 1.63).
FIG.

【図3】異速率と反り曲率の関係(形状比:1.07、
0.93)を示す図である。
FIG. 3 shows the relationship between the differential velocity and the curvature (shape ratio: 1.07,
0.93).

【図4】形状比と反り曲率の関係を示す図である。FIG. 4 is a diagram showing a relationship between a shape ratio and a warpage curvature.

【図5】パスライン位置と反り曲率の関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a pass line position and a warpage curvature.

【図6】デスケーリング実施有無による反り発生状況を
示す図である。
FIG. 6 is a diagram showing a warpage occurrence state depending on whether or not de-scaling is performed;

【図7】制御方法を示すフローチャートである。FIG. 7 is a flowchart showing a control method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B21B 37/00 116M ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B21B 37/00 116M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リバース熱間圧延機で鋼板を圧延した後、
板反り検出器で鋼板先端部に発生した板反り量を実測
し、予め求めておいたパスライン位置と板反り量との関
係または上下ワークロールの周速差と板反り量との関係
から、前記実測板反り量の板反りの発生を防止するのに
必要なパスライン位置、上下ワークロールの周速差を算
出し、算出したパスライン位置、上下ワークロールの周
速差に基づきパスライン位置と上下ワークロールの周速
のどちらか一方または双方を制御して、次パスの圧延で
の板反りの発生を防止する方法であって、次パスの圧延
での形状比を算出し、その形状比が0.8以上1.2以
下の場合には、パスライン位置制御を適用し、形状比が
0.8未満または1.2を超える場合にはパスライン位
置制御と上下ワークロール周速差制御のどちらか一方、
または両者の組み合わせを適用して板反りを防止するこ
とを特徴とする熱間圧延における板反り防止方法。
1. After rolling a steel sheet with a reverse hot rolling mill,
By measuring the amount of sheet warpage generated at the tip of the steel sheet with the sheet warp detector, from the relationship between the pass line position and the sheet warpage amount obtained in advance or the relationship between the peripheral speed difference between the upper and lower work rolls and the sheet warpage amount, The path line position required to prevent the occurrence of the plate warpage of the measured plate warpage amount, the peripheral speed difference between the upper and lower work rolls are calculated, and the calculated pass line position, the pass line position based on the peripheral speed difference between the upper and lower work rolls. And controlling one or both of the peripheral speeds of the upper and lower work rolls to prevent the occurrence of sheet warpage in the rolling of the next pass, and calculating the shape ratio in the rolling of the next pass, When the ratio is 0.8 or more and 1.2 or less, pass line position control is applied. When the shape ratio is less than 0.8 or exceeds 1.2, the difference between the pass line position control and the upper and lower work roll peripheral speed difference is applied. One of the controls,
Alternatively, a method for preventing sheet warpage in hot rolling, comprising applying a combination of the two to prevent sheet warpage.
【請求項2】リバース熱間圧延機で鋼板を圧延した後、
板反り検出器で鋼板先端部に発生した板反り量を実測
し、次パスの圧延前にデスケーリングを行わない場合
は、前記実測板反り量を次パスの圧延で発生する想定板
反り量とし、また次パスの圧延前にデスケーリングをお
こなう場合は、前記実測板反り量を予め求めておいたデ
スケーリングにより変化する板反り量で補正した板反り
量を次パスの圧延で発生する想定板反り量とし、予め求
めておいたパスライン位置と板反り量との関係または上
下ワークロールの周速差と板反り量との関係から、前記
想定板反り量の板反りの発生を防止するのに必要なパス
ライン位置、上下ワークロールの周速差を算出し、算出
したパスライン位置、上下ワークロールの周速差に基づ
きパスライン位置と上下ワークロールの周速のどちらか
一方または双方を制御して、次パスの圧延で板反りの発
生を防止する方法であって、次パスの圧延での形状比を
算出し、その形状比が0.8以上1.2以下の場合に
は、パスライン位置制御を適用し、形状比が0.8未満
または1.2を超える場合にはパスライン位置制御と上
下ワークロール周速差制御のどちらか一方、または両者
の組み合わせを適用して板反りを防止することを特徴と
する熱間圧延における板反り防止方法。
2. After rolling a steel sheet with a reverse hot rolling mill,
Measure the amount of sheet warpage generated at the tip of the steel sheet with the sheet warpage detector, and if the descaling is not performed before rolling in the next pass, the measured sheet warpage amount is assumed to be the estimated sheet warpage generated in the rolling in the next pass. In the case where descaling is performed before rolling in the next pass, an estimated plate to be generated in the rolling in the next pass, the measured amount of sheet warpage corrected by the amount of sheet warpage that changes by descaling obtained in advance from the measured plate warpage is assumed. The amount of warpage, and the relationship between the previously determined pass line position and the amount of sheet warpage or the relationship between the peripheral speed difference between the upper and lower work rolls and the amount of sheet warpage prevent the occurrence of the sheet warpage of the assumed sheet warpage amount. Calculate the pass line position and the peripheral speed difference between the upper and lower work rolls, and calculate one or both of the pass line position and the peripheral speed between the upper and lower work rolls based on the calculated pass line position and the peripheral speed difference between the upper and lower work rolls. control A method of preventing the occurrence of sheet warpage in the rolling of the next pass, and calculating a shape ratio in the rolling of the next pass, and when the shape ratio is 0.8 or more and 1.2 or less, the pass line If position control is applied and the shape ratio is less than 0.8 or exceeds 1.2, either one of pass line position control and upper / lower work roll peripheral speed difference control or a combination of both is applied to reduce sheet warpage. A method for preventing sheet warpage in hot rolling, characterized by preventing the sheet warpage.
JP20466097A 1997-07-30 1997-07-30 Prevention method of sheet warpage in hot rolling Expired - Fee Related JP3298465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20466097A JP3298465B2 (en) 1997-07-30 1997-07-30 Prevention method of sheet warpage in hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20466097A JP3298465B2 (en) 1997-07-30 1997-07-30 Prevention method of sheet warpage in hot rolling

Publications (2)

Publication Number Publication Date
JPH1147812A true JPH1147812A (en) 1999-02-23
JP3298465B2 JP3298465B2 (en) 2002-07-02

Family

ID=16494183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20466097A Expired - Fee Related JP3298465B2 (en) 1997-07-30 1997-07-30 Prevention method of sheet warpage in hot rolling

Country Status (1)

Country Link
JP (1) JP3298465B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172927A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Method of controlling terminal warp of rolled material
JP2010188384A (en) * 2009-02-19 2010-09-02 Nisshin Steel Co Ltd Method for controlling warpage of tip of hot bar
JP2021098213A (en) * 2019-12-23 2021-07-01 Jfeスチール株式会社 Warpage prediction method in hot rolling, warpage control method, manufacturing method for hot-rolled steel plate, method for creating warpage prediction model and hot-rolling facility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736741B (en) * 2013-12-19 2016-04-20 马钢(集团)控股有限公司 A kind of CSP hot rolling very thin color coating base-material board-shape control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172927A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Method of controlling terminal warp of rolled material
JP2010188384A (en) * 2009-02-19 2010-09-02 Nisshin Steel Co Ltd Method for controlling warpage of tip of hot bar
JP2021098213A (en) * 2019-12-23 2021-07-01 Jfeスチール株式会社 Warpage prediction method in hot rolling, warpage control method, manufacturing method for hot-rolled steel plate, method for creating warpage prediction model and hot-rolling facility

Also Published As

Publication number Publication date
JP3298465B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP3844280B2 (en) Reduction leveling setting method in sheet rolling
JP3298465B2 (en) Prevention method of sheet warpage in hot rolling
JP2007160395A (en) Cold tandem rolling method of high-tensile steel
JP6922873B2 (en) Temperable rolling method, temper rolling equipment and steel sheet manufacturing method
JP3283705B2 (en) Prevention method of ear wave shape generation of thick steel plate
JP2005125333A (en) Method for rolling thick plate product
JPH0550130A (en) Method for preventing oil pattern from being generated on cold rolled steel strip
JP5967033B2 (en) Meander control device and meander control method
JP3475785B2 (en) Hot rolling method and apparatus for thin steel sheet
JP3241566B2 (en) Simultaneous control method of camber and wedge in hot rolling
JP2002210513A (en) Method for preventing camber and wedge in hot rolling
TWI766459B (en) Temper rolling method of cold rolled steel sheet
JP2006198661A (en) Cold tandem mill and cold tandem rolling method
JP3709028B2 (en) Cold tandem rolling method and cold tandem rolling mill
JP7347688B2 (en) Meandering control device for continuous rolling mill
JP3117913B2 (en) Shape control method and temper rolling mill in temper rolling
JP2022049156A (en) Tempering rolling facility, and manufacturing method of metal plate
JPH115112A (en) Method for plate rolling
JPH0985318A (en) Prevention of nose bending of hot rolling stock
JP2000015315A (en) Method for controlling position of work roll and device therefor
JP4019035B2 (en) Thick plate rolling method
JP3664067B2 (en) Manufacturing method of hot rolled steel sheet
JPH08267113A (en) Method for controlling plate camber in plate rolling
JP3244113B2 (en) Edge drop control method for sheet material
JPH115111A (en) Device for plate rolling

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees