JPH1147337A - Flying distance measuring instrument for golf ball - Google Patents

Flying distance measuring instrument for golf ball

Info

Publication number
JPH1147337A
JPH1147337A JP22015897A JP22015897A JPH1147337A JP H1147337 A JPH1147337 A JP H1147337A JP 22015897 A JP22015897 A JP 22015897A JP 22015897 A JP22015897 A JP 22015897A JP H1147337 A JPH1147337 A JP H1147337A
Authority
JP
Japan
Prior art keywords
light receiving
light
hit ball
receiving elements
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22015897A
Other languages
Japanese (ja)
Inventor
Koji Kawamura
浩二 河村
Hiromichi Takahashi
弘道 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP22015897A priority Critical patent/JPH1147337A/en
Publication of JPH1147337A publication Critical patent/JPH1147337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to exactly measure the elevation angle and speed of a hit ball by providing the instrument with two rows of light receiving elements which receive the rays emitted from a light source and measuring the initial flying elevation angle and speed of the hit ball from the value of the light quantities received by the respective light receiving elements and the detection time thereof when the hit ball passes the elements. SOLUTION: When the hit ball reflects the irradiation light in a light receiving section 1 and enters the light receiving range of the row of the first light receiving elements 7, this reflected light is received by the first light receiving elements 7 and the light emission luminance of the IR light emitting diodes of a light emitting section 1 is increased so that the reflected light quantity of the hit ball to the row of the second light receiving element 8 is increased. When the hit ball arrives at the light receiving range of the row of the second light receiving elements 8, the reflected light of the hit ball is received by the second light receiving elements 8. The same holds true of the third light receiving elements as well. The angle at which the segments connecting the pass positions of the hit ball obtd. by the rows of the respective elements is defined as the elevation angle and the speed of the hit ball is calculated from this elevation angle and the difference between the intervals of the light receiving elements and the time when there is the max. output of the light receiving elements. The carry is calculated from these elevation angles and the speeds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はゴルフボールの飛距
離測定を目的とした、ゴルフボールの飛び出し仰角と速
度の測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the elevation angle and speed of a golf ball to measure the flight distance of the golf ball.

【0002】[0002]

【従来の技術】真空中を初速度vで打ち出された物体の
飛距離は、仰角と重力加速度により算出される。ゴルフ
ボ−ルの打球の場合、空気抵抗やボ−ルのスピンにより
真空中の場合とは異なる運動をする。この運動について
は例えば日本工業大学研究報告第16巻第4号に述べら
れる運動方程式により表わすことができ、打球の仰角と
速度を変数として打球の空中飛距離(キャリ−)を算出
する実験式が作られている。そこでゴルフ練習場のよう
な空間的に限られた場所においても、打者が自打球のキ
ャリ−を知る為に、例えば特開昭56−43505号公
報に示される光源と光電素子を用いた方法により計測さ
れる仰角と速度とで、打球の飛距離を推定する装置が利
用されている。
2. Description of the Related Art The flight distance of an object launched in a vacuum at an initial velocity v is calculated from the elevation angle and the gravitational acceleration. In the case of hitting a golf ball, the ball moves differently from that in a vacuum due to air resistance and spin of the ball. This motion can be represented by the equation of motion described in, for example, Nippon Institute of Technology Research Report Vol. 16, No. 4, and an empirical formula for calculating the flying distance (carry) of a hit ball using the elevation angle and speed of the hit ball as variables is given by: It is made. Therefore, even in a spatially limited place such as a driving range, in order for a batter to know the carry of his own ball, a method using a light source and a photoelectric element disclosed in Japanese Patent Application Laid-Open No. 56-43505 is used. A device that estimates the flight distance of a hit ball based on the measured elevation angle and speed is used.

【0003】[0003]

【発明が解決しようとする課題】前述の特開昭56−4
3505号公報では、打球の飛び出し速度を計測する方
法として、図7に示すように同心円弧状に並んだ2列の
光電素子群に対して打球が横切るとき、各列において最
初に打球により光電素子が遮光された時刻の差を測り、
その間に打球が移動する距離は列の間隔であるとして、
打球の速度を算出していた。また円弧状に並んだ2列の
光電素子の外側の列に属する光電素子の位置Mと、ボー
ルの定置箇所Tとを結ぶ線分が水平線となす角度θを打
球の飛び出し仰角としていた。しかしながらこの方法で
は、隣り合う光電素子間の何処を打球が通ろうと、ボー
ルの定置箇所Tと最初に打球を検出した光電素子の位置
Mのなす角θを持って打球の通過点としているので仰角
に対する精度が低く、また速度算出に用いた時間におけ
る打球の移動量が列間隔と常に等しいとはいえないの
で、従ってこれらにより求めた打球のキャリーも高い精
度にはなり得ないという問題があった。
The above-mentioned Japanese Patent Application Laid-Open No. Sho 56-4
In Japanese Patent No. 3505, as a method of measuring the pop-out speed of a hit ball, as shown in FIG. 7, when a hit ball crosses two rows of concentric arc-shaped photoelectric elements, the photoelectric element is first hit in each row. Measure the difference between the times of shading,
Assuming that the distance the ball moves during that time is the interval between rows,
The speed of the hit ball was calculated. In addition, the angle θ at which a line connecting the position M of the photoelectric element belonging to the outer row of the two rows of photoelectric elements arranged in an arc and the fixed position T of the ball forms a horizontal line is defined as the launch angle of the hit ball. However, in this method, no matter where the hit ball passes between the adjacent photoelectric elements, the elevation point is set as the passing point of the hit ball with the angle θ formed by the fixed position T of the ball and the position M of the photoelectric element that first detects the hit ball. And the amount of movement of the hit ball in the time used for calculating the speed is not always equal to the row interval, so that the carry of the hit ball obtained by these methods cannot be highly accurate. .

【0004】[0004]

【課題を解決するための手段】本発明は従来の問題に鑑
みなされたもので、光源と、該光源より照射される光線
を受光する2列の受光素子群よりなり、打球の通過時に
各受光素子が受光する光量の値とその検出時刻により、
打球の飛び出し仰角と速度を計測するゴルフボールの飛
距離計測装置を提案するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the conventional problems, and comprises a light source and two rows of light receiving elements for receiving light rays emitted from the light source. By the value of the amount of light received by the element and the detection time,
The present invention proposes a golf ball flight distance measuring device that measures the angle of elevation and speed of a hit ball.

【0005】[0005]

【発明の実施の形態】第1受光素子列が打球を検出する
と発光部が光線の照射光量を増し、第2、第3受光素子
列の各受光素子が受光量に応じた電気量をそれぞれ出力
する。この出力値はサンプリング時間毎にA/D変換さ
れた数値デ−タとしてサンプリング時刻との対でメモリ
に格納され、各受光素子の出力値と既知の受光素子間隔
により受光素子列上の打球通過位置を算出する。第2、
第3の受光素子列上の打球の通過位置を結ぶ線分が水平
線となす角を打球の仰角とし、得られた仰角と既知の受
光素子間隔と受光素子の最大出力のあった時刻の差より
打球の速度を算出する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When a first light receiving element array detects a hit ball, a light emitting section increases the amount of light emitted, and each of the light receiving elements of the second and third light receiving element arrays outputs an electric quantity corresponding to the received light quantity. I do. This output value is stored in the memory as numerical data A / D-converted for each sampling time in combination with the sampling time, and the hitting ball on the light-receiving element array is output based on the output value of each light-receiving element and the known light-receiving element interval. Calculate the position. Second,
The angle between the line connecting the passing position of the hit ball on the third light receiving element row and the horizontal line is defined as the elevation angle of the hit ball, and the difference between the obtained elevation angle, the known light receiving element interval, and the time at which the maximum output of the light receiving element was obtained. Calculate the speed of the hit ball.

【0006】[0006]

【実施例】本発明の計測器は、図1に要部を一部破断状
態で示すように、光線をゴルフボールの打球に照射する
発光部1と、光線を照射されたゴルフボールの打球の反
射光を受光する受光素子7、8、9の列と、これら受発
光素子を配置した回路基板3,4と、これら基板3,4
を固定し且つ受発光素子の光軸と同軸な光路孔を有する
箱状部材5と、この箱状部材5にあけた光路孔と共同し
て受光光線の絞りとなる光路孔を有する絞板6よりな
る。この種の装置は屋外で使用することが多いので、外
光の影響を小さくするために、発光部1には例えば赤外
発光ダイオードを用いて、一定周波数の搬送波として照
射する。搬送周波数は、例えば一般にフィルタが流通し
ているために実現しやすい455kHzでよい。第1受
光素子7の列はゴルフボールが打ち出されたことを検出
するための素子列であり(図3参照)、第1受光素子7
の列が打球の反射光を受光すると発光部1が光線の照射
光量を増し、第2、第3受光素子8,9の列の各受光素
子が受光量に応じた電気量をそれぞれ出力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A measuring instrument according to the present invention comprises a light emitting section 1 for irradiating a light beam to a hit ball of a golf ball and a hitting ball of the golf ball irradiated with the light ray, as shown in FIG. Rows of light receiving elements 7, 8, 9 for receiving reflected light, circuit boards 3, 4 on which these light receiving and emitting elements are arranged, and boards 3, 4
And a diaphragm plate 6 having an optical path hole coaxial with the optical axis of the light receiving and emitting element, and a diaphragm plate 6 having an optical path hole that becomes a diaphragm for a received light beam in cooperation with the optical path hole formed in the box-shaped member 5. Consisting of Since this type of device is often used outdoors, in order to reduce the influence of external light, the light emitting unit 1 uses, for example, an infrared light emitting diode and irradiates it as a carrier wave of a constant frequency. The carrier frequency may be, for example, 455 kHz, which is generally easy to realize due to the distribution of filters. The row of the first light receiving elements 7 is an element row for detecting that the golf ball has been hit (see FIG. 3).
When the row receives the reflected light of the hit ball, the light emitting section 1 increases the irradiation light quantity of the light beam, and each light receiving element in the second and third light receiving elements 8, 9 outputs an electric quantity corresponding to the received light quantity.

【0007】この出力電気量はサンプリング時間毎に、
サンプリング時刻との対としてA/D変換後、メモリに
格納される。第2受光素子8の列は受光素子を等間隔に
配置したもので、各受光素子8,8,・・・・、8それ
ぞれのサンプリングデ−タ中の最大値と既知の受光素子
間隔により列上の打球通過位置を算出するものである。
第3受光素子9の列も第2受光素子8の列と同じ役割を
果たすもので、各素子8,9の列で得られた打球の通過
位置を結ぶ線分が水平線となす角を打球の仰角とし、得
られた仰角と既知の受光素子間隔と受光素子の最大出力
のあった時刻の差より打球の速度を算出する。求められ
た打球の仰角と速度の値を用いて、CPU14により飛
距離の算出が行われる。飛距離はLCD19等の表示手
段により表示される。なお、受光素子8,9の出力は、
受光面に平面に置いた白色板に対する光源の反射光を受
光するなどして、あらかじめ補正されており、同一光量
を受光したときに各受光素子が出力する値は各列内で等
しくなるように調整されている。
[0007] The output electric quantity is calculated every sampling time.
After A / D conversion as a pair with the sampling time, it is stored in the memory. The rows of the second light receiving elements 8 have light receiving elements arranged at equal intervals, and are arranged in accordance with the maximum value in the sampling data of each of the light receiving elements 8, 8,... The upper ball passing position is calculated.
The row of the third light receiving elements 9 also plays the same role as the row of the second light receiving elements 8, and the line connecting the passing positions of the hit balls obtained in the rows of the respective elements 8, 9 forms an angle between the horizontal line and the hit ball. The speed of the hit ball is calculated from the difference between the obtained elevation angle, the known interval between the light receiving elements, and the time at which the maximum output of the light receiving element was obtained. The flying distance is calculated by the CPU 14 using the obtained values of the elevation angle and the velocity of the hit ball. The flight distance is displayed by display means such as the LCD 19. The outputs of the light receiving elements 8 and 9 are
It has been corrected in advance, for example, by receiving the reflected light of the light source against a white plate placed on a flat surface on the light receiving surface, so that the values output by each light receiving element when receiving the same amount of light are equal in each column. Has been adjusted.

【0008】次に実際の測定方法を、まず打球の仰角に
ついて説明する。通常時、発光部1の赤外発光ダイオー
ドの定格順電流による輝度の光線を照射している。打者
がボールを打つと、打球は発光部1の照射範囲10に達
し照射光を反射する(図2参照)。ゴルフボールの打球
が第1受光素子7の列の受光範囲11に入ると、打球の
反射光は第1受光素子7の列中の1つ、あるいは複数の
受光素子に受光され、第1受光素子7より出力される電
気量は基準の値と比較され、大きいときはトリガ信号と
してCPU14に印加される。CPU14はトリガ信号
を受けるとドライバ回路15により、発光部1の赤外発
光ダイオードに定格の尖頭順電流を与え発光輝度を上
げ、第2、第3の受光素子8,9の列に対する打球の反
射光量が多くなるようにする。また、トリガ信号により
第2、第3の受光素子8、9の列の各受光素子の出力電
気量のサンプリングが開始される。
Next, an actual measuring method will be described first with respect to the elevation angle of a hit ball. Normally, the light emitting unit 1 emits a light beam having a luminance based on the rated forward current of the infrared light emitting diode. When the batter hits the ball, the hit ball reaches the irradiation range 10 of the light emitting unit 1 and reflects the irradiation light (see FIG. 2). When the hit ball of the golf ball enters the light receiving area 11 of the row of the first light receiving elements 7, the reflected light of the hit ball is received by one or a plurality of light receiving elements in the row of the first light receiving elements 7, and the first light receiving element The electric quantity output from 7 is compared with a reference value, and when it is larger, the electric quantity is applied to the CPU 14 as a trigger signal. When the CPU 14 receives the trigger signal, the driver circuit 15 applies a rated peak forward current to the infrared light emitting diode of the light emitting section 1 to increase the light emission luminance, and the hitting of the second and third light receiving elements 8 and 9 with the hit ball is performed. Increase the amount of reflected light. In addition, sampling of the output electric quantity of each light receiving element in the second and third light receiving elements 8 and 9 is started by the trigger signal.

【0009】第2受光素子8の列の受光範囲12に打球
が達すると、打球の反射光が第2受光素子8の列内の複
数の受光素子8,8,・・・・、8で受光される。この
時各受光素子8,8,・・・・、8の出力は打球と受光
素子の距離に比例した電気量である(本実施例では電圧
出力)。コントロ−ラの指示するサンプリング時間毎に
サンプルホ−ルド回路及びアナログスイッチ回路18に
より、各受光素子の電気量が一斉に保持され、A/Dコ
ンバ−タ20により数値変換後、サンプリング時刻との
対にして順次メモリ17に格納される。打球が受光素子
8、9に近くなるほど受光素子8、9の受光光量が多く
なるので、出力される電気量は大きくなる。打球の初速
度の範囲を20〜80m/sと考えると、第2、第3の
受光素子8、9の列の間隔が60mmであれば0.75
〜3.0msで打球は第2、第3の受光素子8、9の列
間を通過する。従って3msの間、サンプリングを繰り
返せばほとんどの打球の通過に対して、受光素子8、9
の出力する電気量の変化を記録できる。サンプリングが
終了すると、CPU14は発光部1への印加電流を定格
順電流に下げ、メモリに格納された数値デ−タの比較を
開始する。打球に近い受光素子の数値デ−タ程高い値と
なるので、各サンプリング時刻について数値デ−タの和
をとり、和が最大となる時刻に打球の中心が受光素子列
上にあったと考え、列内最高の数値デ−タを出力した受
光素子とその両隣の素子A、B、Cについて最大数値デ
−タを出力した該時刻の数値デ−タを抜き出す。第2受
光素子8の列の受光素子A、B、Cの出力した最大値を
それぞれa、b、c(b>a、b>c)受光素子間隔を
Pとすると、受光素子8の列上の打球通過位置Y2は、
BY2バ−=(ab−bc)P/(2(2ac−bc−
ab))で表わされる。
When the hit ball reaches the light receiving range 12 in the row of the second light receiving elements 8, the reflected light of the hit ball is received by the plurality of light receiving elements 8, 8,. Is done. At this time, the output of each light receiving element 8, 8,..., 8 is an electric quantity proportional to the distance between the hit ball and the light receiving element (voltage output in this embodiment). At each sampling time specified by the controller, the electric quantity of each light receiving element is simultaneously held by the sample hold circuit and the analog switch circuit 18, and after the numerical conversion by the A / D converter 20, the sampling time and the sampling time. The pairs are sequentially stored in the memory 17. The closer the hit ball is to the light receiving elements 8 and 9, the greater the amount of light received by the light receiving elements 8 and 9, so that the amount of electricity output increases. Assuming that the range of the initial velocity of the hit ball is 20 to 80 m / s, 0.75 if the interval between the rows of the second and third light receiving elements 8 and 9 is 60 mm.
At ~ 3.0 ms, the hit ball passes between the rows of the second and third light receiving elements 8 and 9. Therefore, if the sampling is repeated for 3 ms, the light receiving elements 8 and 9 can pass through almost all hit balls.
Can record the change in the amount of electricity output by When the sampling is completed, the CPU 14 reduces the applied current to the light emitting unit 1 to the rated forward current, and starts comparing numerical data stored in the memory. Since the numerical data of the light receiving element closer to the hit ball has a higher value, the sum of the numerical data is taken at each sampling time, and it is considered that the center of the hit ball was on the light receiving element row at the time when the sum was maximum, The numerical data at the time when the maximum numerical data was output for the light-receiving element that output the highest numerical data in the column and the elements A, B, and C on both sides thereof are extracted. Assuming that the maximum values output from the light receiving elements A, B, and C in the row of the second light receiving element 8 are a, b, and c (b> a, b> c), respectively, and that the light receiving element interval is P, The hit ball passing position Y2 is
BY2 bar = (ab-bc) P / (2 (2ac-bc-
ab)).

【0010】受光素子Bの位置は既知であるから、打球
の通過位置Y2はBの高さにBY2バ−を加えてやれば
良い。同様に第3受光素子列についても、打球の通過位
置Y3を算出することができる。第2、第3受光素子列
8、9の列間隔Lは既知であるので打球の仰角θは、t
anθ=(Y3−Y2)/Lより算出することができ
る。サンプリングにより得られるのは、離散的な位置で
あって、最も打球が受光素子列に近づいた時刻しか得ら
れず、サンプリングの時間間隔が長いまたは、打球の速
度が速いほど実際の水平方向距離Lは長くなってしま
い、仰角θに誤差を生じてしまう。しかし、サンプリン
グにより生ずる仰角θの誤差を1%に収める場合、第
2、第3受光素子8,9の列間が60mmであれば、7
msのサンプリング周期でよく、技術的には更に高速の
サンプリングが行えるから、十分に精度を確保すること
ができる。
Since the position of the light receiving element B is known, the passing position Y2 of the hit ball may be obtained by adding a BY2 bar to the height of B. Similarly, the passing position Y3 of the hit ball can be calculated for the third light receiving element row. Since the row interval L between the second and third light receiving element rows 8 and 9 is known, the elevation angle θ of the hit ball is t
It can be calculated from anθ = (Y3-Y2) / L. What is obtained by sampling is a discrete position, and only the time at which the hit ball approaches the light receiving element row is obtained. The longer the sampling time interval or the higher the speed of the hit ball, the more the actual horizontal distance L Becomes longer, causing an error in the elevation angle θ. However, if the error of the elevation angle θ caused by sampling is kept within 1%, if the distance between the rows of the second and third light receiving elements 8 and 9 is 60 mm, 7
A sampling period of ms may be sufficient, and technically higher-speed sampling can be performed, so that sufficient accuracy can be ensured.

【0011】次に速度の算出について説明する。速度の
算出には前述した方法で求めた打球の仰角θと、受光素
子列内の受光素子間隔Pおよび各受光素子が最大出力値
との対で格納された時刻を用いる。第2、第3受光素子
列8,9において数値デ−タの和が最大となった時刻の
差をtとすれば、t間に打球が移動した距離sは、s=
L/cosθであるから、打球の速度vは、v=L/
(tcosθ)で得れれる。
Next, the calculation of the speed will be described. The speed is calculated by using the elevation angle θ of the hit ball obtained by the above-described method, the interval P between the light receiving elements in the light receiving element row, and the time when each light receiving element is stored as a pair with the maximum output value. Assuming that the difference between the times when the sum of the numerical data becomes maximum in the second and third light receiving element rows 8 and 9 is t, the distance s that the hit ball has moved during t is s =
L / cos θ, the velocity v of the hit ball is v = L /
(T cos θ).

【0012】[0012]

【発明の効果】本発明によれば、打球の通過位置を特定
できるので、精度良く打球の仰角を計測でき、その仰角
を用いて算出した打球の移動距離より打球の速度を求め
るので、キャリ−の推定値の信頼性を向上させることが
できる。
According to the present invention, since the passing position of a hit ball can be specified, the elevation angle of the hit ball can be accurately measured, and the velocity of the hit ball is obtained from the moving distance of the hit ball calculated using the elevation angle. Can be improved in reliability.

【図面の簡単な説明】[Brief description of the drawings]

図1 飛距離計測装置の要部破断図 図2 飛距離計測装置の平面図 図3 飛距離計測装置の側面図 図4 ブロック図 図5 受光素子と打球の位置関係図 図6 受光素子の出力図 図7 従来の飛距離計測装置の打球説明図 Fig. 1 Cutaway view of main part of flight distance measuring device Fig. 2 Top view of flight distance measuring device Fig. 3 Side view of flight distance measuring device Fig. 4 Block diagram Fig. 5 Positional relationship between light receiving element and hit ball Fig. 6 Output diagram of light receiving element Fig. 7 Explanatory drawing of a conventional flying distance measuring device

【符号の説明】[Explanation of symbols]

1 発光部 2 受光素子列 3 回路基板 4 回路基板 5 箱状部材 6 絞板 7 第1の受光素子 8 第2の受光素子 9 第3の受光素子 10 発光部の照射範囲 11 第1受光素子の列の受光範囲 12 第2受光素子の列の受光範囲 REFERENCE SIGNS LIST 1 light-emitting section 2 light-receiving element array 3 circuit board 4 circuit board 5 box-shaped member 6 aperture plate 7 first light-receiving element 8 second light-receiving element 9 third light-receiving element 10 irradiation area of light-emitting section 11 of first light-receiving element Light receiving range of row 12 Light receiving range of row of second light receiving element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源と、該光源より照射される光線の反射
光を受光する2列の受光素子群よりなり、打球の通過時
に各受光素子が受光する光量の値とその検出時刻によ
り、打球の飛び出し仰角と速度を計測するゴルフボール
の飛距離計測装置。
1. A hitting ball comprising a light source and a light receiving element group in two rows for receiving reflected light of a light beam emitted from the light source. A flight distance measurement device for golf balls that measures the elevation angle and speed of a golf ball.
【請求項2】受光素子列とトリガ回路を用いて、前記受
光素子列中の任意の受光素子が打球の通過時に反射光を
受光するとCPUに対して計測を開始するきっかけとな
るトリガ信号を送るゴルフボ−ルの飛距離計測装置。
2. A trigger signal for triggering measurement is sent to the CPU when an arbitrary light-receiving element in the light-receiving element array receives reflected light when passing a hit ball, using the light-receiving element array and a trigger circuit. Golf ball flight distance measuring device.
JP22015897A 1997-07-31 1997-07-31 Flying distance measuring instrument for golf ball Pending JPH1147337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22015897A JPH1147337A (en) 1997-07-31 1997-07-31 Flying distance measuring instrument for golf ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22015897A JPH1147337A (en) 1997-07-31 1997-07-31 Flying distance measuring instrument for golf ball

Publications (1)

Publication Number Publication Date
JPH1147337A true JPH1147337A (en) 1999-02-23

Family

ID=16746803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22015897A Pending JPH1147337A (en) 1997-07-31 1997-07-31 Flying distance measuring instrument for golf ball

Country Status (1)

Country Link
JP (1) JPH1147337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946616B1 (en) 2009-10-01 2010-03-09 주식회사 에스지원 A golf ball flying position measuring system for screen golf

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946616B1 (en) 2009-10-01 2010-03-09 주식회사 에스지원 A golf ball flying position measuring system for screen golf

Similar Documents

Publication Publication Date Title
US11650291B2 (en) LiDAR sensor
US6887162B2 (en) Apparatus for measuring parameters relating to the trajectory and/or motion of a moving article
US5833549A (en) Sports trainer and game
US6227984B1 (en) Golf swing analysis methods
US20200191915A1 (en) Integrated LIDAR Illumination Power Control
US6095928A (en) Three-dimensional object path tracking
CA1138092A (en) Monitoring system for measuring kinematic data of golf balls
US20200408908A1 (en) Adaptive Multiple-Pulse LIDAR System
JP2004157044A (en) Scanning type laser radar
JPS615860A (en) Apparatus for evaluation of baseball pitching results
US20110124429A1 (en) Golf club and ball performance monitor having an ultrasonic trigger
US4652121A (en) Moving body measuring instrument
WO1999020360A2 (en) Sports trainer and game
JP2009513314A (en) Dynamic information measurement system of golf ball for screen golf
JP2686706B2 (en) Spherical object velocity measuring device and velocity measuring method
JPH11206942A (en) Flying range measuring apparatus for golf ball
JPH1147337A (en) Flying distance measuring instrument for golf ball
WO1998018010A1 (en) Apparatus for measuring parameters relating to the trajectory and/or motion of a moving article
JPH1163916A (en) Fly distance measuring equipment of golf ball
JPH11155995A (en) Flying distance measuring device for golf ball
JP2541428B2 (en) Flying sphere measuring device
JPH0698959A (en) Fly measuring device for spherical object
JPH11132714A (en) Flight measuring device for golf ball
JPH0244198A (en) Two-dimensional position detector
JP3047652B2 (en) Flying sphere measuring device