JPH1147120A - Noninvasive biological component observation method and device - Google Patents

Noninvasive biological component observation method and device

Info

Publication number
JPH1147120A
JPH1147120A JP21276897A JP21276897A JPH1147120A JP H1147120 A JPH1147120 A JP H1147120A JP 21276897 A JP21276897 A JP 21276897A JP 21276897 A JP21276897 A JP 21276897A JP H1147120 A JPH1147120 A JP H1147120A
Authority
JP
Japan
Prior art keywords
light
living body
biological component
component observation
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21276897A
Other languages
Japanese (ja)
Inventor
Muneo Tokita
宗雄 時田
Tomoki Kitawaki
知己 北脇
Shinichi Hirako
進一 平子
Yusaku Sakota
勇策 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP21276897A priority Critical patent/JPH1147120A/en
Publication of JPH1147120A publication Critical patent/JPH1147120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable trace amounts to be measured stably by reducing noise components. SOLUTION: When biological components are measured by applying light of plural wavelengths to a living body 7 from a light source 1 via a spectral diffraction device 2 and an optical fiber 3, receiving the light scattered and reflected by the living body 7 on a photocell 5 via a fiber 4, converting the same into an electrical signal, and sampling the signal into an analytical display device 6, a matching material 8 in liquid or gel form is applied to the surfaces of contact between the optical fibers 3, 4 and the living body 7 to prevent reflected and scattered light at an interface except an air layer portions of contact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、非侵襲で生体内
の成分を観測する生体成分観測方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for observing non-invasive components in a living body.

【0002】[0002]

【従来の技術】非侵襲時に、生体内の成分分析や濃度測
定を行う装置として、生体に可視光、近赤外光や赤外光
を照射し、その透過光又は反射光のスペクトルを解析す
るという分光分析装置がよく知られている。また、光フ
ァイバを光の授受光に使用し、このファイバプローブを
人体に接触させているもの(特開平5−161628
号)や、透明な窓部材に指を押し当てるようにするもの
(特表平7−506987号)がある。
2. Description of the Related Art A non-invasive device for analyzing components or measuring the concentration of a living body by irradiating the living body with visible light, near infrared light or infrared light, and analyzing the spectrum of the transmitted light or reflected light. Is well known. Further, an optical fiber is used for transmitting and receiving light, and the fiber probe is brought into contact with a human body (Japanese Patent Laid-Open No. 5-161628).
No.) and a device in which a finger is pressed against a transparent window member (Japanese Patent Application Laid-Open No. 7-506987).

【0003】[0003]

【発明が解決しようとする課題】上記したいずれの場合
でも、図2に示すように、ガラス又はファイバ3、4面
と生体7表面に凹凸により生じる空間に空気層9が存在
し、その接触状態は測定のたびに変化する。この空気界
面での反射、散乱光は測定においてノイズ成分となり、
その状態変化は再現性のある安定した測定を妨げること
になる。さらに有効入射量が少なくなるなど微量成分を
観測する場合に悪影響を及ぼす、という問題がある。
In any of the above cases, as shown in FIG. 2, an air layer 9 exists in a space formed by irregularities on the surfaces of the glass or fibers 3 and 4 and the surface of the living body 7, and the contact state of the air layer 9 exists. Changes with each measurement. The reflected and scattered light at the air interface becomes a noise component in the measurement,
The change in state will prevent a stable and reproducible measurement. Further, there is a problem that adverse effects are caused when observing trace components such as a decrease in the effective incident amount.

【0004】この発明は上記問題点に着目してなされた
ものであって、ノイズ成分を減らし、安定した微量測定
を行える非侵襲生体成分観測方法及び装置を提供するこ
と目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a noninvasive biological component observation method and apparatus capable of reducing noise components and performing stable trace measurement.

【0005】[0005]

【課題を解決するための手段】この発明に係る非侵襲生
体成分観測方法は、光照射手段から複数波長の光を、生
体に接触する光透過部材を介して生体に照射し、生体内
部からの散乱反射光もしくは透過光を生体に接触する光
透過部材を介して受光素子で受光して電気信号に変換
し、この電気信号により生体成分を観測する方法におい
て、前記光透過部材と生体との間に液状もしくはゲル状
の整合物質を介在させるようにしている。
A non-invasive living body component observation method according to the present invention irradiates a living body with light of a plurality of wavelengths from a light irradiating means through a light transmitting member which comes into contact with the living body, and transmits the light from inside the living body. A method of receiving scattered reflected light or transmitted light with a light receiving element via a light transmitting member that comes into contact with a living body and converting the light into an electric signal, and observing a biological component based on the electric signal, comprising the steps of: A liquid or gel-like matching material is interposed between the two.

【0006】また、この発明に係る非侵襲生体成分観測
装置は、複数波長の光を生体に照射するための光照射手
段と、生体内部からの散乱反射光もしくは透過光を受光
し、電気信号に変換する受光素子と、生体への光投光部
もしくは生体からの光発光部と接触する光透過部材とを
有するものにおいて、前記光透過部材と生体との間に、
液状もしくはゲル状の整合物質を介在させている。
A non-invasive biological component observation apparatus according to the present invention includes a light irradiating means for irradiating a living body with light of a plurality of wavelengths, and receives scattered reflected light or transmitted light from inside the living body and converts the light into an electric signal. A light receiving element to be converted, and a light transmissive member that comes into contact with a light projecting portion to the living body or a light emitting portion from the living body, between the light transmitting member and the living body,
A liquid or gel-like matching material is interposed.

【0007】界面での反射、散乱光は界面両側の屈折率
差が大きいほど大きくなり、また、凹凸が多いほど大き
くなる。生体表面に液状・ゲル状・クリーム状・固形
(練り物)物質を塗ることにより、生体表面の空気層を
なくし、生体表面の屈折率差を小さくすることで散乱反
射が減り、見かけ上の凹凸も小さくできる。したがっ
て、測定回毎の空気層の状態変化に影響されないで安定
した測定が行える。また、散乱、反射光が減り、入射光
が増えるのでより微量な測定が可能となる。
The reflected and scattered light at the interface increases as the difference between the refractive indices on both sides of the interface increases, and increases as the unevenness increases. Applying a liquid, gel, cream, or solid (paste) substance to the surface of the living body eliminates the air layer on the surface of the living body, reduces the difference in refractive index on the surface of the living body, reduces scattering and reflection, and reduces apparent irregularities. Can be smaller. Therefore, stable measurement can be performed without being affected by a change in the state of the air layer every measurement. Further, since the amount of scattered and reflected light is reduced and the amount of incident light is increased, a smaller amount of measurement can be performed.

【0008】また、整合物質の屈折率を生体表面の屈折
率と光透過部材表面の屈折率の間のものにすれば、光透
過部材側界面での反射散乱光も小さくでき、もっとも効
率が良くなる。また、生体のスペクトルは、主として水
のスペクトルからなるので、整合物質として水分を含ま
ない物質を選べば測定スペクトルへの影響を小さくでき
る。
If the refractive index of the matching substance is between that of the surface of the living body and the refractive index of the surface of the light transmitting member, the reflected and scattered light at the interface on the light transmitting member side can be reduced, and the efficiency is the most efficient. Become. In addition, since the spectrum of a living body is mainly composed of the spectrum of water, the influence on the measured spectrum can be reduced by selecting a substance containing no water as the matching substance.

【0009】また、整合物質が特徴的な吸収ピークを持
ち、その波長が測定対象物質の吸収波長と異なる又は測
定対象物質の吸収の小さな波長にあるものを選べば、又
はそのような物質を混合しておけば、その波長の吸収強
度から塗布量を知ることができる。塗布量をチェックす
ることができれば、サンプルの測定スペクトルに含まれ
る整合物質によるスペクトルへの影響を補正することが
できる。
Further, if the matching substance has a characteristic absorption peak and its wavelength is different from the absorption wavelength of the substance to be measured or is at a wavelength where the absorption of the substance to be measured is small, or if such a substance is mixed. If so, the amount of application can be known from the absorption intensity at that wavelength. If the applied amount can be checked, it is possible to correct the influence of the matching substance contained in the measured spectrum of the sample on the spectrum.

【0010】また、整合物質を常に同じ量、厚みに塗る
のは非常に難しく、整合物質の塗る量が変化した場合の
スペクトル変化と、生体自身の変化によるものと区別が
難しい場合がある。実際の塗布量がわかり、補正できれ
ば、塗布の影響のない正確なスペクトルが得られる。ま
た、上記したように、生体のスペクトルは主として水の
スペクトルからなり、1400nmから吸収が急激に強
くなる。このため、これより短い波長に吸収ピークを持
つ物質を整合物質として利用すれば、より良い補正が行
える。
Further, it is very difficult to always apply the matching material in the same amount and thickness, and it may be difficult to distinguish between a change in the spectrum when the amount of the matching material applied changes and a change in the living body itself. If the actual coating amount is known and can be corrected, an accurate spectrum without the effect of coating can be obtained. Further, as described above, the spectrum of the living body is mainly composed of the spectrum of water, and the absorption sharply increases from 1400 nm. Therefore, if a substance having an absorption peak at a shorter wavelength is used as the matching substance, better correction can be performed.

【0011】また、このようにして得られた整合物質の
吸収強度又は塗布量を用いて、塗布量がある値以下の時
は、液状・ゲル状物質の量が不十分、塗り忘れ、又は指
定の物質と異なると判断し、エラーとなる。又は、塗り
直し、再測定を指示することで不良な測定を事前に防ぐ
ことができる。
Further, using the absorption intensity or the amount of application of the matching substance obtained in this way, when the amount of application is below a certain value, the amount of the liquid / gel-like substance is insufficient, forgotten to apply, or specified. It is determined that the substance is different from the substance, and an error occurs. Alternatively, defective measurement can be prevented in advance by instructing repainting and re-measurement.

【0012】[0012]

【発明の実施の形態】以下、実施の形態により、この発
明をさらに詳細に説明する。図1は、この発明の一実施
形態非侵襲生体成分観測装置の概略構成を示す図であ
る。この生体成分観測装置は、光源1と、分光装置2
と、投光用の光ファイバ3と、受光用の光ファイバ4
と、受光素子5と、解析表示装置6とから構成されてい
る。光源1は、電源11及びハロゲンランプ12を内蔵
している。分光装置2は回析格子13、スリット14等
で構成されている。受光素子5は、InGaAs素子1
5、電源16を有する。解析表示装置6は、コンピュー
タ17、LCD表示素子18を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a diagram showing a schematic configuration of a non-invasive biological component observation device according to an embodiment of the present invention. This biological component observation device includes a light source 1 and a spectroscopic device 2
And an optical fiber 3 for projecting light and an optical fiber 4 for receiving light
, A light receiving element 5, and an analysis display device 6. The light source 1 includes a power supply 11 and a halogen lamp 12. The spectroscopic device 2 includes a diffraction grating 13, a slit 14, and the like. The light receiving element 5 is an InGaAs element 1
5. It has a power supply 16. The analysis display device 6 includes a computer 17 and an LCD display element 18.

【0013】光源1から発せられた複数波長の光は、分
光装置2で波長毎に分けられ、光ファイバ3を通って生
体7の表面に送られ、そこから生体7内に入ってゆく。
生体7内に入った光は、生体7内の物質により散乱、吸
収されながら進み、再び生体7表面から外部へ出てゆ
く。生体7内から出てきた光は、光ファイバ4を通り、
受光素子5で受光され、電気信号に変換されて解析表示
装置6のコンピュータ17に取り込まれる。コンピュー
タ17は波長毎の光強度を解析して、生体7内の物質の
濃度を求める。その解析結果は、解析表示装置6のLC
D表示素子18に表示される。
Light of a plurality of wavelengths emitted from the light source 1 is divided by the spectroscope 2 for each wavelength, sent to the surface of the living body 7 through the optical fiber 3, and enters the living body 7 therefrom.
The light that has entered the living body 7 travels while being scattered and absorbed by the substance in the living body 7, and exits again from the surface of the living body 7. Light coming out of the living body 7 passes through the optical fiber 4,
The light is received by the light receiving element 5, converted into an electric signal, and taken into the computer 17 of the analysis display device 6. The computer 17 analyzes the light intensity for each wavelength to determine the concentration of the substance in the living body 7. The analysis result is displayed on the LC of the analysis display device 6.
It is displayed on the D display element 18.

【0014】光源1は、ここで示すハロゲンランプのよ
うに単一で複数波長の光を発するものでも良いが、LE
Dやレーザのようにほぼ単一の波長を発する光源を複数
個用いても良い。分光装置2はフィルタや音響光学素子
を使用するものであっても良い。また、ここでは分光装
置2を生体7に入る前の光を分光するように配置してい
るが、生体7から出てきた光を分光するように配置して
もよい。
The light source 1 may emit a single light having a plurality of wavelengths like a halogen lamp shown here.
A plurality of light sources emitting a substantially single wavelength, such as D and a laser, may be used. The spectroscopic device 2 may use a filter or an acousto-optic device. Further, here, the spectroscopic device 2 is arranged to disperse light before entering the living body 7, but may be arranged to disperse light coming out of the living body 7.

【0015】受光素子は、InGaAs素子の他に、波
長により、Si素子、PbSやPTM(光電子増倍管)
等の素子でも良い。また、生体7から出てきた光を分光
する装置では、CCDやリニアイメージセンサのよう
に、受光素子をアレイ状に配置したものであってもよ
い。また、図1の生体成分観測装置では、光を生体7面
に導き、また生体7からの光を取り出すのに光ファイバ
3、4を用いており、生体表面に接する光透過部材は光
ファイバ3、4自身である。しかし図3、図4に示すよ
うに、光ファイバを使用しない生体成分観測装置におい
ても、この発明を適用できる。図3、図4の生体成分観
測装置では、光源1、分光装置2を経て、光透過部材1
0より生体7に投光された光は、生体7内で散乱吸収を
受け、生体7内から出てきた光が光透過部材10を経て
受光素子5に受光される。ここで使用される光透過部材
10はガラス、サファイア等の光に対して透明な窓であ
る。
The light receiving element is, in addition to the InGaAs element, a Si element, PbS or PTM (photomultiplier tube) depending on the wavelength.
And the like. Further, in a device that disperses light emitted from the living body 7, a device in which light receiving elements are arranged in an array, such as a CCD or a linear image sensor, may be used. In the biological component observation device of FIG. 1, the optical fibers 3 and 4 are used to guide light to the surface of the living body 7 and take out light from the living body 7. 4 himself. However, as shown in FIGS. 3 and 4, the present invention can be applied to a biological component observation device that does not use an optical fiber. 3 and 4, the light transmitting member 1 passes through the light source 1 and the spectroscopic device 2.
The light emitted from the living body 7 to the living body 7 is scattered and absorbed in the living body 7, and the light coming out of the living body 7 is received by the light receiving element 5 through the light transmitting member 10. The light transmitting member 10 used here is a window made of glass, sapphire, or the like that is transparent to light.

【0016】また、図1の生体成分観測装置は、生体7
上の光投光面と受光面が同じ側にある反射型であるが、
図5に示すように、投光部と受光部、つまり投光用の光
ファイバ3の端面と、受光用の光ファイバ4の端面が生
体7に対し、反対面にある透過型の生体成分観測装置に
もこの発明が適用できる。図1、図5の光ファイバ3、
4の先端面と生体7表面の接触部分、また図3、図4の
光透過部材10と生体7表面の接触部分は、整合物質8
が塗布されている。この整合物質8により、接触部分で
の空気層を除き、境界面での反射、散乱光を防ぐように
している。この整合物質8が塗布されていない場合、光
透過部材と生体表面の接触部分は面の凹凸のため空気層
がある。光の反射、散乱光は界面での両側の屈折率差が
大きいほど大きくなる。細胞膜の屈折率は参考文献〔J.
S.Maier,S.A.Walker,ed.,Opt.Lett.19,2062(1994) 〕に
よると、1.35−1.46である。一方、空気の場合
の1に対し、整合物質として単純な水を用いた場合で
も、その屈折率差は1.333(波長588nm)であ
り、生体との屈折率差は小さくなり、生体内に入る光が
増え、ノイズ成分となる光は減る。さらに、測定毎の表
面状態の変化や接触具合の変化に影響されにくくなり、
毎回安定した測定が可能となる。以上のことは、生体へ
の光の投光側、生体からの光の受光側のどちらにも当て
はまる。このような整合物質の形態としては、液状、ク
リーム状、固形状がある。
The biological component observation device shown in FIG.
Although the upper light projecting surface and the light receiving surface are of the reflective type on the same side,
As shown in FIG. 5, a transmission type biological component observation in which the light emitting part and the light receiving part, that is, the end face of the light emitting optical fiber 3 and the end face of the light receiving optical fiber 4 are opposite to the living body 7. The present invention can be applied to an apparatus. The optical fiber 3 of FIGS.
4 and the contact portion between the light transmitting member 10 and the surface of the living body 7 shown in FIGS.
Is applied. The matching material 8 prevents reflection and scattered light at the boundary surface except for the air layer at the contact portion. When the matching material 8 is not applied, the contact portion between the light transmitting member and the surface of the living body has an air layer due to unevenness of the surface. Light reflection and scattered light increase as the difference in refractive index between the two sides at the interface increases. The refractive index of the cell membrane is described in Reference (J.
According to S. Maier, SAWalker, ed., Opt. Lett. 19, 2062 (1994)], it is 1.35-1.46. On the other hand, in contrast to 1 in the case of air, even when simple water is used as the matching substance, the difference in the refractive index is 1.333 (wavelength 588 nm), and the difference in the refractive index from the living body is small. Light that enters increases and light that becomes a noise component decreases. Furthermore, it is less affected by changes in surface conditions and contact conditions for each measurement,
A stable measurement can be performed every time. The above applies to both the side of projecting light to the living body and the side of receiving light from the living body. Such matching materials include liquid, cream, and solid forms.

【0017】接触する前に塗布されているのは生体側で
あっても、ファイバ側であっても良い。一般には、表面
の凹凸は生体側の方が大きいので、生体側に塗布する方
が空気層の除去という面では好ましい。一方、光透過部
材の方に塗布する場合は、塗布作業の自動化が行いやす
くなる。図6に整合物質を塗布した時と、塗布していな
い時の吸収スペクトルの測定バラツキの違いを示す。図
6において、グラフAは整合物質の塗布無しを、グラフ
Bは塗布有を示している。横軸は波長、縦軸は多数回ス
ペクトル測定を行った時の各波長での測定値のバラツキ
度合(標準偏差)を表している。整合物質を塗布した測
定の方が測定バラツキが小さいことがわかる。
The material applied before contact may be on the living body side or on the fiber side. In general, the unevenness of the surface is larger on the living body side, and therefore, it is preferable to apply it on the living body side in terms of removing the air layer. On the other hand, when coating is performed on the light transmitting member, automation of the coating operation is facilitated. FIG. 6 shows a difference in measurement variation of the absorption spectrum between when the matching material is applied and when it is not applied. In FIG. 6, a graph A indicates that the matching material is not applied, and a graph B indicates that the matching material is applied. The horizontal axis represents the wavelength, and the vertical axis represents the degree of variation (standard deviation) of the measured value at each wavelength when spectrum measurement is performed many times. It can be seen that the measurement dispersion is smaller in the measurement where the matching substance is applied.

【0018】上記の説明では、生体と整合物質の屈折率
差を考えたが、光透過部材と整合物質の屈折率差も小さ
い方が良い。光透過部材が例えばBK7の場合は、屈折
率が1.517(波長588nm)であり、やはり空気
より水の方が屈折率差は小さくなる。さらに、整合物質
の屈折率が生体屈折率と光透過部材の屈折率の間のもの
であれば、界面での影響を最も小さくできる。例えば、
シリコンオイル信越シリコーンKF56(商品名)では
屈折率が1.5である。
In the above description, the difference in the refractive index between the living body and the matching material has been considered, but the smaller the difference in the refractive index between the light transmitting member and the matching material is, the better. When the light transmitting member is, for example, BK7, the refractive index is 1.517 (wavelength 588 nm), and the difference in the refractive index is smaller in water than in air. Furthermore, if the refractive index of the matching substance is between the refractive index of the living body and the refractive index of the light transmitting member, the influence at the interface can be minimized. For example,
Silicon oil Shin-Etsu Silicone KF56 (trade name) has a refractive index of 1.5.

【0019】生体の成分の多くは水である。図7は生体
の可視から近赤外の拡散反射吸収スペクトルを示したも
のである。図からわかるように、水による吸収がほとん
どで、水以外の成分分析は水の吸収スペクトルに埋もれ
た情報をいかに精度良く抽出するかにかかっている。特
に1400nm以上の近赤外、赤外領域では水の吸収が
非常に大きくなる。したがって、整合物質がほとんど水
でできているものの場合、整合物質の吸収スペクトルと
生体の吸収スペクトルの区別がつかなくなる。すなわ
ち、測定されたスペクトルに変化があった場合、生体内
部の変化によるものか整合物質の塗布量の変化によるも
のかが区別できない。機械で自動的に塗布する場合以
外、整合物質の塗布量を一定に保つことは非常に困難で
ある。そこで、整合物質として水分を含まず、測定対象
である成分の吸収波長に強い吸収を持たない物質を利用
すれば塗布量のバラツキに影響されない測定が可能とな
る。測定対象成分がグルコースの場合、グルコースの吸
収スペクトルは図8に示すように、1600nm付近に
ピークがあるので、例えば、そこに強い吸収を持たない
シリコンオイル(図9)や重水(図10)などが挙げら
れる。
Many of the components of living organisms are water. FIG. 7 shows a diffuse reflection absorption spectrum of a living body from visible to near infrared. As can be seen from the figure, water is mostly absorbed, and the analysis of components other than water depends on how accurately information embedded in the water absorption spectrum is extracted. In particular, the absorption of water is extremely large in the near infrared and infrared regions of 1400 nm or more. Therefore, when the matching substance is almost made of water, it becomes impossible to distinguish between the absorption spectrum of the matching substance and the absorption spectrum of the living body. That is, when there is a change in the measured spectrum, it cannot be determined whether the change is due to a change inside the living body or a change in the applied amount of the matching substance. It is very difficult to keep the application amount of the matching material constant except when automatically applying it by a machine. Therefore, if a substance that does not contain moisture and does not have strong absorption at the absorption wavelength of the component to be measured is used as the matching substance, measurement that is not affected by variations in the coating amount can be performed. When the measurement target component is glucose, the absorption spectrum of glucose has a peak near 1600 nm as shown in FIG. 8, and therefore, for example, silicon oil (FIG. 9) or heavy water (FIG. 10) having no strong absorption there. Is mentioned.

【0020】水を含んでいたり、測定対象成分の吸収波
長と同じ波長に吸収がある整合物質の場合でも、生体の
吸収が小さい波長にも吸収ピークがあれば、その値を基
準にして整合物質のスペクトル寄与分を補正することが
できる。例えば、図11のような吸収スペクトルを持つ
整合物質を用いた場合、700nmの波長の吸収量から
整合物質の影響量を判断し、全体の波長からその分を引
くことにより、整合物質のない場合のスペクトルを得る
ことが可能となる。特に、水の吸収は1400nm以上
では急激に大きくなるので、水の吸収の小さい500〜
1400nmに吸収ピークを持つ整合物質が良い。
Even in the case of a matching substance containing water or having an absorption at the same wavelength as the absorption wavelength of the component to be measured, if there is an absorption peak even at a wavelength where the biological absorption is small, the matching substance is determined based on the value. Can be corrected. For example, when a matching material having an absorption spectrum as shown in FIG. 11 is used, the influence amount of the matching material is determined from the absorption amount at a wavelength of 700 nm, and the amount of the matching material is subtracted from the entire wavelength. Can be obtained. In particular, since the absorption of water sharply increases at 1400 nm or more, 500 to
A matching material having an absorption peak at 1400 nm is preferred.

【0021】整合物質の特徴的な吸収波長から解析した
塗布状態を用いて、測定の良否を判断することが可能と
なる。例えば、図12に示すように、整合物質を光透過
部材あるいは生体表面に塗布した(ST1)後、測定し
(ST2)、得られた吸収スペクトルから整合物質の塗
布量が適切か、つまり特徴波長での吸収量もしくはそこ
から推定される塗布量が予め設定したある範囲にあるか
判定し(ST3)、設定範囲にある場合は良好とする。
そして、その分析値を表示する(ST4)。吸収量ある
いは塗布量がその設定範囲外にある場合は、塗布が少な
いようです(ST5)、あるいは塗布が多いようです
(ST6)の表示を行う。また、設定範囲外にある時
は、塗布されていない、指定物質と異なる物質が塗布さ
れている、塗布量が不足している、塗布量が多すぎる等
のことが考えられるため、不良な測定と判断し、その測
定値の出力もしくは表示をしないようにできる。また、
図13に示すように、測定値表示の代わりにエラー表示
(ST7)して、再測定を使用者に促すことが可能とな
る。
It is possible to judge the quality of the measurement by using the application state analyzed from the characteristic absorption wavelength of the matching material. For example, as shown in FIG. 12, after the matching substance is applied to the light transmitting member or the surface of the living body (ST1), measurement is performed (ST2), and based on the obtained absorption spectrum, whether the amount of the matching substance applied is appropriate, that is, the characteristic wavelength It is determined whether or not the absorption amount or the application amount estimated therefrom is within a predetermined range (ST3).
Then, the analysis value is displayed (ST4). When the absorption amount or the application amount is out of the set range, it is displayed that the application is small (ST5) or the application is large (ST6). If the amount is out of the setting range, it may be that the substance is not applied, a substance different from the specified substance is applied, the amount of application is insufficient, or the amount of application is too large. , And the output or display of the measured value can be prevented. Also,
As shown in FIG. 13, an error is displayed (ST7) instead of the measured value display, and it is possible to prompt the user to perform the re-measurement.

【0022】また、図14に示すように、再測定を指示
する旨を表示(ST8)しても良いし、表示後、自動的
に再測定のモードを移るようにしても良い。図15に示
すように、さらに塗布されていない時は再塗布するよう
に指示する(ST9)ようにしても良い。
As shown in FIG. 14, a message to instruct re-measurement may be displayed (ST8), or the mode of re-measurement may be automatically shifted after the display. As shown in FIG. 15, when no further coating is performed, an instruction to re-apply may be issued (ST9).

【0023】[0023]

【発明の効果】特許請求の範囲の請求項1、請求項2に
係る発明によれば、光透過部材と生体との間に、液状も
しくはゲル状の整合物質を介在させるものであるから、
生体表面の空気層を無くし、生体表面の屈折率差を小さ
くすることで散乱反射が減り、見かけ上の凹凸も小さく
できる。そのため、測定回毎の空気層の状態変化に影響
されない安定した測定が行える。また、散乱、反射光が
減り、入射光が増えるので、より微量な測定が可能とな
る。
According to the first and second aspects of the present invention, a liquid or gel-like matching substance is interposed between the light transmitting member and the living body.
By eliminating the air layer on the surface of the living body and reducing the refractive index difference on the surface of the living body, scattering and reflection can be reduced and apparent irregularities can be reduced. Therefore, stable measurement can be performed without being affected by a change in the state of the air layer at each measurement. Further, since the amount of scattered and reflected light decreases and the amount of incident light increases, a smaller amount of measurement can be performed.

【0024】また、請求項3に係る発明によれば、整合
物質の屈折率を生体表面の屈折率と光透過部材表面の屈
折率の間のものにしているので、光透過部材側界面での
反射散乱光も小さくでき、もっとも効率が良くなる。ま
た、請求項4に係る発明によれば、整合物質を水分を含
まない物質としているので、主として水のスペクトルか
らなる生体のスペクトルに対し、影響を小さくできる。
According to the third aspect of the present invention, the refractive index of the matching substance is set between the refractive index of the surface of the living body and the refractive index of the surface of the light transmitting member. The reflected and scattered light can be reduced, and the efficiency becomes the highest. Further, according to the invention of claim 4, since the matching substance is a substance containing no water, the influence on the spectrum of the living body mainly consisting of the spectrum of water can be reduced.

【0025】また、請求項5に係る発明によれば、整合
物質は測定対象物質の吸収波長と異なる吸収波長か、測
定対象物の吸収の小さな波長に吸収ピークを持つもので
あるから、その波長の吸収強度から塗布量を知ることが
できる。また、請求項6に係る発明によれば、整合物質
の吸収ピークが500nmないし1400nmのもので
あるから、生体のピークは1400nmから吸収が急激
に強くなるものであり、短い波長に吸収ピークを持つ整
合物質とすれば、より良い補正が行える。
According to the fifth aspect of the present invention, since the matching substance has an absorption wavelength different from the absorption wavelength of the substance to be measured or has an absorption peak at a wavelength having a small absorption of the substance to be measured, The amount of application can be known from the absorption intensity of the product. According to the invention of claim 6, since the absorption peak of the matching substance is from 500 nm to 1400 nm, the absorption peak of the living body sharply increases from 1400 nm and has an absorption peak at a short wavelength. With a matching material, better correction can be made.

【0026】また、請求項7に係る発明によれば、整合
物質特有の吸収強度を解析し、整合物質の生体スペクト
ルへの影響を補正するものであるから、実際の塗布量が
分かるので、補正により塗布の影響のない正確なスペク
トルが得られる。また、請求項8、請求項9、請求項1
0、請求項11、請求項12、請求項13に係る発明に
よれば、整合物質の塗布度合を求め、測定良否を判断
し、その結果に基づいて処理を行うものであるから、不
良な測定を事前に防止することができる。
According to the seventh aspect of the invention, since the absorption intensity peculiar to the matching substance is analyzed and the influence of the matching substance on the biological spectrum is corrected, the actual application amount can be determined. As a result, an accurate spectrum free from the influence of coating can be obtained. Claims 8, 9, and 1
According to the present invention, the degree of application of the matching substance is determined, the quality of the measurement is determined, and the processing is performed based on the result. Can be prevented in advance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態非侵襲生体成分観測装置
の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a non-invasive biological component observation device according to an embodiment of the present invention.

【図2】生体成分観測装置に使用される光ファイバと生
体表面との接触面に空気層が生じることを説明する図で
ある。
FIG. 2 is a diagram illustrating that an air layer is formed on a contact surface between an optical fiber used in a biological component observation device and a biological surface.

【図3】この発明の他の実施形態非侵襲生体成分観測装
置の概略構成を示す図である。
FIG. 3 is a diagram showing a schematic configuration of a non-invasive biological component observation device according to another embodiment of the present invention.

【図4】この発明のさらに他の実施形態非侵襲生体成分
観測装置の概略構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of a non-invasive biological component observation device according to still another embodiment of the present invention.

【図5】この発明のさらに他の実施形態非侵襲生体成分
観測装置の概略構成を示す図である。
FIG. 5 is a diagram showing a schematic configuration of a non-invasive biological component observation device according to still another embodiment of the present invention.

【図6】整合物質の有無により、測定値のバラツキの相
違を示すグラフである。
FIG. 6 is a graph showing a difference in measured values depending on the presence or absence of a matching substance.

【図7】人体の吸収スペクトルを示す図である。FIG. 7 is a diagram showing an absorption spectrum of a human body.

【図8】グルコース粉の吸収スペクトルを示す図であ
る。
FIG. 8 is a diagram showing an absorption spectrum of glucose powder.

【図9】シリコンの吸収スペクトルを示す図である。FIG. 9 is a diagram showing an absorption spectrum of silicon.

【図10】重水の吸収スペクトルを示す図である。FIG. 10 shows an absorption spectrum of heavy water.

【図11】赤ゼリーの吸収スペクトルを示す図である。FIG. 11 shows an absorption spectrum of red jelly.

【図12】整合物質の塗布状態の判別、及びその後の処
理を示すフロー図である。
FIG. 12 is a flowchart showing the determination of the application state of the matching material and the subsequent processing.

【図13】整合物質の塗布状態の判別、及びその後の処
理の他の例を示すフロー図である。
FIG. 13 is a flowchart showing another example of the determination of the application state of the matching substance and the subsequent processing.

【図14】整合物質の塗布状態の判別、及びその後の処
理のさらに他の例を示すフロー図である。
FIG. 14 is a flowchart showing still another example of the determination of the application state of the matching substance and the subsequent processing.

【図15】整合物質の塗布状態の判別、及びその後の処
理のさらに他の例を示すフロー図である。
FIG. 15 is a flowchart showing still another example of the determination of the application state of the matching material and the subsequent processing.

【符号の説明】[Explanation of symbols]

1 光源 2 分光装置 3 光ファイバ 4 光ファイバ 5 受光素子 6 解析表示装置 7 生体 8 整合物質 DESCRIPTION OF SYMBOLS 1 Light source 2 Spectroscope 3 Optical fiber 4 Optical fiber 5 Light receiving element 6 Analysis display device 7 Biological body 8 Matching substance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 迫田 勇策 京都市右京区山ノ内山ノ下町24番地 株式 会社オムロンライフサイエンス研究所内 ──────────────────────────────────────────────────続 き Continued from the front page (72) Inventor Yusaku Sakota 24th Yamanouchi Yamanoshitamachi, Ukyo-ku, Kyoto Inside Omron Life Science Laboratory Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】光照射手段から複数波長の光を、生体に接
触する光透過部材を介して生体に照射し、生体内部から
の散乱反射光もしくは透過光を生体に接触する光透過部
材を介して受光素子で受光して電気信号に変換し、この
電気信号により生体成分を観測する非侵襲生体成分観測
方法において、前記光透過部材と生体との間に液状もし
くはゲル状の整合物質を介在させることを特徴とする非
侵襲生体成分観測方法。
1. A living body is irradiated with light of a plurality of wavelengths from a light irradiating means through a light transmitting member which comes into contact with a living body, and scattered reflected light or transmitted light from inside the living body is passed through a light transmitting member which comes into contact with the living body. In the non-invasive biological component observation method of observing a biological component by using the light receiving element and converting it into an electric signal and observing a biological component using the electric signal, a liquid or gel-like matching substance is interposed between the light transmitting member and the living body. A non-invasive biological component observation method, characterized in that:
【請求項2】複数波長の光を生体に照射するための光照
射手段と、生体内部からの散乱反射光もしくは透過光を
受光し、電気信号に変換する受光素子と、生体への光投
光部もしくは生体からの光発光部と接触する光透過部材
とを有する非侵襲生体成分観測装置において、 前記光透過部材と生体との間に、液状もしくはゲル状の
整合物質を介在させることを特徴とする非侵襲生体成分
観測装置。
2. A light irradiating means for irradiating a living body with light of a plurality of wavelengths, a light receiving element for receiving scattered reflected light or transmitted light from inside the living body and converting the scattered light or transmitted light into an electric signal, and light projection onto the living body A non-invasive biological component observation device having a light transmitting member in contact with a light emitting part from a part or a living body, wherein a liquid or gel-like matching substance is interposed between the light transmitting member and the living body. Non-invasive biological component observation device.
【請求項3】前記整合物質は、屈折率が生体の屈折率と
光透過部材の屈折率の間の数値である請求項2記載の非
侵襲生体成分観測装置。
3. The non-invasive biological component observation device according to claim 2, wherein the matching substance has a refractive index that is a numerical value between the refractive index of the living body and the refractive index of the light transmitting member.
【請求項4】前記整合物質は水分を含まない物質である
請求項2記載の非侵襲生体成分観測装置。
4. The non-invasive biological component observation device according to claim 2, wherein the matching substance is a substance containing no water.
【請求項5】前記整合物質は測定対象物質の吸収波長と
異なる又は測定対象物質の吸収の小さな波長に吸収ピー
ク波長を持つものである請求項2記載の非侵襲生体成分
観測装置。
5. The non-invasive biological component observation apparatus according to claim 2, wherein the matching substance has an absorption peak wavelength at a wavelength different from or smaller than the absorption wavelength of the substance to be measured.
【請求項6】前記整合物質の吸収ピークは500nmな
いし1400nmの可視・近赤外光領域にあるものであ
る請求項5記載の非侵襲生体成分観測装置。
6. The non-invasive biological component observation apparatus according to claim 5, wherein the absorption peak of the matching substance is in a visible / near-infrared light region of 500 nm to 1400 nm.
【請求項7】前記整合物質特有の吸収波長の吸収強度を
解析し、整合物質の生体スペクトルへの影響を補正する
補正手段を備えるものである請求項2記載の非侵襲生体
成分観測装置。
7. The non-invasive biological component observation apparatus according to claim 2, further comprising a correction means for analyzing an absorption intensity at an absorption wavelength peculiar to the matching substance and correcting an influence of the matching substance on a biological spectrum.
【請求項8】前記整合物質の塗布度合を測定スペクトル
から解析する解析手段と、得られた解析結果に基づいて
測定の良否を判断する良否判断手段と、判断結果を報知
する報知手段とを備えたものである請求項2記載の非侵
襲生体成分観測装置。
8. An analysis means for analyzing the degree of application of the matching substance from a measured spectrum, a quality judgment means for judging the quality of the measurement based on the obtained analysis result, and a notifying means for notifying the judgment result. 3. The non-invasive biological component observation device according to claim 2, wherein:
【請求項9】前記判断結果により、エラーを出力するも
のである請求項8記載の非侵襲生体成分観測装置。
9. The non-invasive biological component observation device according to claim 8, wherein an error is output based on the determination result.
【請求項10】前記判断結果により、量の過多、あるい
は量の過少を出力するものである請求項8記載の非侵襲
生体成分観測装置。
10. The non-invasive biological component observation device according to claim 8, wherein an excessive amount or an excessive amount is output based on the result of the determination.
【請求項11】前記判断結果により、塗り忘れを出力す
るものである請求項8記載の非侵襲生体成分観測装置。
11. The non-invasive biological component observation device according to claim 8, wherein a forget-to-paint is output based on the determination result.
【請求項12】前記判断結果により、再塗布指示を出力
するものである請求項8記載の非侵襲生体成分観測装
置。
12. The noninvasive biological component observation device according to claim 8, wherein a recoating instruction is output according to the result of the determination.
【請求項13】前記判断結果により、再測定指示を出力
するものである請求項8記載の非侵襲生体成分観測装
置。
13. The non-invasive biological component observation device according to claim 8, wherein a re-measurement instruction is output according to the determination result.
JP21276897A 1997-08-07 1997-08-07 Noninvasive biological component observation method and device Pending JPH1147120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21276897A JPH1147120A (en) 1997-08-07 1997-08-07 Noninvasive biological component observation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21276897A JPH1147120A (en) 1997-08-07 1997-08-07 Noninvasive biological component observation method and device

Publications (1)

Publication Number Publication Date
JPH1147120A true JPH1147120A (en) 1999-02-23

Family

ID=16628085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21276897A Pending JPH1147120A (en) 1997-08-07 1997-08-07 Noninvasive biological component observation method and device

Country Status (1)

Country Link
JP (1) JPH1147120A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524467A (en) * 1999-04-29 2003-08-19 アボット・ラボラトリーズ Non-invasive measurement of analyte concentration in biological samples
JP2007085804A (en) * 2005-09-21 2007-04-05 Hitachi High-Technologies Corp Data processing method equipped with checking function for integration-type data operation method
JP2010029496A (en) * 2008-07-30 2010-02-12 Ricoh Co Ltd Biological light measuring instrument and probe for the same
CN102507443A (en) * 2011-10-31 2012-06-20 中国科学院长春光学精密机械与物理研究所 Broadband multi-LED light source synthesizer for near infrared spectroscopy analysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524467A (en) * 1999-04-29 2003-08-19 アボット・ラボラトリーズ Non-invasive measurement of analyte concentration in biological samples
JP2007085804A (en) * 2005-09-21 2007-04-05 Hitachi High-Technologies Corp Data processing method equipped with checking function for integration-type data operation method
JP4521339B2 (en) * 2005-09-21 2010-08-11 株式会社日立ハイテクノロジーズ Data processing method with check function in integral data operation method
JP2010029496A (en) * 2008-07-30 2010-02-12 Ricoh Co Ltd Biological light measuring instrument and probe for the same
CN102507443A (en) * 2011-10-31 2012-06-20 中国科学院长春光学精密机械与物理研究所 Broadband multi-LED light source synthesizer for near infrared spectroscopy analysis

Similar Documents

Publication Publication Date Title
US5372135A (en) Blood constituent determination based on differential spectral analysis
JP3643842B2 (en) Glucose concentration testing device
EP0816829B1 (en) Tissue chromophore measurement system
TWI324686B (en) Noninvasive measurement of glucose through the optical properties of tissue
US20050043597A1 (en) Optical vivo probe of analyte concentration within the sterile matrix under the human nail
CN105377134B (en) Equipment for carrying out non-invasive somatometry by Raman spectrum
US7315752B2 (en) Method and device for determining a light transport parameter in a biological matrix
US5825488A (en) Method and apparatus for determining analytical data concerning the inside of a scattering matrix
CA1247397A (en) Spectrophotometric method and apparatus for the non- invasive determination of glucose in body tissues
US8306594B2 (en) Transmission fluorometer
RU2007126679A (en) SYSTEM FOR SPECTROSCOPY OF PASSING FOR USE IN DETERMINING ANALYZED SUBSTANCES IN THE LIQUID OF THE ORGANISM
US6741875B1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
CA2383727A1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
JPH1170101A (en) Analysis method for blood component density, device therefor and optical fiber bundle for the device
CA2630539A1 (en) Modified method and apparatus for measuring analytes
US8597208B2 (en) Method and apparatus for measuring analytes
JP2007083028A (en) Noninvasive inspecting apparatus
CN111328373A (en) Infrared spectrophotometer accessory
US20060211926A1 (en) Non-invasive Raman measurement apparatus with broadband spectral correction
US8523785B2 (en) Method and apparatus for measuring analytes
KR20090036996A (en) Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources
JPH1147120A (en) Noninvasive biological component observation method and device
JP2004150984A (en) Method and apparatus for measuring concentration in dissolved substance by near-infrared spectrum
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
FR3050824A1 (en) METHOD AND APPARATUS FOR MEASURING WATER CONCENTRATION IN LIGHT DIFFUSING MATERIAL.