JPH1145883A - Manufacture of wiring of semiconductor integrated circuit - Google Patents

Manufacture of wiring of semiconductor integrated circuit

Info

Publication number
JPH1145883A
JPH1145883A JP20182997A JP20182997A JPH1145883A JP H1145883 A JPH1145883 A JP H1145883A JP 20182997 A JP20182997 A JP 20182997A JP 20182997 A JP20182997 A JP 20182997A JP H1145883 A JPH1145883 A JP H1145883A
Authority
JP
Japan
Prior art keywords
film
dielectric film
wiring
conductive film
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20182997A
Other languages
Japanese (ja)
Other versions
JP3019812B2 (en
Inventor
Tsutomu Nakajima
務 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9201829A priority Critical patent/JP3019812B2/en
Publication of JPH1145883A publication Critical patent/JPH1145883A/en
Application granted granted Critical
Publication of JP3019812B2 publication Critical patent/JP3019812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing the wiring of a semiconductor integrated circuit, in which the generation of defects in a planarizing processing by CMP can be prevented, and damascene microwiring whose damage is small can be formed simply. SOLUTION: A groove is formed by a dielectric film 2, and a conductive film 4 is formed on the dielectric film 2. Then, the conductive film 4 outside the groove is removed by a chemical machine polishing method, so that a planarized surface in which the conductive film 4 is embedded in the groove can be formed. In this case, the surface roughness of the conductive film 4 formed on the dielectric film 2 is larger than a pattern difference in level by the dielectric film 2. Thus, the surface roughness of the conductive film is made large, so that planarizing by CMP can be made satisfactory and simple, and defects due to excessive polishing can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路の
配線の製造方法に関し、詳しくは溝配線を形成する際の
平坦化工程に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a wiring of a semiconductor integrated circuit, and more particularly to a flattening process for forming a groove wiring.

【0002】[0002]

【従来の技術】近年、シリコン半導体基板に形成される
集積回路の機能の高速化及び微細化が求められている。
このため、サブミクロン配線のEM耐性がより厳しくな
り、EM耐性の強いダマシン配線と呼ばれる溝構造を持
つ配線の開発の要請が強くなってきている。このダマシ
ン配線とは、絶縁膜に配線パターンに対応する溝をあら
かじめ形成し、導電膜をその溝に埋め込み、化学的機械
研磨法(以後、CMPと称す)等によって、溝内だけに
導電膜を残す平坦化加工を施こして得られる配線である
(特開昭62−102543号等)。また、図6(a)
(b)に示すように、誘電体膜(絶縁膜)7上に形成す
る導電膜を、軟質低抵抗率金属膜8と硬質金属膜9の二
種の膜で構成し、化学的機械研磨を行なう技術も知られ
ている(特開平6−84826号等)。
2. Description of the Related Art In recent years, there has been a demand for faster and finer functions of integrated circuits formed on silicon semiconductor substrates.
For this reason, the EM resistance of submicron wiring has become more severe, and there has been a strong demand for the development of wiring having a groove structure called a damascene wiring having high EM resistance. This damascene wiring means that a groove corresponding to a wiring pattern is formed in an insulating film in advance, a conductive film is embedded in the groove, and a conductive film is formed only in the groove by a chemical mechanical polishing method (hereinafter referred to as CMP). It is a wiring obtained by performing a flattening process (Japanese Patent Laid-Open No. 62-102543). FIG. 6 (a)
As shown in (b), the conductive film formed on the dielectric film (insulating film) 7 is composed of a soft low-resistance metal film 8 and a hard metal film 9 and is subjected to chemical mechanical polishing. A technique for performing the method is also known (JP-A-6-84826, etc.).

【0003】[0003]

【発明が解決しようとする課題】図4は、CMPを行っ
た場合のダマシン配線の理想的な状態(b)と、欠陥を
有する現実の状態(c)を示した断面模式図である。
FIG. 4 is a schematic cross-sectional view showing an ideal state (b) of a damascene wiring when CMP is performed and an actual state (c) having a defect.

【0004】図4(a)に示すように、ダマシン配線の
製造方法において、配線パターンに対応する溝を誘電体
膜(絶縁膜)2で形成し、その上に導電膜4を形成する
と、通常、溝と溝外の平坦面との領域界面に段差が発生
する。また配線となる導電膜4と層間膜となる誘電体膜
2の研麿選択比によって導電膜4に過剰な研磨が起こっ
て十分な平坦面が得られない。
As shown in FIG. 4A, in a method of manufacturing a damascene wiring, when a groove corresponding to a wiring pattern is formed with a dielectric film (insulating film) 2 and a conductive film 4 is formed thereon, it is usually Then, a step is generated at the region interface between the groove and the flat surface outside the groove. In addition, the conductive film 4 is excessively polished due to the selectivity between the conductive film 4 serving as a wiring and the dielectric film 2 serving as an interlayer film, and a sufficient flat surface cannot be obtained.

【0005】現実には、図4(b)のに示すように、
パターン幅の大きな溝には過剰な研磨が発生してしま
う。また、図4(b)のに示すように、局所的な段差
によって導電膜4の膜厚に変化が生じた部分の誘電体膜
2の角部が研磨で削られて丸みを帯びてしまう。また、
図4(b)のに示すように、局所的に導電膜4が残留
する欠陥がみられる。
In reality, as shown in FIG.
Excessive polishing occurs in a groove having a large pattern width. In addition, as shown in FIG. 4B, the corners of the dielectric film 2 where the film thickness of the conductive film 4 has changed due to local steps are polished and rounded. Also,
As shown in FIG. 4B, a defect in which the conductive film 4 remains locally is observed.

【0006】このような欠陥〜を無くすためには、
誘電体膜2が出現する前に導電膜4にできた段差を平坦
化し、CMP時間をできるだけ短くして溝以外の導電膜
4を除去しなければならない。
In order to eliminate such a defect,
Before the dielectric film 2 appears, the steps formed in the conductive film 4 must be flattened, and the CMP time must be shortened as much as possible to remove the conductive film 4 other than the grooves.

【0007】また、さらに特開平6−84826号に記
載されたダマシン配線の平坦化方法では、二種の膜を用
いているため、その工程が増加し、設備などに余分な費
用と時間が必要になる。
Further, in the method of planarizing a damascene wiring described in Japanese Patent Application Laid-Open No. 6-84826, since two types of films are used, the number of steps is increased and extra cost and time are required for facilities and the like. become.

【0008】本発明の目的は、上述したCMPによる平
坦化工程での欠陥の発生を防止し、ダメージの小さいダ
マシン微細配線を簡易な工程で形成できる半導体集積回
路の配線の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a wiring of a semiconductor integrated circuit, which can prevent the occurrence of a defect in the above-described planarization step by CMP and can form a damascene fine wiring with small damage in a simple step. It is in.

【0009】[0009]

【課題を解決するための手段】本発明は、配線パターン
に対応する溝を下地誘電体膜により形成する工程と、該
下地誘電体膜上に導電膜を形成する工程と、化学的機械
研磨法により該溝内以外の部分の該導電膜を除去するこ
とにより、該溝内に該導電膜が埋め込まれた平坦な表面
を形成する工程とを含む半導体集積回路の配線の製造方
法において、該下地誘電体膜上に形成する導電膜の表面
荒さが、少なくとも該下地誘電体膜によるパターン段差
よりも大きいことを特徴とする半導体集積回路の配線の
製造方法である。
SUMMARY OF THE INVENTION The present invention comprises a step of forming a groove corresponding to a wiring pattern with a base dielectric film, a step of forming a conductive film on the base dielectric film, and a chemical mechanical polishing method. Forming a flat surface in which the conductive film is buried in the groove by removing the conductive film in a portion other than the inside of the groove, thereby forming a wiring of the semiconductor integrated circuit. A method of manufacturing a wiring for a semiconductor integrated circuit, wherein a surface roughness of a conductive film formed on a dielectric film is larger than at least a pattern step caused by the underlying dielectric film.

【0010】本発明の方法においては、導電膜の表面荒
さを大きくすることで、CMPによる平坦化を良好かつ
容易にし、過剰研磨による欠陥を低減できる。また、本
発明の方法は、工程数を大きく増やさずに実施できるの
で、コスト増も小さい。
In the method of the present invention, by increasing the surface roughness of the conductive film, planarization by CMP can be made good and easy, and defects due to excessive polishing can be reduced. Further, the method of the present invention can be carried out without greatly increasing the number of steps, so that the increase in cost is small.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0012】本発明において、所望の表面荒さを有する
導電膜は、例えばCVD法、PVD法等により形成でき
る。
In the present invention, a conductive film having a desired surface roughness can be formed by, for example, a CVD method or a PVD method.

【0013】CVD法の場合、導電膜の表面荒さを大き
くするには、例えば、多方向に結晶粒を成長させる方法
がある。具体的には、結晶核の発生確率を多くする方法
があり、また誘電体膜表面に金属原子を意図的に付着さ
せる方法がある。この付着した金属原子は成長核密度を
多くし、多種の結晶面を持たせることで導電膜の成長速
度を変化させ、導電膜の表面荒さを大きくする。
In the case of the CVD method, in order to increase the surface roughness of the conductive film, for example, there is a method of growing crystal grains in multiple directions. Specifically, there is a method of increasing the probability of generation of crystal nuclei, and a method of intentionally attaching metal atoms to the surface of the dielectric film. The attached metal atoms increase the growth nucleus density and have a variety of crystal planes, thereby changing the growth rate of the conductive film and increasing the surface roughness of the conductive film.

【0014】PVD法の場合は、柱状結晶がより成長す
るような真空度とスパッタ温度に設定すればよい。特
に、先端が先細りした凸形状を持つ柱状構造が望まし
い。
In the case of the PVD method, the degree of vacuum and the sputtering temperature may be set so that the columnar crystals grow more. In particular, a columnar structure having a convex shape with a tapered tip is desirable.

【0015】また、PVD法およびCVD法で成長した
クラスターの成長(凹凸)をランダムにするため、多種
(111、100、101等)の結晶面の方向性を持た
せる方法もある。つまり、導電膜を成長するサンプル表
面に疑似的なパターンを形成し、パターンのエッジによ
って得られる結晶面の斜め成分を意図的に発生させる方
法である。
In order to randomize the growth (irregularities) of the clusters grown by the PVD method and the CVD method, there is also a method of giving various (111, 100, 101, etc.) crystal plane directions. In other words, this is a method in which a pseudo pattern is formed on the surface of a sample on which a conductive film is grown, and an oblique component of a crystal plane obtained by the edge of the pattern is intentionally generated.

【0016】次に、図1を参照して、金属成長CVDを
用いた本発明の第1の実施形態について説明する。
Next, a first embodiment of the present invention using metal growth CVD will be described with reference to FIG.

【0017】まず、図1(a)に示すように、MOS−
FET等を下地に形成した(図示せず)基板1上の誘電
体膜2をCMP等によって平担化する。次に、基板1上
に誘電体膜2を、CVD法、PVD法、塗布法等によっ
て形成する。この誘電体膜2としては、例えばCVD法
によるBPSG膜、SiO膜、SiOF膜等のシリコン
の無機化合物、シリコンにR基を混合した膜、純粋な有
機膜等が使用できる。誘電体膜2の厚さは、所望の配線
の厚さと同じにすればよく、例えば0.3〜1μm程度
が好ましい。
First, as shown in FIG.
The dielectric film 2 on the substrate 1 formed with an FET or the like as a base (not shown) is flattened by CMP or the like. Next, a dielectric film 2 is formed on the substrate 1 by a CVD method, a PVD method, a coating method, or the like. As the dielectric film 2, for example, a silicon inorganic compound such as a BPSG film, a SiO film, and a SiOF film by a CVD method, a film in which R group is mixed with silicon, a pure organic film, and the like can be used. The thickness of the dielectric film 2 may be the same as the thickness of a desired wiring, and is preferably, for example, about 0.3 to 1 μm.

【0018】次に、誘電体膜2上にレジストパターンを
形成する。このレジストとしては、例えば、g、i線露
光ではキノンジアジド(DNQ)−ノボラック系レジス
ト(以下、DQ/Nと略す)等、Krf、EB露光、X
線露光ではノボラック樹脂に酸発生剤、ヘキサメチロー
ルメラミンを加えた3成分系の化学増幅レジスト等を使
用できる。レジストのパターン幅は所望の配線の幅と同
じにすればよく、例えば0.2〜10μm程度が好まし
い。
Next, a resist pattern is formed on the dielectric film 2. The resist includes, for example, quinonediazide (DNQ) -novolak-based resist (hereinafter abbreviated as DQ / N) for g- and i-line exposure, Krf, EB exposure, X
In the line exposure, a three-component chemically amplified resist obtained by adding an acid generator and hexamethylolmelamine to a novolak resin can be used. The resist pattern width may be the same as the desired wiring width, and is preferably, for example, about 0.2 to 10 μm.

【0019】次に、酸素、炭素、フッ素、アンモニア等
の混合ガスを用い、ドライエッチング法によってレジス
トパターンを誘電体膜2に転写し、これにより溝を形成
する。誘電体膜2をエッチングする際、あらかじめマイ
クロローディング効果を防ぐ為の膜(ストッパー膜)3
を形成しておいてもよい。例えば、誘電体膜2を無機シ
リコン酸化膜系にし、ストッパー膜3に有機膜を用いる
場合、誘電体膜3をフッ素系ガスでエッチングし、上下
配線間のスルーホール開口の妨げとなるストッパー膜3
は酸素系ガスでエッチングすることが望ましい。
Next, a resist pattern is transferred to the dielectric film 2 by a dry etching method using a mixed gas of oxygen, carbon, fluorine, ammonia, etc., thereby forming a groove. When etching the dielectric film 2, a film (stopper film) 3 for preventing the microloading effect in advance
May be formed. For example, when the dielectric film 2 is made of an inorganic silicon oxide film and an organic film is used for the stopper film 3, the dielectric film 3 is etched with a fluorine-based gas, and the stopper film 3 which prevents the opening of a through hole between the upper and lower wirings is formed.
Is preferably etched with an oxygen-based gas.

【0020】次に、例えばCVDやPVD法によって、
所望の表面荒さを有する導電膜4を形成する。この導電
膜4は、単層のAl等でもよいが、密着性やEM、SM
耐性を向上させる目的としてTi/TiN等の膜を同時
に形成して多層化してもよい。また、多層化する膜は、
誘電体膜2に十分なバリア性が得られる膜であれば、低
抵抗、高ストレス耐性のCu、Ti、Fe等を用いても
よい。さらに、SM、EM等を向上させるならTiNや
Wを単層の配線材料として用いてもよい。
Next, for example, by CVD or PVD,
The conductive film 4 having a desired surface roughness is formed. The conductive film 4 may be a single layer of Al or the like,
For the purpose of improving the resistance, a film of Ti / TiN or the like may be simultaneously formed to form a multilayer. Also, the film to be multilayered is
As long as a sufficient barrier property can be obtained for the dielectric film 2, low-resistance, high-stress-resistant Cu, Ti, Fe, or the like may be used. Further, for improving SM, EM, etc., TiN or W may be used as a single-layer wiring material.

【0021】本例においては、図1(b)〜(d)に示
すように、CVD法により、まずアルカリ金属原子、例
えばAl、Ni、Fe、Na、K等を誘電体膜2表面に
10 13atoms/cm2程度付着させる。次に、CV
D法により、例えば300℃程度の成長温度で、Al、
Cu、W、Ti、TiN等の高密度アイランド(導電膜
4)を成長させる。この高密度アイランドの厚さは0.
2μm程度が好ましい。この高密度アイランドは、下地
膜面の影響によって、ランダムな結晶面が出ている。先
に述ベたAl−CVDの成長条件では、生成する結晶面
によって成長速度が異なる。これにより、CVD成長膜
の表面に少なくとも0.3μm以上の凹凸が形成され
る。また、成長したAlのグレインは、お互いを浸食し
合って大きさをさらに増す。したがって、下地誘電体膜
の影響によって形成された段差が吸収されるほどの段差
ができ、所望の表面荒さが得られる。
In this embodiment, FIGS. 1 (b) to 1 (d)
As described above, first, an alkali metal atom, for example,
For example, Al, Ni, Fe, Na, K, etc. are formed on the surface of the dielectric film 2.
10 13atoms / cmTwoTo a degree. Next, CV
By the method D, for example, at a growth temperature of about 300 ° C., Al,
High-density islands of Cu, W, Ti, TiN, etc. (conductive film
4) grow. The thickness of this high density island is 0.
About 2 μm is preferable. This high density island
Due to the influence of the film surface, a random crystal surface is formed. Destination
Under the Al-CVD growth conditions described in
The growth rate differs depending on the type. Thereby, the CVD grown film
Irregularities of at least 0.3 μm are formed on the surface of
You. Also, the grown Al grains erode each other.
Together, the size is further increased. Therefore, the underlying dielectric film
Step that is absorbed by the influence of
And a desired surface roughness can be obtained.

【0022】この現象は、目視によりCVD膜表面が白
濁している事からも確認できる。つまり、光が十分反射
できないくらい、大きな段差が形成されるのである。こ
の様に高密度アイランドと、高温薄膜CVDによって、
表面凹凸の大きな金属膜表面が得られる。
This phenomenon can be confirmed by visual observation that the surface of the CVD film is clouded. That is, a large step is formed such that light cannot be sufficiently reflected. In this way, by high density island and high temperature thin film CVD,
A metal film surface with large surface irregularities can be obtained.

【0023】次に、図1(e)に示すように、CMPに
よる平坦化加工を施す。硬質パッド(JIS−A:硬度
90度程度)を用いた場合、平坦化する対象となる表面
のラフネスによって、平坦化速度に違いがみられる。図
5は表面ラフネスと平坦化速度の関係を示すグラフであ
る。本発明は、この現象を利用してCMPによる平坦化
を行う。この時、CMPに求められるのが平坦化だけで
あるならば、硬質の例えばJIS−A硬度で90度程度
のパッドだけでもよいが、マイクロスクラッチ等を小さ
くするのであれば、平坦化が終了した後JIS−A硬度
50度以下の軟質パッドを用いる2段階のCMP法を用
いてもよい。また、硬質研磨パッドだけを用いるのであ
れば、平坦化時に高圧力例えば0.04kg/cm2
上、研磨開始時および研磨終了時に低圧力例えば0.0
3kg/cm2以下に圧力を変化させる圧力変化CMP
法を用いてもよい。この様にして、図4(b)に示した
理想に近い形状であり低ダメージのダマシン配線が得ら
れる。
Next, as shown in FIG. 1E, flattening is performed by CMP. When a hard pad (JIS-A: hardness of about 90 degrees) is used, there is a difference in the flattening speed depending on the roughness of the surface to be flattened. FIG. 5 is a graph showing the relationship between surface roughness and flattening speed. The present invention utilizes this phenomenon to perform planarization by CMP. At this time, if only the flattening is required for the CMP, only a hard pad, for example, about 90 degrees in JIS-A hardness may be used. Alternatively, a two-stage CMP method using a soft pad having a JIS-A hardness of 50 degrees or less may be used. If only a hard polishing pad is used, a high pressure of, for example, 0.04 kg / cm 2 or more during flattening, and a low pressure of, for example, 0.04 kg at the start and end of polishing.
Pressure change CMP that changes pressure to 3 kg / cm 2 or less
Method may be used. In this way, a damascene wiring with a shape close to the ideal shown in FIG. 4B and low damage can be obtained.

【0024】次に、図2を参照して、ダミーパターンを
形成することにより金属表面の凹凸を形成する本発明の
第2の実施形態について説明する。
Next, with reference to FIG. 2, a second embodiment of the present invention for forming irregularities on a metal surface by forming a dummy pattern will be described.

【0025】第2の実施形態は、ダミーパターンを形成
すること以外は、第1の実施形態と同様に実施すればよ
い。すなわち、まず、MOS−FET等を下地に形成し
た(図示せず)基板1上の誘電体膜2をCMP等によっ
て平担化する。次に、基板1上に誘電体膜2を、CVD
法、PVD法、塗布法等によって形成する。この誘電体
膜2としては、例えばCVD法によるBPSG膜、Si
O膜、SiOF膜等のシリコンの無機化合物、シリコン
にR基を混合した膜、純粋な有機膜等が使用できる。誘
電体膜2の厚さは、所望の配線の厚さと同じにすればよ
く、例えば0.3〜1μm程度が好ましい。
The second embodiment may be implemented in the same manner as the first embodiment except that a dummy pattern is formed. That is, first, the dielectric film 2 on the substrate 1 formed with a MOS-FET or the like as a base (not shown) is flattened by CMP or the like. Next, a dielectric film 2 is formed on the substrate 1 by CVD.
It is formed by a method, a PVD method, a coating method, or the like. As the dielectric film 2, for example, a BPSG film formed by a CVD method, Si
An inorganic compound of silicon such as an O film and a SiOF film, a film in which R groups are mixed with silicon, a pure organic film, and the like can be used. The thickness of the dielectric film 2 may be the same as the thickness of a desired wiring, and is preferably, for example, about 0.3 to 1 μm.

【0026】次に、誘電体膜2上にレジストパターンを
形成する。このレジストとしては、例えば、g、i線露
光ではDQ/N等、Krf、EB露光、X線露光ではノ
ボラック樹脂に酸発生剤、ヘキサメチロールメラミンを
加えた3成分系の化学増幅レジスト等を使用できる。レ
ジストのパターン幅は所望の配線の幅と同じにすればよ
く、例えば0.2〜10μm程度が好ましい。
Next, a resist pattern is formed on the dielectric film 2. As the resist, for example, a three-component chemically amplified resist obtained by adding an acid generator and hexamethylol melamine to a novolak resin for Krf, EB exposure, and X-ray exposure is used, such as DQ / N for g and i-ray exposure. it can. The resist pattern width may be the same as the desired wiring width, and is preferably, for example, about 0.2 to 10 μm.

【0027】次に、酸素、炭素、フッ素、アンモニア等
の混合ガスを用い、ドライエッチング法によってレジス
トパターンを誘電体膜2に転写し、これにより溝を形成
する。
Next, a resist pattern is transferred to the dielectric film 2 by a dry etching method using a mixed gas of oxygen, carbon, fluorine, ammonia, etc., thereby forming a groove.

【0028】そして本例においては、図2(a)〜
(b)に示すように、下地(誘電体膜等)にダミーパタ
ーン6も一緒に形成する。本例において、このダミーパ
ターン6は、溝と同様の形成方法で誘電体膜2上に形成
すればよい。本発明において、ダミーパターン6の形状
は、その上に形成する導電膜4を所望の表面荒さにし得
る形状であればよい。例えば、表面凸パターンを均一な
間隔で設けたパターン形状などが挙げられるが、これに
限定されるものではない。
In this example, FIGS.
As shown in (b), a dummy pattern 6 is also formed on a base (a dielectric film or the like). In this example, the dummy pattern 6 may be formed on the dielectric film 2 by the same forming method as the groove. In the present invention, the shape of the dummy pattern 6 may be any shape as long as the conductive film 4 formed thereon can have a desired surface roughness. For example, a pattern shape in which surface convex patterns are provided at uniform intervals is exemplified, but the present invention is not limited to this.

【0029】このダミーパターン6の角部にCVDによ
る多方向性(110、111、011等)を持ったアイ
ランドが発生し、この多結晶面アイランドが成長すると
表面凹凸が大きくなり、CVD又はPVDにより導電膜
を成長させれば、図2(c)に示すように、表面凹凸の
大きな導電膜が得られる。次に、図2(d)に示すよう
に、CMPによる平坦化加工を施せば、図4に示した理
想に近い形状のダマシン配線が得られる。
At the corners of the dummy pattern 6, islands having multidirectionality (110, 111, 011 etc.) are generated by CVD, and when these polycrystalline plane islands grow, the surface irregularities increase, and the surface irregularities are increased by CVD or PVD. If a conductive film is grown, a conductive film having large surface irregularities can be obtained as shown in FIG. Next, as shown in FIG. 2 (d), if a planarization process is performed by CMP, a damascene wiring having an almost ideal shape shown in FIG. 4 is obtained.

【0030】次に、図3を参照して、PVD法により導
電膜表面凹凸を大きくする本発明の第3の実施形態につ
いて説明する。
Next, with reference to FIG. 3, a third embodiment of the present invention in which the surface roughness of the conductive film is increased by the PVD method will be described.

【0031】第3の実施形態は、PVD法により表面凹
凸の大きな導電膜を形成すること以外は、第1の実施形
態と同様に実施すればよい。すなわち、まず、MOS−
FET等を下地に形成した(図示せず)基板1上の誘電
体膜2をCMP等によって平担化する。次に、基板1上
に誘電体膜2を、CVD法、PVD法、塗布法等によっ
て形成する。この誘電体膜2としては、例えばCVD法
によるBPSG膜、SiO膜、SiOF膜等のシリコン
の無機化合物、シリコンにR基を混合した膜、純粋な有
機膜等が使用できる。誘電体膜2の厚さは、所望の配線
の厚さと同じにすればよく、例えば0.3〜1μm程度
が好ましい。
The third embodiment may be implemented in the same manner as the first embodiment except that a conductive film having a large surface unevenness is formed by the PVD method. That is, first, MOS-
The dielectric film 2 on the substrate 1 formed with an FET or the like as a base (not shown) is flattened by CMP or the like. Next, a dielectric film 2 is formed on the substrate 1 by a CVD method, a PVD method, a coating method, or the like. As the dielectric film 2, for example, a silicon inorganic compound such as a BPSG film, a SiO film, and a SiOF film by a CVD method, a film in which R group is mixed with silicon, a pure organic film, and the like can be used. The thickness of the dielectric film 2 may be the same as the thickness of a desired wiring, and is preferably, for example, about 0.3 to 1 μm.

【0032】次に、誘電体膜2上にレジストパターンを
形成する。このレジストとしては、例えば、g、i線露
光ではDQ/N等、Krf、EB露光、X線露光ではノ
ボラック樹脂に酸発生剤、ヘキサメチロールメラミンを
加えた3成分系の化学増幅レジスト等を使用できる。レ
ジストのパターン幅は所望の配線の幅と同じにすればよ
く、例えば0.2〜10μm程度が好ましい。
Next, a resist pattern is formed on the dielectric film 2. As the resist, for example, a three-component chemically amplified resist obtained by adding an acid generator and hexamethylol melamine to a novolak resin for Krf, EB exposure, and X-ray exposure is used, such as DQ / N for g and i-ray exposure. it can. The resist pattern width may be the same as the desired wiring width, and is preferably, for example, about 0.2 to 10 μm.

【0033】次に、酸素、炭素、フッ素、アンモニア等
の混合ガスを用い、ドライエッチング法によってレジス
トパターンを誘電体膜2に転写し、これにより溝を形成
する。
Next, a resist pattern is transferred to the dielectric film 2 by a dry etching method using a mixed gas of oxygen, carbon, fluorine, ammonia, etc., thereby forming a groove.

【0034】そして本例においては、図3(a)〜
(b)に示すように、PVD法により表面凹凸の大きな
導電膜を形成する。この図3は、いわゆるThornt
on−Movchan−Demichishinモデル
である。ソートン氏らによれば、PVDによる結晶構造
は融点Tmで規格化した膜形成温度T/Tmである。こ
のとき、CMPで平坦化に適した結晶状態は、Zone
lにできる先細りした柱状結晶である。このような先細
りした柱状結晶により導電膜を形成することにより、表
面凹凸の大きな導電膜が得られる。次に、CMPによる
平坦化加工を施せば、図4に示した理想に近い形状のダ
マシン配線が得られる。
In this example, FIGS.
As shown in (b), a conductive film having large surface irregularities is formed by a PVD method. This FIG.
It is an on-Movchan-Demichishin model. According to Thorton et al., The crystal structure by PVD is a film formation temperature T / Tm standardized by a melting point Tm. At this time, the crystal state suitable for planarization by CMP is Zone
1 is a tapered columnar crystal. By forming a conductive film using such tapered columnar crystals, a conductive film having large surface irregularities can be obtained. Next, by performing a planarization process by CMP, a damascene wiring having an almost ideal shape shown in FIG. 4 can be obtained.

【0035】[0035]

【発明の効果】以上説明した本発明では、導電膜の表面
荒さを大きくすることで、CMPによる平坦化工程での
欠陥の発生を防止し、ダメージの小さいダマシン微細配
線を簡易な工程で形成できる。
According to the present invention described above, by increasing the surface roughness of the conductive film, the occurrence of defects in the planarization step by CMP can be prevented, and damascene fine wiring with small damage can be formed in a simple step. .

【0036】したがって、本発明の半導体集積回路の配
線の製造方法を用いれば、高集積化したトランジスタ群
をもつ大規模システムを1チップ上で配線することがで
き、複数のチップを必要としたシステムと比較して、大
幅にその製造コストが低減され、機能も多様化、高速化
が可能となる。
Therefore, by using the method for manufacturing a wiring of a semiconductor integrated circuit according to the present invention, a large-scale system having a highly integrated transistor group can be wired on one chip, and a system requiring a plurality of chips is required. As compared with, the manufacturing cost is greatly reduced, and the functions can be diversified and the speed can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(e)は、金属成長CVDを用いた本
発明の第1の実施形態を説明する為の模式的断面図であ
る。
FIGS. 1A to 1E are schematic cross-sectional views illustrating a first embodiment of the present invention using metal growth CVD.

【図2】(a)〜(d)は、ダミーパターンを形成する
ことにより金属表面の凹凸を形成する本発明の第2の実
施形態を説明する為の模式的断面図である。
FIGS. 2A to 2D are schematic cross-sectional views for explaining a second embodiment of the present invention in which irregularities on a metal surface are formed by forming a dummy pattern.

【図3】(a)〜(b)は、PVD法により導電膜表面
凹凸を大きくする本発明の第3の実施形態を説明する為
の模式的断面図である。
FIGS. 3 (a) and 3 (b) are schematic cross-sectional views for explaining a third embodiment of the present invention in which the surface roughness of a conductive film is increased by a PVD method.

【図4】(a)〜(c)は、CMPを行った場合のダマ
シン配線の理想的な状態と、欠陥を有する現実の状態を
示した断面模式図である。
4A to 4C are schematic cross-sectional views showing an ideal state of a damascene wiring when CMP is performed and a real state having a defect.

【図5】表面ラフネスと平坦化速度の関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between surface roughness and flattening speed.

【図6】(a)〜(b)は、従来技術の一例を説明する
為の模式的断面図である。
FIGS. 6A and 6B are schematic cross-sectional views illustrating an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1 基板 2 誘電体膜 3 ストッパー膜 4 導電膜 5 溝配線(ダマシン配線) 6 ダミーパターン 7 誘電体膜 8 軟質低抵抗率金属膜 9 硬質金属膜 DESCRIPTION OF SYMBOLS 1 Substrate 2 Dielectric film 3 Stopper film 4 Conductive film 5 Groove wiring (damascene wiring) 6 Dummy pattern 7 Dielectric film 8 Soft low resistivity metal film 9 Hard metal film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配線パターンに対応する溝を誘電体膜に
より形成する工程と、該誘電体膜上に導電膜を形成する
工程と、化学的機械研磨法により該溝内以外の部分の該
導電膜を除去することにより、該溝内に該導電膜が埋め
込まれた平坦な表面を形成する工程とを含む半導体集積
回路の配線の製造方法において、 該誘電体膜上に形成する導電膜の表面荒さが、少なくと
も該誘電体膜によるパターン段差よりも大きいことを特
徴とする半導体集積回路の配線の製造方法。
A step of forming a groove corresponding to a wiring pattern by a dielectric film; a step of forming a conductive film on the dielectric film; and a step of forming a conductive film on a portion other than the inside of the groove by a chemical mechanical polishing method. Forming a flat surface in which the conductive film is buried in the trench by removing the film, wherein a surface of the conductive film formed on the dielectric film is formed. A method for manufacturing a wiring of a semiconductor integrated circuit, wherein roughness is at least larger than a pattern step caused by the dielectric film.
【請求項2】 誘電体膜上に金属原子を付着させ、該金
属原子を結晶核としてCVD法により導電膜の成長を行
なうことによって、前記表面荒さの導電膜を形成する請
求項1記載の半導体集積回路の配線の製造方法。
2. The semiconductor according to claim 1, wherein a metal atom is attached to the dielectric film, and the conductive film is grown by CVD using the metal atom as a crystal nucleus to form the conductive film having the surface roughness. A method for manufacturing wiring of an integrated circuit.
【請求項3】 誘電体膜上に配線パターンとは異なる表
面凸パターンからなるダミーパターンを形成し、該誘電
体膜上に導電膜を形成する請求項1又は2記載の半導体
集積回路の配線の製造方法。
3. The wiring of a semiconductor integrated circuit according to claim 1, wherein a dummy pattern having a surface convex pattern different from the wiring pattern is formed on the dielectric film, and a conductive film is formed on the dielectric film. Production method.
【請求項4】 誘電体膜がシリコン酸化膜であり、且つ
該誘電体膜をエッチングする際、あらかじめマイクロロ
ーディング効果を防ぐ為の有機膜からなるストッパー膜
を形成しておき、該誘電体膜はフッ素系ガスでエッチン
グし、該ストッパー膜は酸素系ガスでエッチングする請
求項1〜3の何れか一項記載の半導体集積回路の配線の
製造方法。
4. The dielectric film is a silicon oxide film, and when etching the dielectric film, a stopper film made of an organic film for preventing a microloading effect is formed in advance, and the dielectric film is 4. The method according to claim 1, wherein the etching is performed with a fluorine-based gas, and the stopper film is etched with an oxygen-based gas.
【請求項5】 化学的機械研磨法は、硬質研磨パッドを
用いた平坦化の為の研磨と、軟質研磨パッドを用いた仕
上げ研磨により行なう請求項1〜4の何れか一項記載の
半導体集積回路の配線の製造方法。
5. The semiconductor integrated circuit according to claim 1, wherein the chemical mechanical polishing is performed by polishing for planarization using a hard polishing pad and finish polishing using a soft polishing pad. Manufacturing method of circuit wiring.
【請求項6】 化学的機械研磨法は、段差の平坦化の為
の研磨における圧力は比較的高く、該平坦化終了後の研
磨における圧力は比較的低くして行なう請求項1〜4の
何れか一項記載の半導体集積回路の配線の製造方法。
6. The chemical mechanical polishing method according to claim 1, wherein the pressure for polishing for flattening the step is relatively high, and the pressure for polishing after the flattening is completed is relatively low. 9. The method for manufacturing a wiring of a semiconductor integrated circuit according to claim 1.
JP9201829A 1997-07-28 1997-07-28 Method of manufacturing wiring of semiconductor integrated circuit Expired - Fee Related JP3019812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9201829A JP3019812B2 (en) 1997-07-28 1997-07-28 Method of manufacturing wiring of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9201829A JP3019812B2 (en) 1997-07-28 1997-07-28 Method of manufacturing wiring of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH1145883A true JPH1145883A (en) 1999-02-16
JP3019812B2 JP3019812B2 (en) 2000-03-13

Family

ID=16447593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9201829A Expired - Fee Related JP3019812B2 (en) 1997-07-28 1997-07-28 Method of manufacturing wiring of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3019812B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615495B2 (en) 2005-11-17 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615495B2 (en) 2005-11-17 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
US8344379B2 (en) 2005-11-17 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same

Also Published As

Publication number Publication date
JP3019812B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US4879257A (en) Planarization process
TWI278062B (en) Semiconductor device and manufacturing method thereof
JP3174049B2 (en) Method for global planarization of semiconductor integrated circuit surface
JPS61119058A (en) Manufacture of semiconductor device
JPH0745616A (en) Manufacture of semiconductor device
JPH0682759B2 (en) Method of forming conductive stud
US6855638B2 (en) Process to pattern thick TiW metal layers using uniform and selective etching
JPS5893255A (en) Manufacture of semiconductor device
JP2000174022A (en) Method of forming alignment mark
JP3077990B2 (en) Method for manufacturing semiconductor device
JP2000150641A (en) Manufacture of semiconductor device
JP2001118845A (en) Formation of damascene interconnection and semiconductor device
JP3019812B2 (en) Method of manufacturing wiring of semiconductor integrated circuit
JP2001358215A (en) Semiconductor device and its manufacturing method
US20030180669A1 (en) Micro-pattern forming method for semiconductor device
US6555910B1 (en) Use of small openings in large topography features to improve dielectric thickness control and a method of manufacture thereof
US20020064938A1 (en) Method for fabricating semiconductor device
US6136510A (en) Doubled-sided wafer scrubbing for improved photolithography
KR100560307B1 (en) Fabricating method of semiconductor device
JP2006093533A (en) Semiconductor device and its manufacturing method
JP2004047851A (en) Manufacturing method for semiconductor device
JPS59168640A (en) Manufacture of semiconductor device
JP2001176872A (en) Method for manufacturing semiconductor device
CN108231599A (en) Improve the method for wafer surface flatness uniformity
JPH04299846A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees