JPH1144550A - Guide unit - Google Patents

Guide unit

Info

Publication number
JPH1144550A
JPH1144550A JP17791097A JP17791097A JPH1144550A JP H1144550 A JPH1144550 A JP H1144550A JP 17791097 A JP17791097 A JP 17791097A JP 17791097 A JP17791097 A JP 17791097A JP H1144550 A JPH1144550 A JP H1144550A
Authority
JP
Japan
Prior art keywords
vehicle
posture
recognition mark
detecting
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17791097A
Other languages
Japanese (ja)
Other versions
JP3932606B2 (en
Inventor
Munenori Ooshima
宗訓 大島
Naomichi Fujinaga
直道 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP17791097A priority Critical patent/JP3932606B2/en
Publication of JPH1144550A publication Critical patent/JPH1144550A/en
Application granted granted Critical
Publication of JP3932606B2 publication Critical patent/JP3932606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a guide unit for estimating the position and the attitude of a vehicle through a simple processing using minimum number of measuring means without being restricted by the traveling route. SOLUTION: A vehicle is controlled through a control section 6 to travel basically along a traveling route based on position/attitude values estimated at a position/attitude estimating section 4 using outputs from a steering angle sensor 1 and a moving speed sensor 2. Every time when a lateral shift from a magnetic mark being put on the traveling route at an arbitrary interval is detected by a magnetic sensor 3, a correcting section 5 corrects the position/ attitude values based on the position of the magnetic mark stored at a map information memory section 7, a lateral shift obtained from the magnetic sensor 3, and the position/attitude values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,車両に取り付けら
れた各種測定手段から得られた情報に基づいて車両の現
在位置及び姿勢を推定し,車両を所定の走行経路に沿っ
て走行させるための誘導装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the current position and attitude of a vehicle based on information obtained from various measuring means attached to the vehicle, and causing the vehicle to travel along a predetermined traveling route. The present invention relates to a guidance device.

【0002】[0002]

【従来の技術】車両に取り付けられた各種測定手段から
得られた情報に基づいて車両の現在位置及び姿勢を推定
し,その推定値を利用して車両を所定の走行経路に従っ
て誘導する推測航法として,従来より,車両の進行方向
と移動距離を計測し積分することによって車両の推定位
置を推定する航法と,GPSやビーコンなどを用いた電
波航法とを組み合わせてそれぞれの欠点を補うことによ
り上記推定値の精度を高めるハイブリッド航法が用いら
れている。その一例として,例えば特開平06−343
79号公報に提案されている方法がある。この方法は,
各測定手段(地磁気センサ,角速度センサ,距離セン
サ,位置センサ)のそれぞれの誤差を補正するため,1
つの測定手段の出力誤差を他の測定手段の出力を用いて
補正し,それら補正された出力値に基づいて車両の位置
及び姿勢を推定するものである。
2. Description of the Related Art Dead reckoning navigation in which the current position and attitude of a vehicle is estimated based on information obtained from various measuring means attached to the vehicle, and the estimated value is used to guide the vehicle along a predetermined traveling route. Conventionally, the above-described estimation is performed by combining the navigation which estimates the estimated position of the vehicle by measuring and integrating the traveling direction and the moving distance of the vehicle and the radio navigation using a GPS, a beacon, etc., and compensating for each disadvantage. Hybrid navigation is used to increase the accuracy of the values. One example is disclosed in Japanese Patent Application Laid-Open No. 06-343.
There is a method proposed in JP-A-79. This method
To correct each error of each measuring means (geomagnetic sensor, angular velocity sensor, distance sensor, position sensor), 1
The output error of one measuring means is corrected using the output of another measuring means, and the position and orientation of the vehicle are estimated based on the corrected output values.

【0003】[0003]

【発明が解決しようとする課題】ところが,上述のよう
な従来のハイブリッド航法では,車両位置の推定に必要
な各測定値に対して,それぞれ複数の異なる測定手段を
取り付けなければならないため,コスト高になるという
問題点があった。また,複数の測定手段からの出力を評
価するための処理が複雑であるため処理時間がかかり,
制御遅れ等の問題もあった。また,特に電波航法による
位置計測においては,一定時間毎,又は一定距離毎の計
測が必要であり,走行経路の制約を受けるという問題点
もあった。本発明は上記事情に鑑みてなされたものであ
り,その目的とするところは,最小限の測定手段を用い
た簡単な処理により車両の位置及び姿勢を高精度で推定
することができ,走行経路の制約を受けることのない誘
導装置を提供することである。
However, in the conventional hybrid navigation as described above, a plurality of different measuring means must be attached to each of the measured values required for estimating the vehicle position. There was a problem of becoming. In addition, the processing for evaluating the outputs from multiple measuring means is complicated, and it takes a long time.
There were also problems such as control delay. In addition, particularly in position measurement by radio navigation, it is necessary to perform measurement at regular time intervals or at regular distances, and there is also a problem that the travel route is restricted. The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to estimate the position and orientation of a vehicle with high accuracy by a simple process using a minimum number of measurement means, and The present invention is to provide a guidance device which is not restricted by the above.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,車両に設置され,該車両の相対位置及び姿
勢を検出する位置・姿勢検出手段と,車両に設置され,
該車両の走行経路上に任意の間隔で設けられた認識マー
クに対する上記車両の横ズレ量を検出するズレ検出手段
と,上記認識マークの位置を予め記憶する認識マーク位
置記憶手段と,上記位置・姿勢検出手段からの出力に基
づいて上記車両の相対位置及び姿勢を推定する位置・姿
勢推定手段と,上記認識マーク位置記憶手段に記憶され
た認識マーク位置と,上記ズレ検出手段より得られた上
記横ズレ量と,上記位置・姿勢推定手段より得られた車
両の位置・姿勢推定値とに基づいて上記車両の位置・姿
勢推定値を補正する補正手段と,上記補正手段より得ら
れた補正後の車両の位置・姿勢推定値に基づいて,車両
を上記走行経路に沿って走行させるように制御する制御
手段とを具備してなることを特徴とする誘導装置として
構成されている。また,上記補正手段は,例えば,上記
認識マーク位置記憶手段に記憶された認識マーク位置と
上記ズレ検出手段より得られた上記横ズレ量と上記位置
・姿勢推定手段より得られた車両の姿勢推定値とから求
めた車両の位置計算値と,上記位置・姿勢推定手段より
得られた車両の位置推定値と,上記位置・姿勢推定手段
より得られた車両の走行距離とに基づいて車両の姿勢補
正量を求め,該姿勢補正量により,上記位置・姿勢推定
手段より得られた車両の姿勢推定値を補正し,該補正さ
れた姿勢推定値と,上記認識マーク位置記憶手段に記憶
された認識マーク位置と,上記ズレ検出手段より得られ
た上記横ズレ量とに基づいて,上記位置・姿勢推定手段
より得られた車両の位置推定値を補正するように構成す
ることができる。
In order to achieve the above object, the present invention is provided in a vehicle, a position / posture detecting means for detecting a relative position and a posture of the vehicle, and installed in the vehicle.
Displacement detection means for detecting the amount of lateral displacement of the vehicle with respect to the recognition marks provided at arbitrary intervals on the travel route of the vehicle, recognition mark position storage means for storing the positions of the recognition marks in advance, Position / posture estimating means for estimating the relative position and attitude of the vehicle based on the output from the attitude detecting means; the recognition mark position stored in the recognition mark position storage means; Correction means for correcting the estimated position and orientation of the vehicle based on the amount of lateral displacement and the estimated position and orientation of the vehicle obtained by the position and orientation estimation means; And control means for controlling the vehicle to travel along the travel route based on the estimated position / posture value of the vehicle. The correction means may be, for example, a recognition mark position stored in the recognition mark position storage means, the lateral displacement amount obtained by the displacement detection means, and a vehicle posture estimation obtained by the position / posture estimation means. Of the vehicle based on the calculated position of the vehicle obtained from the calculated values, the position estimated value of the vehicle obtained by the position / posture estimating means, and the travel distance of the vehicle obtained by the position / posture estimating means. A correction amount is obtained, and the posture estimation value of the vehicle obtained by the position / posture estimation means is corrected using the posture correction amount. The corrected posture estimation value and the recognition mark stored in the recognition mark position storage means are corrected. The vehicle position estimation value obtained by the position / posture estimation means may be corrected based on the mark position and the lateral deviation amount obtained by the deviation detection means.

【0005】或いは,上記補正手段は,上記ズレ検出手
段により2つの上記認識マークが連続して検出された
時,上記認識マーク位置記憶手段に記憶された認識マー
ク位置と上記ズレ検出手段より得られた上記横ズレ量と
上記位置・姿勢推定手段より得られた車両の姿勢推定値
とから上記2つの認識マーク検出時における車両の位置
計算値をそれぞれ求め,それら2つの位置計算値より求
めた車両の姿勢計算値と,上記2つの認識マーク検出時
において上記位置・姿勢推定手段より得られた2つの位
置推定値より求めた車両の姿勢推定値とに基づいて車両
の姿勢補正量を求め,該姿勢補正量により,上記位置・
姿勢推定手段より得られた車両の姿勢推定値を補正し,
該補正された姿勢推定値と,上記認識マーク位置記憶手
段に記憶された認識マーク位置と,上記ズレ検出手段よ
り得られる上記横ズレ量とに基づいて,上記位置・姿勢
推定手段より得られた車両の位置推定値を補正するよう
に構成することもできる。上記位置・姿勢検出手段とし
ては,例えば,車両のステア角を検出するステア角検出
センサと,車両の移動速度を検出する移動速度検出セン
サとを具備する構成が考えられる。また,上記ズレ検出
手段としては,例えば,磁気マークで構成される上記認
識マークからの車両の横ズレ量を検出する磁気センサに
よる構成が考えられる。
[0005] Alternatively, the correction means may obtain the recognition mark position stored in the recognition mark position storage means and the deviation detection means when the two detection marks are successively detected by the deviation detection means. The calculated position of the vehicle at the time of detecting the two recognition marks is obtained from the lateral displacement amount and the estimated position of the vehicle obtained by the position / posture estimating means, respectively, and the vehicle calculated from the two calculated positions is obtained. A posture correction amount of the vehicle is calculated based on the posture calculation value of the vehicle and the vehicle posture estimation value obtained from the two position estimation values obtained by the position / posture estimation means when the two recognition marks are detected. The above position /
The vehicle posture estimation value obtained by the posture estimation means is corrected,
Based on the corrected posture estimation value, the recognition mark position stored in the recognition mark position storage means, and the lateral displacement amount obtained by the displacement detection means, the position / posture estimation result is obtained. It may be configured to correct the estimated position value of the vehicle. As the position / posture detection means, for example, a configuration including a steer angle detection sensor that detects a steer angle of the vehicle and a moving speed detection sensor that detects a moving speed of the vehicle can be considered. Further, as the deviation detecting means, for example, a configuration using a magnetic sensor for detecting a lateral deviation amount of the vehicle from the recognition mark constituted by a magnetic mark can be considered.

【0006】[0006]

【作用】本発明に係る誘導装置では,位置・姿勢検出手
段からの出力を用いて位置・姿勢推定手段により推定さ
れた位置・姿勢推定値に基づいて,制御手段により車両
を走行経路に沿って走行させることを基本とする。但
し,走行経路上に任意の間隔で設けられた磁気マークな
どの認識マークが磁気センサなどのズレ検出手段により
検出された時には,補正手段により,上記位置・姿勢推
定手段により推定された位置・姿勢推定値が,認識マー
ク位置記憶手段に記憶された上記認識マーク位置と,上
記ズレ検出手段より得られた上記横ズレ量と,上記位置
・姿勢推定手段より得られた車両の位置・姿勢推定値と
に基づいて補正される。補正の態様としては,請求項2
又は3に示すような方法が挙げられる。このように,測
定手段として,位置・姿勢検出手段,及びズレ検出手段
のみを用いた構成により,複数の異なる測定手段を重複
して取り付けなければならなかった従来のハイブリッド
航法と比べてコストが低く抑えられ,また,測定手段か
らの出力を評価するための処理が簡単なため高速処理が
行える。また,上記走行経路上に設けられた認識マーク
は任意の間隔で設けられ,またどのような状況でも確実
に検出できるため,一定時間毎,又は一定距離毎の計測
が必要な電波航法による位置計測のように走行経路の制
約を受けることもない。
In the guidance device according to the present invention, the control unit moves the vehicle along the traveling route based on the position / posture estimation value estimated by the position / posture estimation unit using the output from the position / posture detection unit. It is basically driven. However, when a recognition mark such as a magnetic mark provided at an arbitrary interval on the traveling route is detected by a displacement detecting means such as a magnetic sensor, the position / posture estimated by the position / posture estimation means by the correction means. The estimated value is the recognition mark position stored in the recognition mark position storage means, the lateral displacement obtained by the displacement detection means, and the vehicle position / posture estimation value obtained by the position / posture estimation means. And is corrected based on As a mode of the correction, claim 2
Or a method as shown in 3. As described above, the configuration using only the position / posture detecting means and the deviation detecting means as the measuring means has a lower cost than the conventional hybrid navigation method in which a plurality of different measuring means have to be mounted in duplicate. In addition, the processing for evaluating the output from the measuring means is simple, so that high-speed processing can be performed. In addition, since the recognition marks provided on the above-mentioned travel route are provided at arbitrary intervals and can be reliably detected in any situation, position measurement by radio navigation that requires measurement at fixed time intervals or at fixed distances is required. There is no restriction on the traveling route as in the above.

【0007】[0007]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
性格のものではない。ここに,図1は本発明の実施の形
態に係る誘導装置A1の概略構成を示す模式図,図2は
上記誘導装置A1の車両誘導処理手順の一例を示すフロ
ーチャート,図3は上記誘導装置A1の車両誘導処理手
順の説明図,図4は上記誘導装置A1を適用する車両1
0の構成の一例を示す模式図,図5は実施例に係る車両
誘導処理手順を示すフローチャート,図6は上記実施例
に係る車両誘導処理手順の説明図である。本実施の形態
に係る誘導装置A1は,図1に示すように,車両のステ
ア角を検出するポテンショメータ等のステア角検出セン
サ1と,車両の駆動輪に取付けられ車両の速度を検出す
るエンコーダ等の移動速度検出センサ2と,車両の走行
経路上に任意の間隔で設けられた磁気マークに対する横
ズレ量を検出する磁気センサ3と,上記ステア角検出セ
ンサ1及び上記移動速度検出センサ2からの検出値に基
づいて車両の位置及び姿勢を推定する位置・姿勢推定部
4と,上記走行経路の情報及び上記磁気マークの位置
(座標)を予め記憶する地図情報記憶部7(認識マーク
位置記憶手段に相当)と,上記地図情報記憶部7に記憶
された上記磁気マークの位置と,上記磁気センサ3によ
り検出された磁気マークからの横ズレ量と,上記位置・
姿勢推定部4により得られた位置・姿勢推定値とに基づ
いて上記位置・姿勢推定値を補正する補正部5と,上記
位置・姿勢推定部4により得られた位置・姿勢推定値若
しくは上記補正部5により得られた補正後の位置・姿勢
推定値に基づいて車両を走行経路に沿って走行させるよ
うに制御する制御部6とで構成されている。尚,上記ス
テア角検出センサ1と移動速度検出センサ2とで位置・
姿勢検出手段を構成している。以上のような構成を有す
る誘導装置A1は,上記ステア角検出センサ1と移動速
度検出センサ2からの検出値に基づいて上記位置・姿勢
推定部4において車両の位置・姿勢推定値を求め,該位
置・姿勢推定値と上記地図情報記憶部7に記憶された走
行経路の情報とに基づいて制御部6により走行制御を行
う,いわゆる慣性航法を基本とし,上記磁気センサ3に
より上記磁気マークが検出される度に上記補正部5によ
り上記位置・姿勢推定部4で求めた車両の位置・姿勢推
定値を補正するものである。これは,上記ステア角検出
センサ1と移動速度検出センサ2により得られる相対位
置を,上記磁気センサ3により得られる絶対位置で補正
していると言うこともできる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic diagram illustrating a schematic configuration of a guidance device A1 according to an embodiment of the present invention, FIG. 2 is a flowchart illustrating an example of a vehicle guidance processing procedure of the guidance device A1, and FIG. FIG. 4 is an explanatory diagram of the vehicle guidance processing procedure of FIG.
FIG. 5 is a schematic diagram showing an example of the configuration of the vehicle 0, FIG. 5 is a flowchart showing a vehicle guidance processing procedure according to the embodiment, and FIG. 6 is an explanatory diagram of the vehicle guidance processing procedure according to the embodiment. As shown in FIG. 1, a guidance device A1 according to the present embodiment includes a steering angle detection sensor 1 such as a potentiometer for detecting a steering angle of a vehicle, an encoder mounted on driving wheels of the vehicle, and detecting a speed of the vehicle. A moving speed detecting sensor 2, a magnetic sensor 3 for detecting an amount of lateral displacement with respect to a magnetic mark provided at an arbitrary interval on a traveling path of the vehicle, and the steering angle detecting sensor 1 and the moving speed detecting sensor 2. A position / posture estimating unit 4 for estimating the position and posture of the vehicle based on the detected values, and a map information storage unit 7 (recognition mark position storage means) for preliminarily storing the information on the traveling route and the position (coordinates) of the magnetic mark. ), The position of the magnetic mark stored in the map information storage unit 7, the amount of lateral displacement from the magnetic mark detected by the magnetic sensor 3,
A correction unit 5 for correcting the position / posture estimation value based on the position / posture estimation value obtained by the posture estimation unit 4, and a position / posture estimation value obtained by the position / posture estimation unit 4 or the correction The control unit 6 controls the vehicle to travel along the traveling route based on the corrected position / posture estimated values obtained by the unit 5. Note that the steering angle detection sensor 1 and the moving speed detection sensor 2
It constitutes posture detecting means. The guidance apparatus A1 having the above configuration obtains the estimated position / posture of the vehicle in the position / posture estimating unit 4 based on the detection values from the steering angle detection sensor 1 and the moving speed detection sensor 2. Based on the so-called inertial navigation, in which the control unit 6 performs travel control based on the estimated position / posture value and the travel route information stored in the map information storage unit 7, the magnetic sensor 3 detects the magnetic mark. Each time the correction is performed, the correction unit 5 corrects the estimated position / posture value of the vehicle obtained by the position / posture estimation unit 4. This can be said that the relative position obtained by the steering angle detection sensor 1 and the moving speed detection sensor 2 is corrected by the absolute position obtained by the magnetic sensor 3.

【0008】以下,図2及び図3を用いて,上記誘導装
置A1による車両の誘導手順について説明する。尚,以
下の説明に用いる車両10は,図4に示すように,ホイ
ールベース(=W)の中心を車体中心位置とし,車輪1
1から距離Lだけ離れた車体最前部に磁気センサ3が取
り付けられている。また,車両10の走行経路R上には
任意の間隔で磁気マークM(M1,M2,…Mn)が設
置されており,上記磁気センサ3は上記磁気マークMと
車両10の中心線との横ズレ量Dを検出する。スタート
地点SP(図3)から車両10が走行を始めると,ステ
ア角検出センサ1及び移動速度検出センサ2によりそれ
ぞれステア角と移動速度の検出が連続的に行われ(ステ
ップS1),それら検出値に基づいて位置・姿勢推定部
4において車両10の位置及び姿勢の推定値が求められ
る(ステップS2)。車両10の最前部に取り付けられ
た磁気センサ3により,走行経路R上の磁気マークM1
を検出するまでは,上記位置・姿勢推定部4において求
められた位置・姿勢推定値が地図情報記憶部7に記憶さ
れた走行経路Rに沿うように制御部10により車体10
の走行が制御される(ステップS3→S7→S8→S1
→…)。磁気センサ3により磁気マークM1が検出され
ると(ステップS3),上記ステップS7を実行する前
に,以下に説明するステップS4〜S6の処理が行われ
る。
Hereinafter, a procedure for guiding a vehicle by the above-described guidance device A1 will be described with reference to FIGS. As shown in FIG. 4, the vehicle 10 used in the following description has the center of the wheel base (= W) as the vehicle body center position, and
A magnetic sensor 3 is attached to the foremost part of the vehicle body at a distance L from the vehicle body 1. Magnetic marks M (M1, M2,... Mn) are provided at arbitrary intervals on the traveling route R of the vehicle 10, and the magnetic sensor 3 is arranged between the magnetic mark M and the center line of the vehicle 10. The shift amount D is detected. When the vehicle 10 starts running from the start point SP (FIG. 3), the steer angle detection sensor 1 and the movement speed detection sensor 2 continuously detect the steer angle and the movement speed, respectively (step S1), and the detected values are obtained. The position / posture estimating unit 4 obtains an estimated value of the position and the posture of the vehicle 10 based on (Step S2). The magnetic sensor 3 attached to the front of the vehicle 10 detects the magnetic mark M1 on the traveling route R.
Until the position / posture estimation unit 4 detects the position / posture estimation unit 4, the control unit 10 controls the vehicle body 10 so that the estimated position / posture value along the traveling route R stored in the map information storage unit 7.
Is controlled (steps S3 → S7 → S8 → S1)
→…). When the magnetic mark M1 is detected by the magnetic sensor 3 (step S3), before executing the step S7, the processing of steps S4 to S6 described below is performed.

【0009】図3は磁気センサ3により磁気マークM1
が検出された時点での車両10の実際の位置・姿勢10
aと,上記位置・姿勢推定部4において推定された位置
・姿勢10a′との関係を示している。図中,実線が実
際の車両10の位置・姿勢10a,破線が位置・姿勢推
定部4において推定された位置・姿勢10a′である。
即ち,磁気センサ3により磁気マークM1が検出される
までは,制御部6では10a′を走行経路Rにのせるよ
うな走行制御が行われていたものとする。ここで,上記
走行経路Rの方向をX軸,それと直角の方向をY軸,車
両の走行経路Rに対する姿勢角をθとし,実際の車両の
中心位置Prの座標及び姿勢を(Xr,Yr,θr),
上記位置・姿勢推定部4において推定された車両位置・
姿勢の中心位置Pgの座標及び姿勢を(Xg,Yg,θ
g),実際の磁気センサ3の位置Psの座標を(Xs,
Ys),磁気マークM1の座標を(Xm,Ym),上記
磁気センサ3による検出値(磁気マークM1からの横ズ
レ量)をDとする。以上の各値のうち,既知の値は,地
図情報記憶部7に記憶された磁気マークM1の座標(X
m,Ym),上記位置・姿勢推定部4において推定され
た車両位置・姿勢の中心位置Pgの座標及び姿勢(X
g,Yg,θg),及び上記磁気センサ3による検出値
Dである。磁気センサ3により磁気マークM1が検出さ
れると,補正部5により以下のような処理(ステップS
4〜S6)が行われる。
FIG. 3 shows a magnetic mark M1 by the magnetic sensor 3.
Position / posture 10 of the vehicle 10 at the time when
2 shows the relationship between the position a and the position / posture 10 a ′ estimated by the position / posture estimation unit 4. In the figure, the solid line is the actual position / posture 10a of the vehicle 10, and the broken line is the position / posture 10a 'estimated by the position / posture estimation unit 4.
That is, it is assumed that the traveling control has been performed by the control unit 6 so that 10a 'is placed on the traveling route R until the magnetic sensor 3 detects the magnetic mark M1. Here, the direction of the traveling route R is the X axis, the direction perpendicular thereto is the Y axis, the posture angle of the vehicle with respect to the traveling route R is θ, and the coordinates and posture of the actual vehicle center position Pr are (Xr, Yr, θr),
The vehicle position estimated by the position / posture estimation unit 4
The coordinates and orientation of the center position Pg of the orientation are represented by (Xg, Yg, θ
g), the coordinates of the actual position Ps of the magnetic sensor 3 are represented by (Xs,
Ys), the coordinates of the magnetic mark M1 are (Xm, Ym), and the value detected by the magnetic sensor 3 (the amount of lateral displacement from the magnetic mark M1) is D. Of the above values, known values are the coordinates (X) of the magnetic mark M1 stored in the map information storage unit 7.
m, Ym), the coordinates and posture of the center position Pg of the vehicle position / posture estimated by the position / posture estimation unit 4 (X
g, Yg, θg) and the value D detected by the magnetic sensor 3. When the magnetic mark M1 is detected by the magnetic sensor 3, the following processing (step S
4 to S6) are performed.

【0010】まず,実際の磁気センサ3の位置Psの座
標(Xs,Ys)は次式のようにおくことができる。 Xs=Xm−D・sin(θr) …(1) Ys=Ym−D・cos(θr) …(2) ところが,上記(1),(2)式中,θrは未知であ
る。そこで,θrに代えて,既知の値であるθgを代入
すると,次式のようになる。 Xs=Xm−D・sin(θg) …(1′) Ys=Ym−D・cos(θg) …(2′) ここで,上記(1′),(2′)式は,θg=θrの場
合には上記(1),(2)式と等価となるため正しい関
係を示すが,θg≠θrの場合には当然にその角度差の
分だけ誤差を含む,誤った関係式となる。上記
(1′),(2′)式を用いて,実際の車両の中心位置
Prの座標(Xr,Yr)を表すと次式のようになる。 Xr=Xs−(L+W/2)・cos(θg) …(3) Yr=Ys−(L+W/2)・sin(θg) …(4) ここでも,上記(1′),(2′)式と同様,未知の値
θrに代えて既知の値θgを用いる。ここで,磁気マー
クM1を検出したときの移動距離(θg≒0であるので
Y座標は無視でき,磁気マーク検出1回目ではスタート
地点SPからの移動距離,即ち上記推定のX座標の値X
gとし,磁気マーク検出2回目以降は前回の磁気マーク
検出時のX座標と今回の磁気マーク検出時のX座標との
差とする)をSとすると,車両姿勢角の補正量θoffset
は次式のようになる。 θoffset=Kva・atan((Yr−Yg)/S) …(5) 但し,Kvaは比例ゲインであり,ここでは1とする。
ここで,θg=θrの場合,即ち上記(1′),
(2′)式,及び上記(3),(4)式が正しい関係を
示す場合には,上記(5)式中の(Yr−Yg)が0に
なり,θoffsetは0になる。ところが,θg≠θsの場
合,即ち上記(1′),(2′)式,及び上記(3),
(4)式が誤っている場合には,それらの式に含まれる
誤差,即ちθgとθrとの差に応じてθoffsetの値が大
きく現れる。従って,実際の車両姿勢角θrを次式によ
り求める。 θr=θg+θoffset …(6) 以上,実際の車両姿勢角θrを求めるまでがステップS
4にあたる。
First, the coordinates (Xs, Ys) of the actual position Ps of the magnetic sensor 3 can be set as follows. Xs = Xm−D · sin (θr) (1) Ys = Ym−D · cos (θr) (2) However, in the above equations (1) and (2), θr is unknown. Therefore, when a known value θg is substituted for θr, the following equation is obtained. Xs = Xm−D · sin (θg) (1 ′) Ys = Ym−D · cos (θg) (2 ′) Here, the above equations (1 ′) and (2 ′) are expressed by θg = θr. In this case, the equation is equivalent to the above equations (1) and (2), so that a correct relation is shown. However, in the case of θg ≠ θr, an erroneous relation equation including an error corresponding to the angle difference is naturally obtained. Using the above equations (1 ′) and (2 ′), the coordinates (Xr, Yr) of the actual center position Pr of the vehicle are expressed by the following equations. Xr = Xs− (L + W / 2) · cos (θg) (3) Yr = Ys− (L + W / 2) · sin (θg) (4) Again, the above equations (1 ′) and (2 ′) Similarly, the known value θg is used instead of the unknown value θr. Here, the moving distance (θg ≒ 0) when the magnetic mark M1 is detected, so that the Y coordinate can be ignored. In the first magnetic mark detection, the moving distance from the start point SP, ie, the estimated X coordinate value X
g, the difference between the X coordinate at the time of the previous detection of the magnetic mark and the X coordinate at the time of the current detection of the magnetic mark for the second and subsequent magnetic mark detections) is S, and the correction amount θ offset of the vehicle attitude angle is
Becomes as follows. θ offset = Kva · atan ((Yr−Yg) / S) (5) where Kva is a proportional gain and is set to 1 here.
Here, when θg = θr, that is, (1 ′),
When the expression (2 ′) and the expressions (3) and (4) show a correct relationship, (Yr−Yg) in the expression (5) becomes 0 and θ offset becomes 0. However, when θg ≠ θs, ie, the above equations (1 ′) and (2 ′), and the above (3),
If the equations (4) are incorrect, a large value of θ offset appears in accordance with the errors included in those equations, that is, the difference between θg and θr. Therefore, the actual vehicle attitude angle θr is obtained by the following equation. θr = θg + θ offset (6) As described above, until the actual vehicle attitude angle θr is obtained, step S
Four.

【0011】続いて,上記θrを用いて実際の磁気セン
サの座標(Xs,Ys),及び実際の車両の中心位置の
座標(Xr,Yr)を算出する(ステップS5)。 Xs=Xm−D・sin(θr) …(7) Ys=Ym−D・cos(θr) …(8) Xr=Xs−(L+W/2)・cos(θr) …(9) Yr=Ys−(L+W/2)・sin(θr) …(10) 求めた車両中心Prの座標及び姿勢(Xr,Yr,θ
r)を,推定した車両中心Pgの位置及び姿勢(Xg,
Yg,θg)と置き換える(ステップS6)。以上のス
テップS4〜S6の処理により,磁気マークMを検出す
る度に位置・姿勢推定部4において推定された車両の位
置・姿勢が補正され,その補正後の推定位置・姿勢を用
いて制御部10により車体10の走行が制御される(ス
テップS7)ため,常に高精度の制御が行える。以上の
ような処理を,目標位置に到着するまで(ステップS
8),繰り返し行う。
Subsequently, the coordinates (Xs, Ys) of the actual magnetic sensor and the coordinates (Xr, Yr) of the actual center position of the vehicle are calculated using the above θr (step S5). Xs = Xm−D · sin (θr) (7) Ys = Ym−D · cos (θr) (8) Xr = Xs− (L + W / 2) · cos (θr) (9) Yr = Ys− (L + W / 2) · sin (θr) (10) The obtained coordinates and posture (Xr, Yr, θ) of the vehicle center Pr
r) is calculated from the estimated position and orientation (Xg,
Yg, θg) (step S6). Through the processing in steps S4 to S6, the position / posture estimated by the position / posture estimation unit 4 is corrected each time the magnetic mark M is detected, and the control unit uses the corrected estimated position / posture. Since the traveling of the vehicle body 10 is controlled by the control 10 (step S7), high-precision control can always be performed. The above processing is performed until the target position is reached (step S
8) Repeat.

【0012】以上説明したように,本実施の形態に係る
誘導装置A1は,測定手段として,慣性航法に必要なス
テア角検出センサ1と移動速度検出センサ2,及び走行
経路上に任意の間隔で設けられた磁気マークMに対する
車両の横ズレ量を検出する磁気センサ3のみを用いた構
成により,複数の異なる測定手段を重複して取り付けな
ければならなかった従来のハイブリッド航法と比べてコ
ストを低く抑えることができ,また,測定手段からの出
力を評価するための処理が簡単であるため制御遅れ等の
心配もない。また,上記走行経路上に設けられた磁気マ
ークMは任意の間隔で設けることができ,またどのよう
な状況でも確実に検出できるため,一定時間毎,又は一
定距離毎の計測が必要な電波航法による位置計測のよう
に走行経路の制約を受けることもない。このように,本
実施の形態に係る誘導装置A1は,最小限の測定手段を
用いた簡単な処理により車両の位置及び姿勢を高精度で
推定することができ,走行経路の制約を受けることがな
い。
As described above, the guidance apparatus A1 according to the present embodiment has, as measurement means, the steering angle detection sensor 1, the traveling speed detection sensor 2, and the arbitrary intervals on the traveling route required for inertial navigation. Due to the configuration using only the magnetic sensor 3 for detecting the amount of lateral displacement of the vehicle with respect to the provided magnetic mark M, the cost is reduced as compared with the conventional hybrid navigation in which a plurality of different measuring means have to be mounted redundantly. In addition, since the processing for evaluating the output from the measuring means is simple, there is no concern about control delay and the like. Further, since the magnetic marks M provided on the traveling route can be provided at arbitrary intervals and can be reliably detected in any situation, the radio navigation system which requires measurement at regular time intervals or at regular distances is required. There is no restriction on the traveling route as in the position measurement by. As described above, the guidance device A1 according to the present embodiment can estimate the position and the attitude of the vehicle with high accuracy by simple processing using the minimum measuring means, and can be restricted by the traveling route. Absent.

【0013】[0013]

【実施例】上記実施の形態におけるステップS4〜S6
においては,前回の磁気マーク検出時(若しくはスター
ト地点)から今回の磁気マーク検出時までの走行距離S
を用いて車体姿勢角の補正量θoffsetを求めた((5)
式)が,補正量θoffsetの求め方はこれに限られるもの
ではない。例えば,連続する2つの磁気マークM1,M
2検出時のそれぞれの車体位置(実際の位置,及び推定
の位置)より車体姿勢角の補正量θoffsetを求めてもよ
い。以下図5,図6を用いて,上記実施の形態における
ステップS4〜S6に対応するステップS11〜S18
について説明する。尚,ステップS1〜S3,及びステ
ップS7,S8の処理については上記実施の形態と同様
である。図6は磁気センサ3により磁気マークM1,M
2が検出された時点での車両10の実際の位置・姿勢1
0a1,10a2と,上記位置・姿勢推定部4において
推定された位置・姿勢10a1′,10a2′との関係
を示している。図中,実線が実際の車両10の位置・姿
勢10a1,10a2,破線が位置・姿勢推定部4にお
いて推定された位置・姿勢10a1′,10a2′であ
る。ここで,上記走行経路Rの方向をX軸,それと直角
の方向をY軸,車両の走行経路Rに対する姿勢角をθと
し,磁気マークM2が検出された時点での実際の車両中
心Pr2の座標及び姿勢を(Xr2,Yr2,θr
2),上記位置・姿勢推定部4において推定された車両
中心Pg2の座標及び姿勢を(Xg2,Yg2,θg
2),実際の磁気センサ3の位置Ps2の座標を(Xs
2,Ys2),磁気マークM2の座標を(Xm2,Ym
2),上記磁気センサ3による検出値(磁気マークM2
からの横ズレ量)をD2とする。以上の各値のうち,既
知の値は,地図情報記憶部7に記憶された磁気マークM
2の座標(Xm2,Ym2),上記位置・姿勢推定部4
において推定された車両中心Pg2の座標及び姿勢(X
g2,Yg2,θg2),及び上記磁気センサ3による
検出値D2である。磁気センサ3により磁気マークMが
検出されると,補正部5により以下のような処理(ステ
ップS11〜S18)が行われる。検出された磁気マー
クがM1,即ち最初の磁気マークである場合には,位置
・姿勢推定部4により推定された推定位置・姿勢Pg
(Xg1,Yg1,θg1)と,磁気センサ3の検出値
D1を記憶した後(ステップS11→S18),通常ど
おり上記推定位置・姿勢Pg及び地図情報記憶部7に記
憶された走行経路Rに関する情報に基づいて制御部6に
より走行制御が行われる(ステップS7)。検出された
磁気マークがM2以降,即ち2つ目以降の磁気マークで
ある場合には(ステップS11),以下に示すステップ
S12〜S17の処理が行われる。
EXAMPLE Steps S4 to S6 in the above embodiment.
, The travel distance S from the time of the previous detection of the magnetic mark (or the start point) to the time of the current detection of the magnetic mark
Was used to determine the correction amount θ offset of the vehicle body posture angle ((5)
Expression), the method of obtaining the correction amount θ offset is not limited to this. For example, two consecutive magnetic marks M1, M
The correction amount θ offset of the vehicle body posture angle may be obtained from each vehicle body position (actual position and estimated position) at the time of the detection of the second position. Hereinafter, steps S11 to S18 corresponding to steps S4 to S6 in the above embodiment will be described with reference to FIGS.
Will be described. The processes in steps S1 to S3 and steps S7 and S8 are the same as in the above embodiment. FIG. 6 shows the magnetic marks M1 and M
Actual position / posture 1 of the vehicle 10 at the time when 2 is detected
The relationship between 0a1 and 10a2 and the positions and postures 10a1 'and 10a2' estimated by the position / posture estimation unit 4 is shown. In the figure, the solid lines are the actual positions / postures 10a1 and 10a2 of the vehicle 10, and the broken lines are the positions / postures 10a1 'and 10a2' estimated by the position / posture estimation unit 4. Here, the direction of the traveling route R is the X axis, the direction perpendicular thereto is the Y axis, the attitude angle of the vehicle with respect to the traveling route R is θ, and the coordinates of the actual vehicle center Pr2 when the magnetic mark M2 is detected. And the attitude (Xr2, Yr2, θr
2) The coordinates and orientation of the vehicle center Pg2 estimated by the position / posture estimation unit 4 are represented by (Xg2, Yg2, θg
2) The coordinates of the actual position Ps2 of the magnetic sensor 3 are represented by (Xs
, Ys2) and the coordinates of the magnetic mark M2 are (Xm2, Ym
2), the value detected by the magnetic sensor 3 (magnetic mark M2
(The amount of lateral deviation from the distance) is D2. Of the above values, the known value is the magnetic mark M stored in the map information storage unit 7.
2 coordinates (Xm2, Ym2), position / posture estimation unit 4
Of the vehicle center Pg2 and the posture (X
g2, Yg2, θg2) and the value D2 detected by the magnetic sensor 3. When the magnetic mark M is detected by the magnetic sensor 3, the following processing (steps S11 to S18) is performed by the correction unit 5. If the detected magnetic mark is M1, that is, the first magnetic mark, the estimated position / posture Pg estimated by the position / posture estimation unit 4
After storing (Xg1, Yg1, θg1) and the detection value D1 of the magnetic sensor 3 (steps S11 → S18), the information on the estimated position / posture Pg and the travel route R stored in the map information storage unit 7 as usual. The traveling control is performed by the control unit 6 based on (Step S7). If the detected magnetic mark is the magnetic mark subsequent to M2, that is, the second or subsequent magnetic mark (step S11), the following steps S12 to S17 are performed.

【0014】まず,実際の磁気センサ3の位置Ps2の
座標(Xs2,Ys2)は次式のようにおくことができ
る。 Xs2=Xm2−D2・sin(θr2) …(11) Ys2=Ym2−D2・cos(θr2) …(12) ところが,上記(11),(12)式中,θr2は未知
である。そこで,θr2に代えて,既知の値であるθg
2を代入すると,次式のようになる。 Xs2=Xm2−D2・sin(θg2) …(11′) Ys2=Ym2−D2・cos(θg2) …(12′) ここで,上記(11′),(12′)式は,θg2=θ
r2の場合には上記(11),(12)式と等価となる
ため正しい関係を示すが,θg2≠θr2の場合には当
然にその角度差の分だけ誤差を含む,誤った関係式とな
る。上記(11),(12)式,及び同様の方法で既に
求められ記憶されている磁気マークM1検出時点での実
際の磁気センサ3の位置Ps1の座標(Xs1,Ys
1)を用いて,磁気センサ位置Ps1,Ps2を通る直
線と走行経路Rとのなす角度θsは次式のように求めら
れる(ステップS12,S13)。 θs=atan((Ys2−Ys1)/(Xs2−Xs1)) …(13) また,磁気マークM1を検出した時点での推定車体中心
位置Pg1(Xg1,Yg1)と磁気マークM2を検出
した時点での推定車体中心位置Pg2(Xg2,Yg
2)とを通る直線と,走行経路Rとのなす角度θgは次
式のように求められる(ステップS14)。 θg=atan((Yg2−Yg1)/(Xg2−Xg1)) …(14) 上記(13),(14)式より,車体姿勢角の補正量θ
offsetは次式のようになる。 θoffset=Kva・(θs−θg) …(15) 但し,Kvaは比例ゲインであり,ここでは1とする。
ここで,θs=θgの場合,即ち上記(11′),(1
2′)式が正しい関係を示す場合には,θoffsetは0に
なる。ところが,θs≠θgの場合,即ち上記(1
1′),(12′)式が誤っている場合には,それらの
式に含まれる誤差,即ちθg2とθr2との差に応じて
θoffsetの値が大きく現れる。従って,実際の車両姿勢
角θr2を次式により求める。 θr2=θg2+θoffset …(16)
First, the coordinates (Xs2, Ys2) of the actual position Ps2 of the magnetic sensor 3 can be set as follows. Xs2 = Xm2-D2 · sin (θr2) (11) Ys2 = Ym2-D2 · cos (θr2) (12) However, in the above equations (11) and (12), θr2 is unknown. Therefore, instead of θr2, a known value θg
Substituting 2 gives the following equation. Xs2 = Xm2−D2 · sin (θg2) (11 ′) Ys2 = Ym2−D2 · cos (θg2) (12 ′) Here, the above equations (11 ′) and (12 ′) are represented by θg2 = θ
In the case of r2, the relationship is equivalent to the above formulas (11) and (12), so that a correct relationship is shown. However, in the case of θg2 ≠ θr2, an erroneous relationship including an error corresponding to the angle difference is naturally obtained. . The coordinates (Xs1, Ys) of the actual position Ps1 of the magnetic sensor 3 at the time of detection of the magnetic mark M1 already obtained and stored by the above formulas (11) and (12) and similar methods.
Using 1), the angle θs between the straight line passing through the magnetic sensor positions Ps1 and Ps2 and the traveling route R is obtained as in the following equation (steps S12 and S13). θs = atan ((Ys2−Ys1) / (Xs2−Xs1)) (13) Further, the estimated vehicle body center position Pg1 (Xg1, Yg1) at the time of detecting the magnetic mark M1 and at the time of detecting the magnetic mark M2. Estimated vehicle center position Pg2 (Xg2, Yg
The angle θg between the straight line passing through 2) and the traveling route R is obtained as in the following equation (step S14). θg = atan ((Yg2−Yg1) / (Xg2−Xg1)) (14) From the above equations (13) and (14), the correction amount θ of the vehicle body posture angle
The offset is as follows: θ offset = Kva · (θs−θg) (15) where Kva is a proportional gain, and is set to 1 in this case.
Here, when θs = θg, that is, (11 ′), (1
If the expression 2 ′) shows a correct relationship, θ offset becomes zero. However, when θs ≠ θg, that is, (1)
When the expressions 1 ′) and (12 ′) are incorrect, the value of θ offset appears largely according to the error included in those expressions, that is, the difference between θg2 and θr2. Therefore, the actual vehicle attitude angle θr2 is obtained by the following equation. θr2 = θg2 + θ offset (16)

【0015】続いて,上記θr2を用いて実際の磁気セ
ンサの座標(Xs2,Ys2),及び実際の車両の中心
位置の座標(Xr2,Yr2)を算出する(ステップS
16)。 Xs2=Xm2−D2・sin(θr2) …(17) Ys2=Ym2−D2・cos(θr2) …(18) Xr2=Xs2−(L+W/2)・cos(θr2) …(19) Yr2=Ys2−(L+W/2)・sin(θr2) …(20) 求めた車両中心Pr2の座標及び姿勢(Xr2,Yr
2,θr2)を,推定した車両中心Pg2の座標及び姿
勢(Xg2,Yg2,θg2)と置き換える(ステップ
S17)と共に,次の磁気マークM2検出時の処理のた
めに上記車両中心Pg2の座標及び姿勢(Xg2,Yg
2,θg2)と磁気センサ3の検出値D2を記憶する
(ステップS18)。上記ステップS11〜S18の処
理により,磁気マークMを検出する度に位置・姿勢推定
部4において推定された車両の位置・姿勢が補正され,
その補正後の推定位置・姿勢を用いて制御部10により
車体10の走行が制御される(ステップS7)ため,常
に高精度の制御が行える。以上説明したように,本実施
例に係る補正方法(ステップS11〜S18)を用いて
も上記実施の形態と同様の効果を得ることができる。
Subsequently, the coordinates (Xs2, Ys2) of the actual magnetic sensor and the coordinates (Xr2, Yr2) of the actual center position of the vehicle are calculated using the above θr2 (step S).
16). Xs2 = Xm2-D2 · sin (θr2) (17) Ys2 = Ym2-D2 · cos (θr2) (18) Xr2 = Xs2- (L + W / 2) · cos (θr2) (19) Yr2 = Ys2- (L + W / 2) · sin (θr2) (20) The coordinates and posture (Xr2, Yr) of the obtained vehicle center Pr2
(2, θr2) is replaced with the estimated coordinates and posture of the vehicle center Pg2 (Xg2, Yg2, θg2) (step S17), and the coordinates and posture of the vehicle center Pg2 for processing at the time of detecting the next magnetic mark M2. (Xg2, Yg
2, θg2) and the detection value D2 of the magnetic sensor 3 are stored (step S18). Through the processing in steps S11 to S18, the position / posture estimated by the position / posture estimation unit 4 is corrected each time the magnetic mark M is detected,
The traveling of the vehicle body 10 is controlled by the control unit 10 using the corrected estimated position / posture (step S7), so that high-precision control can always be performed. As described above, even if the correction method (steps S11 to S18) according to the present embodiment is used, the same effect as in the above embodiment can be obtained.

【0016】[0016]

【発明の効果】以上説明したように,本発明に係る誘導
装置は,車両に設置され,該車両の相対位置及び姿勢を
検出する位置・姿勢検出手段と,車両に設置され,該車
両の走行経路上に任意の間隔で設けられた認識マークに
対する上記車両の横ズレ量を検出するズレ検出手段と,
上記認識マークの位置を予め記憶する認識マーク位置記
憶手段と,上記位置・姿勢検出手段からの出力に基づい
て上記車両の相対位置及び姿勢を推定する位置・姿勢推
定手段と,上記認識マーク位置記憶手段に記憶された認
識マーク位置と,上記ズレ検出手段より得られた上記横
ズレ量と,上記位置・姿勢推定手段より得られた車両の
位置・姿勢推定値とに基づいて上記車両の位置・姿勢推
定値を補正する補正手段と,上記補正手段より得られた
補正後の車両の位置・姿勢推定値に基づいて,車両を上
記走行経路に沿って走行させるように制御する制御手段
とを具備してなることを特徴とする誘導装置として構成
されているため,複数の異なる測定手段を重複して取り
付けなければならなかった従来のハイブリッド航法と比
べてコストを低く抑えることができ,また,測定手段か
らの出力を評価するための処理が簡単であるため制御遅
れ等の心配もない。また,上記走行経路上に設けられた
認識マークは任意の間隔で設けることができ,またどの
ような状況でも確実に検出できるため,一定時間毎,又
は一定距離毎の計測が必要な電波航法による位置計測の
ように走行経路の制約を受けることもない。このよう
に,本発明に係る誘導装置は,最小限の測定手段を用い
た簡単な処理により車両の位置及び姿勢を高精度で推定
することができ,走行経路の制約を受けることがない。
As described above, the guidance device according to the present invention is installed in a vehicle, and a position / posture detecting means for detecting the relative position and orientation of the vehicle, and installed in the vehicle, and A displacement detecting means for detecting a lateral displacement amount of the vehicle with respect to a recognition mark provided at an arbitrary interval on a route;
Recognition mark position storage means for storing the position of the recognition mark in advance, position / posture estimation means for estimating the relative position and posture of the vehicle based on the output from the position / posture detection means, and recognition mark position storage The position / posture of the vehicle based on the recognition mark position stored in the means, the lateral displacement amount obtained by the displacement detection means, and the estimated position / posture of the vehicle obtained by the position / posture estimation means. Correction means for correcting the estimated attitude value; and control means for controlling the vehicle to travel along the travel route based on the corrected estimated position and attitude value of the vehicle obtained by the correction means. Because it is configured as a guidance device characterized by the fact that it is configured, it costs less than conventional hybrid navigation, which had to install multiple different measuring means redundantly. Obtain it can, also, there is no fear of control delay, etc. For a simple process for evaluating the output from the measuring means. In addition, the recognition marks provided on the traveling route can be provided at arbitrary intervals and can be reliably detected in any situation. Unlike the position measurement, there is no restriction on the traveling route. As described above, the guidance device according to the present invention can estimate the position and orientation of the vehicle with high accuracy by simple processing using the minimum measuring means, and is not restricted by the traveling route.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る誘導装置A1の概
略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of a guidance device A1 according to an embodiment of the present invention.

【図2】 上記誘導装置A1の車両誘導処理手順の一例
を示すフローチャート。
FIG. 2 is a flowchart illustrating an example of a vehicle guidance processing procedure of the guidance device A1.

【図3】 上記誘導装置A1の車両誘導処理手順の説明
図。
FIG. 3 is an explanatory diagram of a vehicle guidance processing procedure of the guidance device A1.

【図4】 上記誘導装置A1を適用する車両10の構成
の一例を示す模式図。
FIG. 4 is a schematic diagram showing an example of a configuration of a vehicle 10 to which the above-described guidance device A1 is applied.

【図5】 実施例に係る車両誘導処理手順を示すフロー
チャート。
FIG. 5 is a flowchart illustrating a vehicle guidance processing procedure according to the embodiment;

【図6】 上記実施例に係る車両誘導処理手順の説明
図。
FIG. 6 is an explanatory diagram of a vehicle guidance processing procedure according to the embodiment.

【符号の説明】[Explanation of symbols]

1…ステア角検出センサ 2…移動速度検出センサ 3…磁気センサ 4…位置・姿勢推定部 5…補正部 6…制御部 7…地図情報記憶部 10…車両 R…走行経路 M…磁気マーク DESCRIPTION OF SYMBOLS 1 ... Steering angle detection sensor 2 ... Moving speed detection sensor 3 ... Magnetic sensor 4 ... Position / posture estimation part 5 ... Correction part 6 ... Control part 7 ... Map information storage part 10 ... Vehicle R ... Travel route M ... Magnetic mark

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 車両に設置され,該車両の相対位置及び
姿勢を検出する位置・姿勢検出手段と,車両に設置さ
れ,該車両の走行経路上に任意の間隔で設けられた認識
マークに対する上記車両の横ズレ量を検出するズレ検出
手段と,上記認識マークの位置を予め記憶する認識マー
ク位置記憶手段と,上記位置・姿勢検出手段からの出力
に基づいて上記車両の相対位置及び姿勢を推定する位置
・姿勢推定手段と,上記認識マーク位置記憶手段に記憶
された認識マーク位置と,上記ズレ検出手段より得られ
た上記横ズレ量と,上記位置・姿勢推定手段より得られ
た車両の位置・姿勢推定値とに基づいて上記車両の位置
・姿勢推定値を補正する補正手段と,上記補正手段より
得られた補正後の車両の位置・姿勢推定値に基づいて,
車両を上記走行経路に沿って走行させるように制御する
制御手段とを具備してなることを特徴とする誘導装置。
1. A position / posture detecting means installed on a vehicle and detecting a relative position and an attitude of the vehicle, and a recognition mark installed on the vehicle and provided at an arbitrary interval on a traveling route of the vehicle. Displacement detection means for detecting the amount of lateral displacement of the vehicle, recognition mark position storage means for storing the position of the recognition mark in advance, and estimating the relative position and posture of the vehicle based on the output from the position / posture detection means Position / posture estimating means, the recognition mark position stored in the recognition mark position storage means, the lateral displacement amount obtained by the displacement detecting means, and the vehicle position obtained by the position / posture estimating means. A correcting means for correcting the position / posture estimated value of the vehicle based on the posture estimated value, and a corrected position / posture estimated value of the vehicle obtained by the correcting means,
A guidance device comprising: control means for controlling the vehicle to travel along the travel route.
【請求項2】 上記補正手段が,上記認識マーク位置記
憶手段に記憶された認識マーク位置と上記ズレ検出手段
より得られた上記横ズレ量と上記位置・姿勢推定手段よ
り得られた車両の姿勢推定値とから求めた車両の位置計
算値と,上記位置・姿勢推定手段より得られた車両の位
置推定値と,上記位置・姿勢推定手段より得られた車両
の走行距離とに基づいて車両の姿勢補正量を求め,該姿
勢補正量により,上記位置・姿勢推定手段より得られた
車両の姿勢推定値を補正し,該補正された姿勢推定値
と,上記認識マーク位置記憶手段に記憶された認識マー
ク位置と,上記ズレ検出手段より得られた上記横ズレ量
とに基づいて,上記位置・姿勢推定手段より得られた車
両の位置推定値を補正する請求項1記載の誘導装置。
2. The method according to claim 1, wherein the correction means includes a recognition mark position stored in the recognition mark position storage means, the lateral displacement amount obtained by the displacement detection means, and a vehicle attitude obtained by the position / posture estimation means. Based on the calculated position of the vehicle obtained from the estimated values, the estimated position of the vehicle obtained by the position / posture estimation means, and the travel distance of the vehicle obtained by the position / posture estimation means, A posture correction amount is obtained, and the posture estimation value of the vehicle obtained by the position / posture estimation means is corrected by the posture correction amount, and the corrected posture estimation value and the recognition mark position stored in the recognition mark position storage means are stored. 2. The guidance apparatus according to claim 1, wherein the estimated position of the vehicle obtained by the position / posture estimating means is corrected based on the recognition mark position and the lateral deviation amount obtained by the deviation detecting means.
【請求項3】 上記補正手段が,上記ズレ検出手段によ
り2つの上記認識マークが連続して検出された時,上記
認識マーク位置記憶手段に記憶された認識マーク位置と
上記ズレ検出手段より得られた上記横ズレ量と上記位置
・姿勢推定手段より得られた車両の姿勢推定値とから上
記2つの認識マーク検出時における車両の位置計算値を
それぞれ求め,それら2つの位置計算値より求めた車両
の姿勢計算値と,上記2つの認識マーク検出時において
上記位置・姿勢推定手段より得られた2つの位置推定値
より求めた車両の姿勢推定値とに基づいて車両の姿勢補
正量を求め,該姿勢補正量により,上記位置・姿勢推定
手段より得られた車両の姿勢推定値を補正し,該補正さ
れた姿勢推定値と,上記認識マーク位置記憶手段に記憶
された認識マーク位置と,上記ズレ検出手段より得られ
る上記横ズレ量とに基づいて,上記位置・姿勢推定手段
より得られた車両の位置推定値を補正する請求項1記載
の誘導装置。
3. The apparatus according to claim 1, wherein the correction means obtains the recognition mark position stored in the recognition mark position storage means and the shift detection means when two of the recognition marks are successively detected by the shift detection means. The calculated position of the vehicle at the time of detecting the two recognition marks is obtained from the lateral displacement amount and the estimated position of the vehicle obtained by the position / posture estimating means, respectively, and the vehicle calculated from the two calculated positions is obtained. A posture correction amount of the vehicle is calculated based on the posture calculation value of the vehicle and the vehicle posture estimation value obtained from the two position estimation values obtained by the position / posture estimation means when the two recognition marks are detected. The posture estimation value of the vehicle obtained by the position / posture estimation means is corrected by the posture correction amount, and the corrected posture estimation value and the recognition mark position stored in the recognition mark position storage means are corrected. 2. The guidance apparatus according to claim 1, wherein the estimated position of the vehicle obtained by the position / posture estimating means is corrected based on the position and the amount of lateral deviation obtained by the deviation detecting means.
【請求項4】 上記位置・姿勢検出手段が,車両のステ
ア角を検出するステア角検出センサと,車両の移動速度
を検出する移動速度検出センサとを具備して構成される
請求項1〜3のいずれかに記載の誘導装置。
4. The vehicle according to claim 1, wherein said position / posture detecting means includes a steer angle detection sensor for detecting a steer angle of the vehicle, and a moving speed detecting sensor for detecting a moving speed of the vehicle. The guidance device according to any one of the above.
【請求項5】 上記ズレ検出手段が,磁気マークで構成
される上記認識マークからの車両の横ズレ量を検出する
磁気センサにより構成される請求項1〜4のいずれかに
記載の誘導装置。
5. The guidance device according to claim 1, wherein the deviation detecting means comprises a magnetic sensor for detecting a lateral deviation amount of the vehicle from the recognition mark composed of a magnetic mark.
JP17791097A 1997-07-03 1997-07-03 Guidance device Expired - Fee Related JP3932606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17791097A JP3932606B2 (en) 1997-07-03 1997-07-03 Guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17791097A JP3932606B2 (en) 1997-07-03 1997-07-03 Guidance device

Publications (2)

Publication Number Publication Date
JPH1144550A true JPH1144550A (en) 1999-02-16
JP3932606B2 JP3932606B2 (en) 2007-06-20

Family

ID=16039208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17791097A Expired - Fee Related JP3932606B2 (en) 1997-07-03 1997-07-03 Guidance device

Country Status (1)

Country Link
JP (1) JP3932606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159459A (en) * 1997-08-21 1999-03-02 Honda Motor Co Ltd Steering control device
JP2009294980A (en) * 2008-06-06 2009-12-17 Murata Mach Ltd Running vehicle and running vehicle system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253483B2 (en) 2019-11-29 2023-04-06 日立チャネルソリューションズ株式会社 safe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159459A (en) * 1997-08-21 1999-03-02 Honda Motor Co Ltd Steering control device
JP2009294980A (en) * 2008-06-06 2009-12-17 Murata Mach Ltd Running vehicle and running vehicle system
JP4697262B2 (en) * 2008-06-06 2011-06-08 村田機械株式会社 Traveling vehicle and traveling vehicle system

Also Published As

Publication number Publication date
JP3932606B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
KR100231285B1 (en) Current position calculating device
US7308345B2 (en) Steering assistance method and device for a motor vehicle
US7778758B2 (en) Cruise control system for a vehicle
US5073749A (en) Mobile robot navigating method
JPH08137549A (en) Guided travel controller for vehicle
JP2007219960A (en) Position deviation detection device
JP3932606B2 (en) Guidance device
JP2010146202A (en) Moving object and position estimation method for moving object
JP2012137361A (en) Locus information correcting device, method and program
JP2002174531A (en) Moving bearing calculator, moving bearing calculation method and recording medium having recorded moving bearing calculation program
JP7040308B2 (en) Travel control device and travel control method for automatic guided vehicles
JP2006027532A (en) Lane travel support device for vehicle
KR101346072B1 (en) Travelling vehicle and traveling vehicle system
JP2002108453A (en) Unmanned vehicle
JP4269170B2 (en) Trajectory tracking control method and apparatus
JP3735897B2 (en) Unmanned vehicle guidance system
JPH0772926A (en) Dead reckoning position correction method in dead-reckoning navigation
JPH03137515A (en) Correcting apparatus of distance in autonomous navigation
JP4268581B2 (en) Car navigation system
JPH061195B2 (en) Magnetization using a digital map. Geomagnetic deviation area detection method
JP6921168B2 (en) How to run in a platoon based on wheel pulse signals
JP3846828B2 (en) Steering angle control device for moving body
JP2000112524A (en) Method and device for controlling traveling of gantry crane
JP2002108447A (en) Gyroscopic guidance type unmanned carrier device
JPH08334363A (en) Present location calculating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees