JPH1143782A - Method for coating ceramic coating film and coated material - Google Patents

Method for coating ceramic coating film and coated material

Info

Publication number
JPH1143782A
JPH1143782A JP9199481A JP19948197A JPH1143782A JP H1143782 A JPH1143782 A JP H1143782A JP 9199481 A JP9199481 A JP 9199481A JP 19948197 A JP19948197 A JP 19948197A JP H1143782 A JPH1143782 A JP H1143782A
Authority
JP
Japan
Prior art keywords
coating
sol
substrate
ceramic
once
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9199481A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Honda
佳之 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP9199481A priority Critical patent/JPH1143782A/en
Publication of JPH1143782A publication Critical patent/JPH1143782A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for coating which is capable of giving excellent heat resistant coating film in a short time without closing the space including the materials to be coated, and is especially suitable for coating a local part of the parts, by fist coating the substrate with gas-flame spraying method and then coating with sol-gel method. SOLUTION: The heat-resistant coating film is obtained by first coating more than once on a substrate, which is required to be highly heat-resistant, such as carbon fiber-reinforced carbon composite materials or ceramic composite materials, etc., using SiC-fiber as reinforcing fiber or substrate, with gas-flame spraying method and then coating the resulting substrate more than once with sol-gel method, or by first coating more than once on a substrate material with sol-gel method, then treating more than once the resulting substrate with gas flame-spraying method, and further treating more than once with sol-gel method to form the ceramic film on the substrate. The suitable treatment method is as follows. For example, the substrate is first treated once with gas-flame spraying method, then treated twice with sol-gel method using a low concentration liquid, and further treated five times with sol-gel method using a high concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスフレーム溶射
法及びゾルゲル法にて基質材料をセラミックで被覆する
被覆方法及び被覆された基質材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating method for coating a substrate material with ceramic by a gas flame spraying method and a sol-gel method, and to a coated substrate material.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料の表層をSi
Cにて被覆したタイプ及びSiC繊維を強化繊維又は基
質としたセラミック複合材料の問題点は、高温環境下に
おいて、SiCが酸化することである。例えば、炭素繊
維強化炭素複合材料においては、SiCが酸化により分
解し、一酸化珪素及び一酸化炭素等の気体となり飛散す
ることで被膜に孔が開き、そこから強化材である炭素繊
維およびマトリックスが酸化消耗される。また、セラミ
ック複合材料はSiC繊維またはマトリックスが直ちに
消耗され、更には破壊される。
2. Description of the Related Art The surface layer of a carbon fiber reinforced carbon composite material is made of Si.
The problem of the type coated with C and the ceramic composite material using the SiC fiber as the reinforcing fiber or the substrate is that SiC is oxidized in a high temperature environment. For example, in a carbon fiber reinforced carbon composite material, SiC is decomposed by oxidation and is scattered as a gas such as silicon monoxide and carbon monoxide to open a hole in a coating film, from which carbon fibers and a matrix as a reinforcing material are formed. Oxidation is consumed. Also, the ceramic composite material is immediately depleted of SiC fibers or matrix and further destroyed.

【0003】これらの酸化を抑制するために、例えば、
特公平2ー106337号においては、炭素繊維強化炭
素複合材料のSiC被膜上に種々の酸化抑制被膜の施工
が試みられている。例えば、SiC被膜上へのCVD
(Chemical Vapor depositio
n)によるアルミナ等酸化物の施工およびSiC被膜と
酸化物との中間層としてのCVDまたはPVD(Phy
sical Vapordeposition)による
炭化物、窒化物、ホウ化物、貴金属等の施工が開示され
ている。
In order to suppress these oxidations, for example,
In Japanese Patent Publication No. 2-106337, application of various oxidation suppressing coatings on a SiC coating of a carbon fiber reinforced carbon composite material is attempted. For example, CVD on SiC coating
(Chemical Vapor Deposition
n) Application of oxide such as alumina and CVD or PVD (Phy) as an intermediate layer between SiC coating and oxide
The application of carbides, nitrides, borides, precious metals, and the like by using a physical vapor deposition is disclosed.

【0004】しかしながら、CVDによる被膜の施工
は、目的とする膜厚を得るためには多くの時間を必要と
する問題点がある。例えば、1時間当たりに得られる膜
厚は数〜数十ミクロン程度であり、短時間での対応が困
難で、ランニングコストも高い。
[0004] However, there is a problem that the application of a film by CVD requires a lot of time to obtain a target film thickness. For example, the film thickness obtained per hour is on the order of several to several tens of microns, making it difficult to respond in a short time, and high running costs.

【0005】[0005]

【発明が解決しようとする課題】上記の実情に鑑みて、
本発明の目的は、優れた耐熱性を有すると共に、短時間
での施工を可能とし、特に部品の局部の施工に適し、施
工に当たり施工対象物を含む空間を密閉する設備を必要
としない基質材料の被覆方法およびこの方法にて被覆さ
れた材料を提供することである。
In view of the above situation,
An object of the present invention is to provide a substrate material that has excellent heat resistance and enables short-time construction, is particularly suitable for local construction of parts, and does not require equipment for sealing a space containing a construction object upon construction. And a material coated by this method.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、発明者たちが鋭意研究を重ねた結果、本発明は基
質材料が、最初にガスフレーム溶射法、その後にゾルゲ
ル法にてセラミック被覆されることを特徴とし、また基
質材料が、最初にゾルゲル法、次にガスフレーム溶射
法、その後にゾルゲル法にてセラミック被覆されること
を特徴とし、さらにこれらの被覆方法で被覆された材料
を特徴とする。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have made intensive studies and as a result, the present invention is based on the finding that the substrate material is first formed by a gas flame spraying method and then by a sol-gel method. Characterized in that it is coated, and the substrate material is first ceramic coated by a sol-gel method, then a gas flame spraying method, and then by a sol-gel method, and further the material coated by these coating methods It is characterized by.

【0007】本発明の基質材料は、耐熱性が要求される
ものであればいかなるものでもよく、例えばセラミッ
ク、セラミックを被覆した炭素材料およびセラミック複
合材料をを例示でき、好ましい基質材料として表層をコ
ンバージョン法によりSiC(炭化ケイ素)にて被覆し
たコンバージョンSiC付炭素繊維強化炭素複合材料
(以降コンバージョンSiC付C/Cと略記)、表層を
CVD法によりSiC(炭化ケイ素)にて被覆したCV
DSiC付炭素繊維強化炭素複合材料(以降CVDSi
C付C/Cと略記)およびSiCを強化繊維又は基質と
したセラミック複合材料を挙げることができる。
[0007] The substrate material of the present invention may be any material as long as heat resistance is required. Examples thereof include ceramics, carbon materials coated with ceramics and ceramic composite materials. Carbon fiber reinforced carbon composite material with conversion SiC coated with SiC (silicon carbide) by the CVD method (hereinafter abbreviated as C / C with conversion SiC), and CV whose surface layer is coated with SiC (silicon carbide) by the CVD method
Carbon fiber reinforced carbon composite material with DSiC (hereinafter referred to as CVDSi
C / C) and ceramic composites using SiC as a reinforcing fiber or substrate.

【0008】炭素繊維強化炭素複合材料は、例えばポリ
アクリルニトリル(PAN)、ピッチまたはレーヨンか
ら得られる黒鉛又は炭素繊維を強化材とし、樹脂、例え
ばフェノール樹脂を黒鉛化または炭化させてえられる黒
鉛または炭素をマトリックスとし、コンバージョン、C
VD等によりSiCを被覆して得られる複合材料を含
む。
The carbon fiber reinforced carbon composite material is made of, for example, graphite obtained from polyacrylonitrile (PAN), pitch or rayon or carbon fiber as a reinforcing material, and a resin such as graphite obtained by graphitizing or carbonizing a phenol resin. Conversion with carbon as matrix, C
Includes composite materials obtained by coating SiC with VD or the like.

【0009】SiCを強化材としたセラミック複合材料
は、SiC繊維またはSiCウイスカーもしくは粒子を
強化材とし、アルミナをマトリックスとするものを含
む。
[0009] Ceramic composite materials using SiC as a reinforcing material include those using SiC fibers or SiC whiskers or particles as a reinforcing material and using alumina as a matrix.

【0010】基質材料表面は、被膜形成前に、例えば油
剤、塵芥等を除去されることが望ましい。
[0010] The surface of the substrate material is desirably removed of, for example, an oil agent, dust and the like before the formation of the film.

【0011】本発明のガスフレーム溶射法に使用する装
置は、アセチレンー酸素を燃焼ガスとし、圧縮エアーの
ジェット効果により溶射を行うもので、スプレーガン、
ガスボンベ、流量計、原料容器およびエアー供給装置よ
りなり短時間でセラミック被膜の施工が可能で、例えば
30mm正方形のC/C材料の片面に数秒で膜厚20ミ
クロン程度のアルミナ被膜を被覆することができる。
The apparatus used in the gas flame spraying method of the present invention uses acetylene-oxygen as a combustion gas and performs spraying by the jet effect of compressed air.
It consists of a gas cylinder, a flow meter, a raw material container, and an air supply device, and can apply a ceramic coating in a short time. For example, it is possible to coat a 30 mm square C / C material with an alumina coating having a thickness of about 20 microns in a few seconds. it can.

【0012】被覆材料とスプレーガンのノズル面との間
隔は40〜150mmが好ましく、特に好ましくは40
〜80mmである。
The distance between the coating material and the nozzle face of the spray gun is preferably 40 to 150 mm, particularly preferably 40 to 150 mm.
8080 mm.

【0013】本発明の被覆を形成するセラミックの粒径
は5〜150ミクロンが好ましく、特に好ましくは5〜
50ミクロンである。原料容器より供給されるセラミッ
クの流量は10〜40g/分が好ましく、特に好ましく
は10〜20g/分である。ガスフレーム溶射法におけ
るセラミックの溶射時間は2〜10秒が好ましく、特に
好ましくは4〜5秒である。基質材料表面に形成される
セラミックの膜厚は、好ましくは10〜50ミクロン
で、特に好ましくは20〜30ミクロンである。
The particle size of the ceramic forming the coating of the present invention is preferably 5 to 150 microns, particularly preferably 5 to 150 microns.
50 microns. The flow rate of the ceramic supplied from the raw material container is preferably from 10 to 40 g / min, particularly preferably from 10 to 20 g / min. The spray time of the ceramic in the gas flame spraying method is preferably 2 to 10 seconds, and particularly preferably 4 to 5 seconds. The thickness of the ceramic formed on the surface of the substrate material is preferably from 10 to 50 microns, particularly preferably from 20 to 30 microns.

【0014】本発明の被覆形成に用いるゾルゲル法は、
金属アルコキシドを加水分解して得られた金属プリカー
サー溶液に被膜形成用材料を接触させ、材料表面、特に
ボイド、凹部等にプリカーサー溶液を侵入および/また
は付着させ、乾燥後熱処理して材料上に金属酸化物から
なる被膜を形成させるが、この被膜は基質材料との密着
性に優れ衝撃等に対しての剥離抵抗性にも優れている。
材料表面にプリカーサー溶液を侵入および/または付着
させる方法としては、プリカーサー溶液への材料の浸
漬、材料表面へのプリカーサー溶液のスプレー、材料表
面へのプリカーサー溶液の塗布等例示できるが、材料表
面にプリカーサー溶液を侵入および/または付着させら
れうればいかなる方法でも適用可能である。ボイド等に
プリカーサー溶液を十分に侵入させるためには減圧下で
の浸漬処理が特に好ましい。好ましいプリカーサー濃度
は、0.2〜1.1mol/lである。ゾルゲル法によ
る好ましい処理方法は、最初に少なくとも1回低濃度、
好ましくは0.00001〜0.4mol/lのプリカ
ーサー溶液にて材料表面に被膜を形成し、その後少なく
とも1回高濃度、好ましくは0.6〜1.1mol/l
のプリカーサー溶液にて被膜を形成することである。
The sol-gel method used for forming the coating of the present invention is as follows.
The material for forming a film is brought into contact with a metal precursor solution obtained by hydrolyzing a metal alkoxide, and the precursor solution penetrates and / or adheres to the surface of the material, especially voids, recesses, and the like, and after drying, heat treatment is performed. An oxide film is formed, and this film has excellent adhesion to a substrate material and excellent peel resistance against impact and the like.
Examples of the method of injecting and / or attaching the precursor solution to the material surface include immersing the material in the precursor solution, spraying the precursor solution on the material surface, and applying the precursor solution to the material surface. Any method is applicable as long as the solution can penetrate and / or adhere. In order to allow the precursor solution to sufficiently penetrate into voids and the like, immersion treatment under reduced pressure is particularly preferable. The preferred precursor concentration is 0.2 to 1.1 mol / l. The preferred method of treatment by the sol-gel method is that the low concentration
A film is formed on the surface of the material with a precursor solution of preferably 0.00001 to 0.4 mol / l, and then at least once at a high concentration, preferably 0.6 to 1.1 mol / l.
Is to form a film with the precursor solution of the above.

【0015】本発明の好ましい被膜形成においては、基
質材料表面に最初に少なくとも1回ガスフレーム溶射法
を適用し、その後にゾルゲル法を少なくとも1回適用
(ケース1)するか、または最初にゾルゲル法を少なく
とも1回適用し、その後に少なくとも1回ガスフレーム
溶射法を、さらにゾルゲル法を少なくとも1回適用(ケ
ース2)することである。それぞれの好ましい適用回数
は、ケース1ではガスフレーム溶射を1回、その後低濃
度でゾルゲル法を2回、そして高濃度でゾルゲル法を5
回行う。ケース2では、最初低濃度でゾルゲル法を2
回、その後ガスフレーム溶射を1回、続いて低濃度のゾ
ルゲル法を2回、その後高濃度でゾルゲルを5回行うこ
とである。
In the preferred coating formation of the present invention, the gas flame spraying method is first applied to the surface of the substrate material at least once, and then the sol-gel method is applied at least once (case 1), or the sol-gel method is applied first. Is applied at least once, and thereafter, the gas flame spraying method is applied at least once, and the sol-gel method is applied at least once (case 2). The preferred number of applications for each is, in case 1, one gas flame spray, then two sol-gel processes at low concentrations and five sol-gel processes at high concentrations.
Do it twice. In case 2, the sol-gel method was first used at a low concentration.
Times, followed by gas flame spraying once, followed by low-concentration sol-gel method twice, and then high-concentration sol-gel five times.

【0016】[0016]

【実施例】【Example】

実験例1 ガスフレーム溶射法によるアルミナ被膜の形成 コンバージョンSiC付C/C(大きさ:30mm×3
0mm×3mmt)にガスフレーム溶射法によりアルミ
ナ被膜を形成した。
Experimental Example 1 Formation of Alumina Coating by Gas Flame Spray Method C / C with Conversion SiC (Size: 30 mm × 3
(0 mm × 3 mmt), an alumina coating was formed by a gas flame spraying method.

【0017】ガスフレーム溶射法に用いた装置は、日本
ユテク(株)製の高速ガス溶射装置TERODYN S
YSTEM 3000で、粒径が実質的に7〜50ミク
ロン(7〜50ミクロン含有量93重量%)の純度9
9.91%アルミナを、基質と溶射装置のノズル面との
間隔を約80mmに保ちながら溶射し、膜厚約20ミク
ロンの被膜を得た。 得られた溶射被膜を有する基質を
ゾルゲル法のプリカーサー溶液による被膜形成に供し
た。
The apparatus used for the gas flame spraying method is a high-speed gas spraying apparatus TERODYN S manufactured by Utech Japan Co., Ltd.
Purity 9 with YSTEM 3000 having a particle size of substantially 7-50 microns (7-50 microns content 93% by weight)
9.91% alumina was sprayed while maintaining the distance between the substrate and the nozzle surface of the spraying apparatus at about 80 mm to obtain a film having a thickness of about 20 microns. The substrate having the obtained thermal spray coating was subjected to coating formation using a sol-gel precursor solution.

【0018】アルミナプリカーサーの調製 脱イオン水をヒーターおよび攪拌器付のフラスコに入
れ、撹拌しながら90℃に加熱した。この条件で99.
9%アルミニウムトリイソプロポキシドをフラスコ中に
徐々に添加した。添加終了30分後、99.5%酢酸を
加え、90℃で48時間撹拌した後、密封容器に移し冷
暗所に保存した。この際の脱イオン水、アルミニウムト
リイソプロポキシドおよび酢酸の混合比は100:2:
0.2(モル比)であった。
Preparation of Alumina Precursor Deionized water was placed in a flask equipped with a heater and a stirrer and heated to 90 ° C. with stirring. Under these conditions 99.
9% aluminum triisopropoxide was slowly added into the flask. Thirty minutes after the completion of the addition, 99.5% acetic acid was added, and the mixture was stirred at 90 ° C. for 48 hours, then transferred to a sealed container and stored in a cool and dark place. At this time, the mixing ratio of deionized water, aluminum triisopropoxide and acetic acid was 100: 2:
0.2 (molar ratio).

【0019】ゾルゲル法によるアルミナ被膜の形成 溶射アルミナ被膜を有する基質にアルミナプリカーサー
溶液を含浸させ、100℃の乾燥炉中で乾燥させた後、
不活性気体中もしくは真空の熱処理炉中で600℃/時
間の昇温速度で1200℃に昇温し、この温度で1時間
熱処理し、放冷した。この被膜形成を5回繰返し、膜厚
約20ミクロンの溶射被膜上に膜厚5ミクロンのゾルゲ
ル法による被膜を形成した。
Formation of Alumina Coating by Sol-Gel Method A substrate having a sprayed alumina coating is impregnated with an alumina precursor solution and dried in a drying oven at 100 ° C.
The temperature was increased to 1200 ° C. at a rate of 600 ° C./hour in an inert gas or vacuum heat treatment furnace, heat-treated at this temperature for 1 hour, and allowed to cool. This film formation was repeated five times to form a 5 μm thick sol-gel coating on the approximately 20 μm thick sprayed coating.

【0020】耐熱性(耐酸化性)の評価 耐熱性は1500℃(宇宙飛行船体が大気圏突入時の予
想船体表面温度)繰返し静加熱負荷試験により評価し
た。1500℃の環境下に16分間(1回の大気圏突入
で船体が高温に曝される時間)曝す処理を行い、この処
理を3回繰返した。熱曝露前後の試料の表面および断面
を走査電子顕微鏡、X線マイクロアナライザーおよびX
線回折装置を用いて分析し、基質上に形成した被膜の酸
化損傷度合いから耐熱性を評価した。
Evaluation of Heat Resistance (Oxidation Resistance) The heat resistance was evaluated by a repeated static heating load test at 1500 ° C. (expected hull surface temperature when the spacecraft hull enters the atmosphere). Exposure was performed in an environment of 1500 ° C. for 16 minutes (time during which the hull was exposed to a high temperature in one entry into the atmosphere), and this treatment was repeated three times. Scanning electron microscope, X-ray microanalyzer and X-ray
The heat resistance was evaluated based on the degree of oxidative damage of the film formed on the substrate by analyzing using a line diffractometer.

【0021】実験例1で得られた本発明の被膜を有する
基質は、上記熱曝露後においてもその被膜の損傷がほと
んどなく耐熱性に極めて優れていた。
The substrate having the coating of the present invention obtained in Experimental Example 1 showed almost no damage to the coating even after the above heat exposure, and was extremely excellent in heat resistance.

【0022】実験例2 実験例1と同様にして市販のSiCを強化材としたセラ
ミック複合材料に実験例1と同じ装置を用いて粒径が実
質的に5〜30ミクロン(5〜30ミクロン含有量90
重量%)の純度99.91%のアルミナを実験例1と同
じ条件で溶射し、20ミクロンの溶射アルミナ被膜を得
た。得られた溶射被膜を有する基質を、ゾルゲル法によ
る被膜形成に供した。
EXPERIMENTAL EXAMPLE 2 In the same manner as in Experimental Example 1, a commercially available ceramic composite material using SiC as a reinforcing material has a particle size of substantially 5 to 30 microns (containing 5 to 30 microns) using the same apparatus as in Experimental Example 1. Volume 90
(% By weight) of alumina having a purity of 99.91% was sprayed under the same conditions as in Experimental Example 1 to obtain a sprayed alumina coating of 20 microns. The substrate having the obtained thermal spray coating was subjected to coating formation by a sol-gel method.

【0023】水、アルミニウムトリイソプロポキシドお
よび酢酸の混合比100:0.75:0.2(モル比)
とすることを除いて、実験例1と同様にして低濃度アル
ミナプリカーサー溶液を調製した。
Mixing ratio of water, aluminum triisopropoxide and acetic acid 100: 0.75: 0.2 (molar ratio)
A low-concentration alumina precursor solution was prepared in the same manner as in Experimental Example 1 except that

【0024】上記アルミナプリカーサー溶液を用いて、
実験例1と同様の方法で上記基質上にアルミナ被膜を形
成した。被膜施工の繰返し回数は2回であった。
Using the above alumina precursor solution,
An alumina coating was formed on the substrate in the same manner as in Experimental Example 1. The number of repetitions of the coating application was two.

【0025】実験例1のアルミナプリカーサー溶液を用
いて、実験例1と同様の方法で上記基質上にアルミナ被
膜を形成した。但し、被膜形成は5回であった。最終的
に得られたアルミナ被膜全体の膜厚は25ミクロンであ
った。得られた本発明の材料を実験例1と同様の耐熱性
評価をおこなったところ極めて優れた耐熱性を有してい
た。
Using the alumina precursor solution of Experimental Example 1, an alumina film was formed on the substrate in the same manner as in Experimental Example 1. However, the film was formed five times. The thickness of the entire alumina coating finally obtained was 25 microns. The obtained material of the present invention was evaluated for heat resistance in the same manner as in Experimental Example 1, and found to have extremely excellent heat resistance.

【0026】実験例3 水、アルミニウムトリイソプロポキシドおよび酢酸の混
合比を100:0.75:0.2(モル比)とすること
を除いて、実験例1と同様にして低濃度アルミナプリカ
ーサー溶液を調製した。
Experimental Example 3 A low-concentration alumina precursor was prepared in the same manner as in Experimental Example 1 except that the mixing ratio of water, aluminum triisopropoxide and acetic acid was 100: 0.75: 0.2 (molar ratio). A solution was prepared.

【0027】このアルミナプリカーサー溶液を用いて市
販のSiCを強化材としたセラミック複合材料からなる
基質上にアルミナの被膜を形成した。被膜形成の繰返し
回数は2回であった。この被膜上に粒径が実質的に5〜
30ミクロン(5〜30ミクロン含有量90重量%)純
度99.91%のアルミナを実験例1と同様にして溶射
し、ゾルゲル被膜上に膜厚20ミクロンの溶射被膜を得
た。この溶射被膜上に実験例1に用いたアルミナプリカ
ーサー溶液を用いてゾルゲル法の被膜を形成した。此の
被膜の形成は5回であった。得られた本発明の材料を実
験例1と同様の耐熱性評価をおこなったところ極めて優
れた耐熱性を有していた。
Using this alumina precursor solution, an alumina coating was formed on a commercially available ceramic composite material using SiC as a reinforcing material. The number of repetitions of film formation was two. The particle size is substantially 5 on this coating.
Alumina having a purity of 30 microns (5 to 30 microns content 90% by weight) and a purity of 99.91% was sprayed in the same manner as in Experimental Example 1 to obtain a sprayed film having a thickness of 20 microns on the sol-gel film. A sol-gel coating was formed on this thermal spray coating using the alumina precursor solution used in Experimental Example 1. This film was formed five times. The obtained material of the present invention was evaluated for heat resistance in the same manner as in Experimental Example 1, and found to have extremely excellent heat resistance.

【0028】比較実験例1 ゾルゲル法被膜形成を省略することを除いて、実験例1
と同様にして溶射被膜のみを有する基質を得た。実験例
1記載の分析機器で、得られた被膜を分析した所、基質
に到達するボイドが所々見受けられた。耐熱性の評価で
は、基質のSiCが酸化により分解して損傷し、そこか
ら強化材である炭素繊維およびマトリックス炭素が酸化
消耗されていた。
COMPARATIVE EXPERIMENTAL EXAMPLE 1 Except that the formation of the sol-gel coating was omitted, Experimental Example 1 was omitted.
A substrate having only a thermal spray coating was obtained in the same manner as in the above. When the obtained coating film was analyzed with the analytical instrument described in Experimental Example 1, voids reaching the substrate were found in some places. In the evaluation of heat resistance, SiC as a substrate was decomposed and damaged by oxidation, and carbon fibers and matrix carbon as reinforcing materials were oxidized and consumed therefrom.

【0029】比較実験例2 溶射法被膜形成を省略することを除いて、実験例1と同
様にしてゾルゲル法被膜のみを有する基質を得た。実験
例1記載の分析機器で得られた被膜を分析した所、わず
かにクラックおよびボイドが発見された。耐熱性の評価
では、比較実験例1と同様に基質がわずかに酸化消耗さ
れていた。
Comparative Experimental Example 2 A substrate having only a sol-gel coating was obtained in the same manner as in Experimental Example 1, except that the formation of the thermal spray coating was omitted. When the coating obtained by the analytical instrument described in Experimental Example 1 was analyzed, slight cracks and voids were found. In the evaluation of heat resistance, the substrate was slightly oxidized and consumed as in Comparative Example 1.

【0030】比較実験例3 溶射法被膜上へのゾルゲル法被膜形成を省略することを
除いて、実験例3と同様にしてゾルゲル法被膜上に溶射
被膜を有する基質を得た。実験例1記載の分析機器で得
られた被膜を分析した所、基質に通じるアルミナ被膜欠
損箇所および基質とアルミナ被膜との剥離箇所が発見さ
れた。
Comparative Experimental Example 3 A substrate having a thermal spray coating on a sol-gel coating was obtained in the same manner as in Experimental Example 3, except that the formation of the sol-gel coating on the thermal spray coating was omitted. When the coating obtained by the analytical instrument described in Experimental Example 1 was analyzed, a defective portion of the alumina coating leading to the substrate and a separated portion between the substrate and the alumina coating were found.

【0031】[0031]

【発明の効果】本発明の方法により得られる被膜および
この被膜を有する材料は、耐熱性に優れている上に、被
覆と基質材料との密着性にも優れ、あらゆる形状の基質
に被膜を形成することが出来る。特に、宇宙飛行船体の
外部耐熱性被膜の補修に有用である。
The film obtained by the method of the present invention and the material having this film have excellent heat resistance and excellent adhesion between the coating and the substrate material, and can form a film on substrates of any shape. You can do it. In particular, it is useful for repairing external heat-resistant coatings on spacecraft hulls.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI D06M 11/36 D06M 11/12 11/77 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI D06M 11/36 D06M 11/12 11/77

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基質材料が、最初にガスフレーム溶射法、
その後にゾルゲル法にてセラミック被覆されることを特
徴とする被覆方法。
1. The method according to claim 1, wherein the substrate material is first gas flame sprayed,
Thereafter, a ceramic coating is performed by a sol-gel method.
【請求項2】基質材料が、最初にゾルゲル法、次にガス
フレーム溶射法、その後にゾルゲル法にてセラミック被
覆されることを特徴とする被覆方法。
2. The coating method according to claim 1, wherein the substrate material is first ceramic coated by a sol-gel method, then by a gas flame spraying method and then by a sol-gel method.
【請求項3】前記基質材料が、炭素繊維強化炭素複合材
料又はSiC繊維を強化繊維又は基質としたセラミック
複合材料であることを特徴とする請求項1又は2記載の
被覆方法。
3. The coating method according to claim 1, wherein the substrate material is a carbon fiber reinforced carbon composite material or a ceramic composite material using SiC fibers as a reinforcement fiber or a substrate.
【請求項4】前記ゾルゲル法によるセラミック被覆形成
が、低濃度セラミックプリカーサー、その後に高濃度セ
ラミックプリカーサーを用いて行われることを特徴とす
る請求項1乃至3何れかに記載の被覆方法。
4. The coating method according to claim 1, wherein the formation of the ceramic coating by the sol-gel method is performed using a low concentration ceramic precursor and thereafter using a high concentration ceramic precursor.
【請求項5】前記ゾルゲル法によるセラミック被覆形成
が、連続して少なくとも1回及び/又は前記ガスフレー
ム溶射法によるセラミック被膜形成が、連続して少なく
とも1回行われることを特徴とする請求項1乃至4の何
れかに記載の被覆方法。
5. The method according to claim 1, wherein the formation of the ceramic coating by the sol-gel method is performed at least once continuously and / or the formation of the ceramic coating by the gas flame spraying method is performed at least once continuously. 5. The coating method according to any one of claims 1 to 4.
【請求項6】前記セラミック被覆形成が、開放空間内で
行われることを特徴とする請求項1乃至5何れかに記載
の被覆方法。
6. The coating method according to claim 1, wherein the formation of the ceramic coating is performed in an open space.
【請求項7】請求項1乃至6何れかに記載の被覆方法で
被覆された材料。
7. A material coated by the coating method according to claim 1.
JP9199481A 1997-07-25 1997-07-25 Method for coating ceramic coating film and coated material Pending JPH1143782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9199481A JPH1143782A (en) 1997-07-25 1997-07-25 Method for coating ceramic coating film and coated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9199481A JPH1143782A (en) 1997-07-25 1997-07-25 Method for coating ceramic coating film and coated material

Publications (1)

Publication Number Publication Date
JPH1143782A true JPH1143782A (en) 1999-02-16

Family

ID=16408531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9199481A Pending JPH1143782A (en) 1997-07-25 1997-07-25 Method for coating ceramic coating film and coated material

Country Status (1)

Country Link
JP (1) JPH1143782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468212A (en) * 2013-09-27 2013-12-25 湖南大学 Technology for coating ZrO2/Fe2O3 composite film on surface of diamond by sol-gel method
CN105239060A (en) * 2015-11-06 2016-01-13 武汉理工大学 Thermal spraying coating layer antireflection layer suitable for solar selective absorption and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468212A (en) * 2013-09-27 2013-12-25 湖南大学 Technology for coating ZrO2/Fe2O3 composite film on surface of diamond by sol-gel method
CN103468212B (en) * 2013-09-27 2014-08-06 湖南大学 Technology for coating ZrO2/Fe2O3 composite film on surface of diamond by sol-gel method
CN105239060A (en) * 2015-11-06 2016-01-13 武汉理工大学 Thermal spraying coating layer antireflection layer suitable for solar selective absorption and preparation method thereof

Similar Documents

Publication Publication Date Title
US5843526A (en) Protective compositions and methods of making the same
US6632762B1 (en) Oxidation resistant coating for carbon
KR100390291B1 (en) Silicon based substrate with yttrium silicate environmental/thermal barrier layer
US8053072B2 (en) Method of reducing porosity in thermal spray coated and sintered articles
US4889589A (en) Gaseous removal of ceramic coatings
JP2845144B2 (en) Hot-dip metal bath immersion member and method for producing the same
KR19990008142A (en) Formation method of thermal spray coating
JP3481241B2 (en) Antioxidant protection of carbon-based materials
CN105745351B (en) Method for depositing anti-corrosive coating
JPH1143782A (en) Method for coating ceramic coating film and coated material
US5521001A (en) Carbide formed on a carbon substrate
JP2002088462A (en) Method for sealing treatment, sealing-treated sprayed deposit, and fan or blower each having the deposit
JP2812019B2 (en) Carbon fiber / carbon composite
RU2763698C1 (en) Method for obtaining functional-gradient coatings on metal products
JP2001131730A (en) Method for strengthening sprayed deposit, and member with strengthened sprayed deposit
KR940011250B1 (en) Coating method for preventing oxidation of carbon composites
JPH11292645A (en) Oxidation resistant c/c composite material and its production
JP3967797B2 (en) COATING METHOD AND COATING MATERIAL FOR OXIDATION-RESISTANT MULTILAYER COATING OF CARBON FIBER REINFORCED CARBON COMPOSITE
JP2001158954A (en) Method of forming sprayed deposit free from penetrating pore, and member with the sprayed deposit
JP3060589B2 (en) High temperature heat resistant material
JPH1067585A (en) Oxidation resistant treatment of carbonaceous material
JPH08217575A (en) Carbonaceous member and method for coating surface
KR940005405B1 (en) Method of preventing an oxidation of carbon materials by double coating
JPH09256168A (en) Coating method on graphite
JP3060590B2 (en) High temperature heat resistant material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515