JPH1143780A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPH1143780A
JPH1143780A JP20063297A JP20063297A JPH1143780A JP H1143780 A JPH1143780 A JP H1143780A JP 20063297 A JP20063297 A JP 20063297A JP 20063297 A JP20063297 A JP 20063297A JP H1143780 A JPH1143780 A JP H1143780A
Authority
JP
Japan
Prior art keywords
base material
substrate
heating
heated
nonferrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20063297A
Other languages
Japanese (ja)
Inventor
Takanori Kuroki
隆憲 黒木
Yasushi Umemoto
靖 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP20063297A priority Critical patent/JPH1143780A/en
Publication of JPH1143780A publication Critical patent/JPH1143780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply a method of melting by heat with electromagnetic induced current in placing a nonferrous metallic member on the surface of a substrate and joining this nonferrous metallic member to the surface of the substrate. SOLUTION: The surface of a substrate is mounted with a nonferrous alloy member having the m.p. lower than that of the substrate, in the substrate, heat is generated by electromagnetic induced current, and by the heat generation in the substrate, the nonferrous alloy member is heated to melt and is deposited on the base material. A high frequency induction heating coil is arranged at a position and distance effective for the heating of the substrate such as steel or the like, electromagnetic induced current is efficiently generated on the substrate, which is heated, and by utiliging the heat to be generated in the base material, the nonferrous alloy member mounted on the substrate is efficiently heated to melt. Since the heat to be generated in the substrate is utilized, this method can be applied to nonferrous alloys with any shapes and dimensions, and since the heating and cooling rates are high, a composite material having a nonferrous alloy lining layer excellent in performance can be obtd. relatively at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧延機のチョック
ライナーのように、鋼板母材上に非鉄合金のライニング
層を有する複合材の製造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a composite material having a non-ferrous alloy lining layer on a steel sheet base material, such as a chock liner of a rolling mill.

【0002】[0002]

【従来の技術】このような複合材の製造法として、ライ
ニング材をアーク溶接、プラズマ溶接などによって母材
上に接合する方法、あるいは母材上に連続して溶融した
ライニング材を鋳込み、または鋳掛けする溶融接合法、
熱間圧延による接合法、さらには、特殊雰囲気中で拡散
接合するなどの固相接合法が知られている。また、ライ
ニング材として所定の組成を有する粉粒体を母材上に載
置してこれを加熱焼結して母材上に接合する方法もあ
る。
2. Description of the Related Art As a method of manufacturing such a composite material, a method of joining a lining material to a base material by arc welding, plasma welding, or the like, or a method of continuously casting a molten lining material on the base material or casting the lining material. Melt joining method,
A joining method by hot rolling and a solid-phase joining method such as diffusion joining in a special atmosphere are known. There is also a method in which a powdery or granular material having a predetermined composition is placed on a base material as a lining material, and this is heated and sintered to be joined to the base material.

【0003】この加熱手段として、保護雰囲気中におけ
る電気炉加熱、電磁誘導電流加熱が適用されているが、
電気炉加熱による場合は施工に長時間を要するのに対し
て、電磁誘導電流の場合は、加熱のための時間を短縮で
きることから最も能率的であるとされている。
[0003] As the heating means, electric furnace heating in a protective atmosphere and electromagnetic induction current heating are applied.
In the case of heating with an electric furnace, the application takes a long time, whereas in the case of electromagnetic induction current, the time for heating can be shortened, so that it is considered to be the most efficient.

【0004】ところが、この電磁誘導加熱を利用した複
合材の製造は、加熱溶解されるライニング材自体の透磁
率および比抵抗により電磁誘導電流の誘起される程度が
異なり、母材である鋼とライニング材として銅合金や錫
合金などの非鉄合金が共存する場合には、母材が優先的
に電磁誘導電流が誘起されて急速に発熱されるが、非鉄
合金であるライニング材は単体では加熱溶解されにく
く、母材との接合が困難であるという問題がある。
However, in the production of a composite material using this electromagnetic induction heating, the degree of induction of the electromagnetic induction current differs depending on the magnetic permeability and specific resistance of the lining material itself that is heated and melted, and the steel lining material and the base material When a non-ferrous alloy such as a copper alloy or a tin alloy coexists as a material, the base material preferentially induces an electromagnetically induced current to rapidly generate heat, but the lining material, which is a non-ferrous alloy, is heated and melted by itself. Therefore, there is a problem that bonding with the base material is difficult.

【0005】[0005]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、母材上に非鉄金属部材を載置して、この
非鉄金属部材を母材上に接合するに当たって、電磁誘導
電流の適用を可能にする手段を見いだすことにある。
SUMMARY OF THE INVENTION An object of the present invention is to place a non-ferrous metal member on a base material and to apply the electromagnetic induction current in joining the non-ferrous metal member to the base material. Is to find a way to make it possible.

【0006】[0006]

【課題を解決するための手段】本発明の複合材の製造方
法は、母材上に母材より低融点の非鉄合金部材を載置
し、母材を電磁誘導電流によって発熱せしめ、この母材
の発熱により非鉄合金部材を加熱溶解し母材上に溶着す
ることを特徴とする。
According to a method of manufacturing a composite material of the present invention, a non-ferrous alloy member having a lower melting point than a base material is placed on the base material, and the base material is heated by electromagnetic induction current. Is characterized in that the non-ferrous alloy member is heated and melted by the heat generated and welded onto the base material.

【0007】電磁誘導による加熱および冷却によって、
通常の電気炉を用いた雰囲気加熱と比べると、加熱速度
および冷却速度を極めて大きくすることが可能であり、
加熱速度および冷却速度を大きくすることは施工時にお
ける生産効率を高くできることは勿論のことながら、加
熱溶解する非鉄合金の材質の面からも優位性が有る。つ
まり、通常の加熱方法では加熱溶解時に蒸気圧を高い低
融点の非鉄金属成分は損失が大きいが、電磁誘導による
加熱溶解の場合加熱冷却に要する時間が短いため、これ
らの成分の損失が少ないため、歩留が高く設定でき、組
成制御が容易となる。さらに、冷却速度が大きいため、
偏析しやすい成分を含む場合においても、凝固に要する
時間も短いため偏析が少なく、組織も通常の加熱溶解の
場合より微細になる傾向がある。
By heating and cooling by electromagnetic induction,
Compared with atmospheric heating using a normal electric furnace, it is possible to extremely increase the heating rate and cooling rate,
Increasing the heating rate and the cooling rate not only can increase the production efficiency during construction, but also have an advantage in terms of the material of the non-ferrous alloy to be heated and melted. In other words, the non-ferrous metal component having a high melting point and a high melting point during heating and melting has a large loss in a normal heating method, but the time required for heating and cooling is short in the case of heating and melting by electromagnetic induction, so the loss of these components is small. , The yield can be set high, and composition control becomes easy. Furthermore, because of the high cooling rate,
Even in the case where a component which is easily segregated is contained, segregation is small because the time required for solidification is short, and the structure tends to be finer than in the case of ordinary heat dissolution.

【0008】この電磁誘導電流による母材の急速な加熱
によって、その上に載置されたライニング材への母材か
らの伝熱を有効に利用した早急な加熱溶解が可能とな
り、母材への接合を可能とする。
[0008] The rapid heating of the base material by the electromagnetic induction current makes it possible to perform rapid heating and melting by effectively utilizing the heat transfer from the base material to the lining material placed thereon. Enables joining.

【0009】[0009]

【発明の実施の形態】本発明において、電磁誘導電流を
励起させる加熱コイルは、被加熱体の形状および寸法に
合わせた形状および寸法のものを使用するが、加熱コイ
ルと被加熱体の距離は加熱効率に強く影響し、両者の距
離が小さいほど加熱効率は高くなる。円筒形状の貫通型
コイルや平板形状の面状型コイル等の適当な形状の加熱
コイルを、被加熱体となる複合体の形状に合わせて用い
れば良いが、加熱効率を良くするため、加熱コイルと被
加熱体との距離は勿論のこと、特に平板型の母材上に非
鉄金属部材を載置して複合体を施工する場合、加熱コイ
ルと母材との位置関係も重要である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a heating coil for exciting an electromagnetic induction current has a shape and dimensions corresponding to the shape and dimensions of an object to be heated. Heating efficiency is strongly affected, and the smaller the distance between the two, the higher the heating efficiency. A heating coil having an appropriate shape such as a cylindrical through-type coil or a flat plate-shaped coil may be used in accordance with the shape of the composite to be heated. In addition to the distance between the heating coil and the object to be heated, the positional relationship between the heating coil and the base material is also important, especially when the non-ferrous metal member is placed on the flat base material to construct the composite.

【0010】つまり、母材片面にのみライニング層を形
成する場合、平板状の母材片面上に載置した非鉄金属部
材側に加熱コイルを配置させるより、非鉄金属部材が載
置されていない母材側に加熱コイルを配置させたほうが
距離を小さく設定でき、効率よく母材を加熱できる。
In other words, when the lining layer is formed only on one surface of the base material, the heating coil is arranged on the non-ferrous metal member side mounted on one surface of the flat base material. If the heating coil is arranged on the material side, the distance can be set smaller, and the base material can be efficiently heated.

【0011】さらに、本発明の場合、母材の発熱を利用
し載置した非鉄金属部材を加熱溶解させるため、母材に
より近い位置に加熱コイルを配置することによって、多
くの種類の非鉄金属部材の形状および寸法に対応でき、
その結果使用できる原料の自由度が大きくなることにな
る。
Further, in the case of the present invention, a heating coil is arranged at a position closer to the base material in order to heat and melt the placed non-ferrous metal member by utilizing the heat generated by the base material. The shape and dimensions of
As a result, the degree of freedom of usable raw materials is increased.

【0012】また、複数の加熱コイルを用いて加熱を行
った場合のほうが加熱効率が良い場合もあり、非鉄合金
部材が載置されていない母材側片面に加熱コイルを配置
させる他に、非鉄金属部材が載置された側の片面に別の
加熱コイルを配置させても良く、非鉄金属部材が載置さ
れていない母材側片面に複数の加熱コイルを適切な位置
関係で配置しても良い。
In some cases, the heating efficiency is higher when heating is performed using a plurality of heating coils. In addition to disposing the heating coil on one side of the base material side on which the non-ferrous alloy member is not mounted, Another heating coil may be arranged on one side of the side on which the metal member is mounted, or a plurality of heating coils may be arranged in an appropriate positional relationship on one side of the base material side where the non-ferrous metal member is not mounted. good.

【0013】本発明を適用するために母材上に載置され
る非鉄金属としては、母材の種類に応じて、その融点が
母材の融点よりも低い融点を持つものであれば、いかな
る非鉄金属の適用も可能であるが、母材が鋼の場合のラ
イニング材としては、ホワイトメタル、銅合金が好適で
ある。
The non-ferrous metal placed on the base material for applying the present invention may be any non-ferrous metal having a melting point lower than that of the base material depending on the type of the base material. Although a non-ferrous metal can be used, a white metal or a copper alloy is preferable as the lining material when the base material is steel.

【0014】母材上に載置される非鉄金属部材の形状
は、適当な形状および寸法に切断した、塊状、板状ある
いは粉粒状のものを単独あるいは混合して使用できる。
The shape of the non-ferrous metal member mounted on the base material can be cut or cut into appropriate shapes and dimensions, and can be used alone or in combination.

【0015】載置の条件としては、母材表面が露出しな
い程度にできるだけ密に載置するのが均一なライニング
層を形成するためには好ましい。その中でも、粉粒状の
原料のみを使用する場合、事前に所定の組成となるよう
に混合し、できるだけ均一に母材上に散布すれば良い。
均一な散布の方法については従来から用いられている方
法および装置を適宜に用いれば良く、簡略的には適当な
見開きの篩いを用いても一定の効果は得られる。散布時
に振動または回転等の運動を付加するのも効果がある。
It is preferable that the mounting is performed as densely as possible so that the surface of the base material is not exposed in order to form a uniform lining layer. Among these, when using only powdery and granular raw materials, they may be mixed in advance so as to have a predetermined composition and dispersed as uniformly as possible on the base material.
For the method of uniform spraying, a conventionally used method and apparatus may be appropriately used, and in a simplified manner, a certain effect can be obtained even by using a suitable double-screen sieve. It is also effective to add a motion such as vibration or rotation during spraying.

【0016】つまり、粉粒体はどのような形状の母材表
面にも他の形状の原料より接触面積を大きく載置するこ
とができるため、非鉄金属の少なくとも一部に粉粒体を
含むほうが、母材の露出を小さくすることができ、さら
に母材との接触面積もより大きくでき、母材の発熱を有
効に利用できる。
That is, since the contact area of the granular material can be larger than that of the raw material of any other shape on the surface of the base material of any shape, it is better to include the granular material in at least a part of the non-ferrous metal. In addition, the exposure of the base material can be reduced, and the contact area with the base material can be further increased, so that the heat generated by the base material can be used effectively.

【0017】母材上に載置した非鉄金属の溶解を助ける
ために、その組成に与える影響が少ない程度の成分を添
加混合することもできる。例えば、融点を調整するため
の低融点非鉄金属および母材の表面酸化物を除去するた
めのフラックスや、溶解時に大気からの汚染を防止する
被覆材等であり、さらには、非鉄金属部材と母材との接
合界面のぬれ性を向上させるため添加する場合もある。
これらは、あらかじめ、載置原料と混合しておいても良
く、非鉄金属部材を母材上に載置した後に適当な方法
で、載置部材または母材上に載置しても良い。
In order to assist the dissolution of the non-ferrous metal placed on the base material, it is possible to add and mix components having a small effect on the composition. For example, it is a low-melting non-ferrous metal for adjusting the melting point and a flux for removing surface oxides of the base material, a coating material for preventing contamination from the atmosphere during melting, and a non-ferrous metal member and a base material. It may be added in order to improve the wettability of the bonding interface with the material.
These may be mixed with the mounting raw material in advance, or may be mounted on the mounting member or the base material by an appropriate method after mounting the non-ferrous metal member on the base material.

【0018】母材となる材料は電磁誘導により加熱がで
きるものであれば特に制限はなく、鉄を主成分とする、
一般に言われる鋼が用いられ、例えば炭素鋼、工具鋼、
合金鋼が挙げられる。
The base material is not particularly limited as long as it can be heated by electromagnetic induction.
Steel generally used is used, for example, carbon steel, tool steel,
Alloy steel.

【0019】[0019]

【実施例】【Example】

実施例1 この発明を、非鉄金属として代表組成が9重量%アンチ
モン、5重量%銅、残部が錫および不可避不純物からな
る錫合金系ホワイトメタル2種WJ2を用いたライナー
の複合材の製造に適用した例について説明する。
Example 1 The present invention is applied to the manufacture of a liner composite material using two types of tin alloy-based white metals WJ2 of 9% by weight of antimony, 5% by weight of copper, and the balance of tin and inevitable impurities as a non-ferrous metal. An example will be described.

【0020】厚さ10mm、幅120mm、長さ120
mmの母材となる軟鋼SS400の全周部に、同材質の
高さ20mm,幅10mmの堰を設けた構造をもつ角箱
型容器内の母材上に、WJ2インゴットの塊状切断片6
00gを配置し、塩化亜鉛粉末3gおよび粒度80メッ
シュの黒鉛粉末を塊状切断片を覆うように散布した。容
器にはセラミックウール製の蓋をし、容器の下方に設置
した平面型、80mm×80mmの高周波誘導加熱コイ
ルを容器底面から15mmの位置にコイル上表面が位置
するように距離を調整し、入力電力4kW、周波数32
kHzの条件で通電を開始した。容器上部から蓋に設け
た穴を通して熱電対を装入して、接合界面の温度を測定
したところ、通電開始後5分で450℃に達し、すでに
ホワイトメタル溶湯が生成されているのが確認されたの
で、通電を終了し、容器内でホワイトメタルを空冷させ
て凝固させた。
Thickness 10 mm, width 120 mm, length 120
block of a WJ2 ingot is placed on a base material in a square box-shaped container having a 20 mm high and 10 mm wide weir made of the same material over the entire periphery of mild steel SS400 serving as a base material of 6 mm.
Then, 3 g of zinc chloride powder and graphite powder having a particle size of 80 mesh were sprayed so as to cover the massive cut pieces. The container was covered with a ceramic wool lid, and a flat, high-frequency induction heating coil of 80 mm x 80 mm placed under the container was adjusted so that the upper surface of the coil was positioned at a position 15 mm from the bottom of the container, and the input was performed. Power 4kW, frequency 32
The energization was started under the condition of kHz. A thermocouple was inserted from the top of the container through a hole provided in the lid, and the temperature of the bonding interface was measured. The temperature reached 450 ° C 5 minutes after the start of energization, and it was confirmed that molten white metal had already been generated. Therefore, the energization was terminated, and the white metal was air-cooled in the vessel to solidify.

【0021】このようにして得られたホワイトメタルラ
イニング層は、厚さ約5mmのホワイトメタル層がSS
400母材上に形成され、切断断面におけるホワイトメ
タルおよび接合界面付近には欠陥は観察されず、良好に
接合されているのが確認された。
The white metal lining layer obtained in this manner has a white metal layer
No defects were observed in the vicinity of the interface between the white metal and the joint in the cut cross section formed on the 400 base metal, and it was confirmed that the joint was excellent.

【0022】社内試験片によって接合界面における剪断
強さを求めると、4.4kgf/mm2という値が得ら
れ、界面における接合は健全に行われていると判断され
た。 実施例2 実施例1と同じ角箱型容器内の母材上に、WJ2スクラ
ップである片状体および線状体約600gを配置し、粒
度325メッシュの錫粉末6g、塩化亜鉛粉末3gおよ
び粒度80メッシュの黒鉛粉末を片状体および線状体を
覆うように散布した。容器には軟鋼製の蓋をし、容器の
下方に設置した高周波誘導加熱コイルを容器底面から1
5mmの位置にコイル上表面が位置するように距離を調
整し、入力電力4kW、周波数32kHzの条件で通電
を開始した。容器上部から蓋に設けた穴を通して熱電対
を装入して、接合界面の温度を測定したところ、通電開
始後5分で330℃に達し、錫合金の一部に液相が発生
しているのが確認された。通電開始後5分で通電を終了
し、容器内でホワイトメタルを空冷させて凝固させた。
このようにして得られたホワイトメタルライニング層
は、厚さ約5mmのホワイトメタルがSS400母材上
に形成され、実施例1の場合と比べると浮上分離した異
物が多いが、切断断面における錫合金層および接合界面
付近には大きな欠陥は観察されず、ほぼ良好に接合され
ているのが確認された。
When the shear strength at the joint interface was determined using an in-house test piece, a value of 4.4 kgf / mm 2 was obtained, and it was determined that the joint at the interface was sound. Example 2 Approximately 600 g of WJ2 scrap flakes and linear bodies were placed on the same base material in the same rectangular box-shaped container as in Example 1, 6 g of tin powder having a particle size of 325 mesh, 3 g of zinc chloride powder and 3 g of particle size. 80 mesh graphite powder was sprayed so as to cover the flakes and the linear bodies. The vessel is covered with a mild steel lid, and a high-frequency induction heating coil installed below the vessel is placed 1 mm from the bottom of the vessel.
The distance was adjusted so that the upper surface of the coil was located at a position of 5 mm, and energization was started under the conditions of an input power of 4 kW and a frequency of 32 kHz. A thermocouple was inserted from the top of the container through a hole provided in the lid, and the temperature of the bonding interface was measured. The temperature reached 330 ° C. in 5 minutes after the start of energization, and a liquid phase was generated in part of the tin alloy. Was confirmed. Five minutes after the start of the energization, the energization was terminated, and the white metal was air-cooled in the vessel to solidify.
The white metal lining layer thus obtained has a thickness of about 5 mm formed on the SS400 base material, and has a larger amount of foreign matter floating and separated than in the case of Example 1. No large defects were observed near the layer and the joint interface, and it was confirmed that the joint was almost excellent.

【0023】実施例3 この発明を、非鉄金属とし青銅鋳物BC3相当品を用い
たライナーの複合材の製造に適用した例について説明す
る。
Example 3 An example in which the present invention is applied to the manufacture of a liner composite material using a bronze casting BC3 equivalent as a non-ferrous metal will be described.

【0024】厚さ10mm、幅120mm、長さ120
mmの母材となる軟鋼(SS400)の全周部に、同材
質の高さ20mm,幅10mmの堰を設けた構造をもつ
角箱型容器内に、代表組成:10重量%錫、2重量%亜
鉛、残銅および不可避不純物となるように混合した粒度
80メッシュ〜120メッシュの銅合金粉末1200g
に粒度80メッシュの黒鉛粉末6gを添加した粉末状原
料を配置した。容器には軟鋼製の蓋をし、容器の下方に
設置した高周波誘導加熱コイル(平面型、面積:80×
80)を容器底面から5mmの位置にコイル上表面が位
置するように距離を調整し、入力電力17kW、周波数
37kHzの条件で通電を開始した。容器上部から蓋に
設けた穴を通して熱電対を銅合金粉末中に装入して、接
合界面の温度を測定したところ、通電開始後3分で11
50℃に達し、すでに銅合金溶湯が生成されているのが
確認された。また加熱溶解中は容器との距離を保ったま
まで、加熱コイルを手動で揺動させて容器全体ができる
だけ均一に加熱されるように調整した。
Thickness 10 mm, width 120 mm, length 120
In a square box-shaped container having a 20 mm high and 10 mm wide weir made of the same material over the entire circumference of mild steel (SS400) as a base material of 10 mm, a typical composition: 10% by weight tin, 2% by weight % Zinc, residual copper, and 1200 g of a copper alloy powder having a particle size of 80 to 120 mesh mixed to become inevitable impurities.
And a powdery raw material obtained by adding 6 g of graphite powder having a particle size of 80 mesh. The container is covered with a mild steel lid, and a high-frequency induction heating coil (flat type, area: 80 ×
80), the distance was adjusted such that the upper surface of the coil was located at a position 5 mm from the bottom of the container, and energization was started under the conditions of an input power of 17 kW and a frequency of 37 kHz. A thermocouple was inserted into the copper alloy powder from the top of the container through a hole provided in the lid, and the temperature of the bonding interface was measured.
The temperature reached 50 ° C., and it was confirmed that the molten copper alloy had already been generated. During the heating and melting, the heating coil was manually rocked while maintaining the distance to the container so that the entire container was heated as uniformly as possible.

【0025】通電開始後9分で界面付近の溶湯温度が1
050℃となるように入力を調整し、通電後12分で加
熱溶解を終了し、容器内で銅合金を空冷させて凝固させ
た。このようにして得られた銅合金ライニング層は、厚
さ約10mmの銅合金層がSS400母材上に形成さ
れ、切断断面における銅合金層および接合界面付近には
欠陥は観察されず、良好に接合されているのが確認され
た。
9 minutes after the start of energization, the temperature of the molten metal near the interface becomes 1
The input was adjusted to be 050 ° C., and the heating and melting were completed 12 minutes after energization, and the copper alloy was air-cooled and solidified in the vessel. In the copper alloy lining layer thus obtained, a copper alloy layer having a thickness of about 10 mm was formed on the SS400 base material, and no defects were observed near the copper alloy layer and the joint interface in the cut cross section. It was confirmed that they were joined.

【0026】凝固した銅合金層から分析試料を採取して
成分分析を行ったところ、錫10.2重量%、亜鉛2.
7重量%となり、組成はほぼ設定通りであった。
An analysis sample was collected from the solidified copper alloy layer and subjected to component analysis.
It was 7% by weight, and the composition was almost as set.

【0027】また、社内試験片によって接合界面におけ
る剪断強さを求めると、30.5kgf/mm2という
値が得られ、剪断破壊した位置も銅合金内であるところ
から、界面における接合は健全に行われていることも確
認された。
Further, when the shear strength at the joint interface was determined by using an in-house test piece, a value of 30.5 kgf / mm 2 was obtained. Since the position where the shear fracture occurred was also within the copper alloy, the joint at the interface was sound. It was also confirmed that this was being done.

【0028】実施例4 厚さ10mm、内径100mmの母材となる軟鋼(SS
400)円材の全周部に、同材質の高さ20mm,幅1
0mmの堰を設けた構造をもつ円筒型容器内底面上に、
アルミ青銅C6191相当品(代表組成:10重量%ア
ルミニウム、5%重量鉄、1%重量マンガン、1%重量
ニッケル、残銅および不可避不純物)の円板(φ50)
2枚、約500gを配置し、ホウ砂0.3gを円板上に
散布し、さらに粒度80メッシュの黒鉛粉末を銅合金原
料を覆うように散布した。容器には軟鋼製の蓋をし、容
器の下方に設置した高周波誘導加熱コイルを容器底面か
ら10mmの位置にコイル上表面が位置するように距離
を調整し、入力電力11kW、周波数35kHzの条件
で通電を開始した。容器上部から蓋に設けた穴を通して
熱電対を銅合金付近に装入して、接合界面の温度を測定
したところ、通電開始後5分で1050℃に達した。ま
た加熱溶解中は容器との距離を保ったままで、加熱コイ
ルを手動で揺動させて容器全体ができるだけ均一に加熱
されるように調整した。
Example 4 Mild steel (SS) serving as a base material having a thickness of 10 mm and an inner diameter of 100 mm
400) The same material, height 20 mm, width 1
On the bottom surface inside a cylindrical container having a structure with a 0 mm weir,
Disk (φ50) of aluminum bronze C6191 equivalent (typical composition: 10% by weight aluminum, 5% by weight iron, 1% by weight manganese, 1% by weight nickel, residual copper and unavoidable impurities)
Two pieces of about 500 g were placed, 0.3 g of borax was sprayed on the disk, and graphite powder having a particle size of 80 mesh was further sprayed so as to cover the copper alloy raw material. The vessel was covered with a mild steel lid, and the high-frequency induction heating coil installed under the vessel was adjusted so that the upper surface of the coil was positioned at a position 10 mm from the bottom of the vessel, and the input power was 11 kW and the frequency was 35 kHz. Energization was started. A thermocouple was inserted into the vicinity of the copper alloy from the top of the container through a hole provided in the lid, and the temperature of the bonding interface was measured. During the heating and melting, the heating coil was manually rocked while maintaining the distance to the container so that the entire container was heated as uniformly as possible.

【0029】通電開始後10分で界面付近の溶湯温度が
1120℃となったことを確認し、通電を終了し、容器
内で銅合金を空冷させて凝固させた。このようにして得
られた銅合金ライニング層は、厚さ約10mmの銅合金
層がSS400母材上に形成され、切断断面における銅
合金層および接合界面付近には欠陥は観察されず、良好
に接合されているのが確認された。
It was confirmed that the temperature of the molten metal near the interface became 1120 ° C. 10 minutes after the start of energization, the energization was terminated, and the copper alloy was air-cooled and solidified in the vessel. In the copper alloy lining layer thus obtained, a copper alloy layer having a thickness of about 10 mm was formed on the SS400 base material, and no defects were observed near the copper alloy layer and the joint interface in the cut cross section. It was confirmed that they were joined.

【0030】凝固した銅合金層から分析試料を採取して
成分分析を行ったところ、アルミ10.0重量%、鉄
4.7重量%、マンガン1.0重量%、ニッケル1.1
重量%となり、組成はほぼ設定通りであった。
An analysis sample was collected from the solidified copper alloy layer and subjected to component analysis. As a result, 10.0% by weight of aluminum, 4.7% by weight of iron, 1.0% by weight of manganese, and 1.1% by weight of nickel were obtained.
% By weight, and the composition was almost as set.

【0031】[0031]

【発明の効果】【The invention's effect】

(1)高周波誘導加熱コイルによる母材上に載置された
銅合金の迅速な加熱溶解が可能となり、非鉄合金ライニ
ング層を高能率に形成できる。
(1) The copper alloy placed on the base material can be rapidly heated and melted by the high-frequency induction heating coil, and the non-ferrous alloy lining layer can be formed with high efficiency.

【0032】(2)鉄を主成分とする鋼等の母材であれ
ば、銅合金の形状および寸法に依らず、自由に原料が選
択でき、安価な製品が得られる。
(2) With a base material such as steel containing iron as a main component, raw materials can be freely selected regardless of the shape and dimensions of the copper alloy, and an inexpensive product can be obtained.

【0033】(3) 加熱炉による通常の処理に比べ
て、加熱および冷却速度が大きくなるためより優れた性
能をもつライニング層を得ることが容易になる。
(3) Since the heating and cooling rates are increased as compared with the usual treatment using a heating furnace, it is easy to obtain a lining layer having better performance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 母材上に母材より低融点の非鉄合金部材
を載置し、加熱コイルによって誘起される電磁誘導電流
によって母材を発熱せしめ、この母材の発熱により非鉄
合金部材を加熱溶解し母材上に溶着することを特徴とす
る複合材の製造方法。
1. A non-ferrous alloy member having a lower melting point than a base material is placed on the base material, and the base material is heated by an electromagnetic induction current induced by a heating coil, and the non-ferrous alloy member is heated by the heat generated by the base material. A method for producing a composite material, comprising melting and welding on a base material.
【請求項2】 電磁誘導電流を誘起する加熱コイルの少
なくとも1つが非鉄合金部材が載置されていない母材の
側片面に位置せしめることを特徴とする請求項1に記載
の複合材の製造方法。
2. The method according to claim 1, wherein at least one of the heating coils for inducing the electromagnetic induction current is located on one side of the base material on which the non-ferrous alloy member is not mounted. .
【請求項3】 非鉄合金部材が、塊状、板状あるいは線
状、粉粒状であることを特徴とする請求項1あるいは請
求項2に記載の複合材を製造する方法。
3. The method for producing a composite material according to claim 1, wherein the non-ferrous alloy member is in the form of a lump, a plate, a line, or a powder.
【請求項4】 母材が、鋼であることを特徴とする請求
項1から請求項3の何れかに記載の複合材の製造方法。
4. The method for producing a composite material according to claim 1, wherein the base material is steel.
JP20063297A 1997-07-25 1997-07-25 Production of composite material Pending JPH1143780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20063297A JPH1143780A (en) 1997-07-25 1997-07-25 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20063297A JPH1143780A (en) 1997-07-25 1997-07-25 Production of composite material

Publications (1)

Publication Number Publication Date
JPH1143780A true JPH1143780A (en) 1999-02-16

Family

ID=16427620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20063297A Pending JPH1143780A (en) 1997-07-25 1997-07-25 Production of composite material

Country Status (1)

Country Link
JP (1) JPH1143780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707120B2 (en) 2002-04-17 2010-04-27 Visa International Service Association Mobile account authentication service
US8019691B2 (en) 2002-09-10 2011-09-13 Visa International Service Association Profile and identity authentication service
US8762283B2 (en) 2004-05-03 2014-06-24 Visa International Service Association Multiple party benefit from an online authentication service
US9864993B2 (en) 2000-04-24 2018-01-09 Visa International Service Association Account authentication service with chip card

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9864993B2 (en) 2000-04-24 2018-01-09 Visa International Service Association Account authentication service with chip card
US10572875B2 (en) 2000-04-24 2020-02-25 Visa International Service Association Online account authentication service
US7707120B2 (en) 2002-04-17 2010-04-27 Visa International Service Association Mobile account authentication service
US8019691B2 (en) 2002-09-10 2011-09-13 Visa International Service Association Profile and identity authentication service
US10672215B2 (en) 2002-09-10 2020-06-02 Visa International Service Association Data authentication and provisioning method and system
US10679453B2 (en) 2002-09-10 2020-06-09 Visa International Service Association Data authentication and provisioning method and system
US8762283B2 (en) 2004-05-03 2014-06-24 Visa International Service Association Multiple party benefit from an online authentication service

Similar Documents

Publication Publication Date Title
Puga et al. Recycling of aluminium swarf by direct incorporation in aluminium melts
JP2012527533A (en) Method for producing β-γ-TiAl based alloy
US5158621A (en) Rapidly solidified aluminum-germanium base brazing alloys and method for brazing
CN109825727A (en) A kind of Al-Si-Fe intermediate alloy preparation method based on thermit reaction
CN102071337B (en) Method for preparing magnesium alloy solder
CN100593451C (en) Method for producing two-stage type non-joint-cutting crystallizer sheathed tube for soft-contact electromagnetic continuous casting
JPH1143780A (en) Production of composite material
CN105132767A (en) High-conductivity compressive-creep-resistant aluminum alloy and manufacturing method thereof
CN110592455A (en) Preparation method of copper-tungsten alloy and copper-tungsten alloy prepared by same
JP3902544B2 (en) Steel slab surface modification method, modified slab and processed product
Breig et al. Induction skull melting of titanium aluminides
Zhou et al. Effect of ultrasonic vibration field on tungsten inert gas welding of magnesium alloy and galvanized steel
WO2005118893A2 (en) Method of recycling brazing sheet
US6129135A (en) Fabrication of metal-matrix compositions
CN101418405B (en) Method for manufacturing wrought magnesium alloy for high-speed extrusion
JP3626553B2 (en) Manufacturing method of clad material of copper alloy and steel
US3628233A (en) Method for the low-temperature joining of carbides
WO2002101102A1 (en) Method of recycling metallic coated scrap pieces
JP3774286B2 (en) Manufacturing method of clad material of copper alloy and alloy steel
JPH0784626B2 (en) Method of applying ultrasonic vibration to molten metal
JPS5850172A (en) Melt casting method for copper alloy
JPS5910462A (en) Production of copper or copper alloy clad steel
SU344015A1 (en) METHOD OF MELTING ALUMINUM ALLOY FROM ITS WASTE
JPH0679496A (en) Eutectic copper-iron alloy wire
JP4614479B2 (en) Production of high purity alloy sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040507

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050603

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060407