JPH1143394A - Production of quartz glass crucible for pulling up high-purity single crystal silicon - Google Patents

Production of quartz glass crucible for pulling up high-purity single crystal silicon

Info

Publication number
JPH1143394A
JPH1143394A JP9216012A JP21601297A JPH1143394A JP H1143394 A JPH1143394 A JP H1143394A JP 9216012 A JP9216012 A JP 9216012A JP 21601297 A JP21601297 A JP 21601297A JP H1143394 A JPH1143394 A JP H1143394A
Authority
JP
Japan
Prior art keywords
crucible
raw material
single crystal
pulling
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9216012A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watabe
弘行 渡部
Keiko Sanpei
桂子 三瓶
Atsushi Miyazaki
宮崎  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUSUWA KUORUTSU KK
Original Assignee
KUSUWA KUORUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUSUWA KUORUTSU KK filed Critical KUSUWA KUORUTSU KK
Priority to JP9216012A priority Critical patent/JPH1143394A/en
Publication of JPH1143394A publication Critical patent/JPH1143394A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1095Thermal after-treatment of beads, e.g. tempering, crystallisation, annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a crucible hardly crystallizable even at the time of use at high temperatures by treating a raw material quartz sand with hydrogen chloride gas and/or chlorine gas at a specific temperature or above and regulating the respective contents of Na and K to specific values or below. SOLUTION: A raw material quartz sand is treated with a gas at a temperature of >=1,300 deg.C to regulate the respective contents of Na and K to <=50 ppb. A brown mark found after completing the pulling up is an oxygen deficient cristobalite which is reduced and recombined. Since the planar devitrification is lost by dissolution at high temperatures with time, the deterioration in decontamination factor(DF) ratio is hardly caused. The three-dimensional devitrification is a problem and the cristobalite is peeled and mixed in the silicon melt to cause the formation of polycrystals. This is because the Na and K bind to uncross-linked oxygen through ionic bonds to promote the recombination. A purifying apparatus 1 is a carbon cylinder and a baking furnace, having a heater 2 formed on the outer periphery thereof and rotated by an additionally installed motor M for rotation. Numeral 6 is a hydrogen chloride gas source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体等に使用す
るシリコン単結晶を溶融シリコンから引き上げるために
使用される石英ガラスルツボに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass crucible used for pulling a silicon single crystal used for a semiconductor or the like from molten silicon.

【0002】[0002]

【従来の技術】単結晶シリコン引き上げの傾向として、
最近、コストダウンするためのマルチ引き上げが行われ
ている。すなわち、石英ルツボは1回の引き上げに1個
使用されていたが、コストダウンのために石英ルツボの
使用回数を増やす試みがなされ、同一ルツボで2本から
3本の単結晶シリコンインゴットを引き上げることが試
みられている。
2. Description of the Related Art As a tendency of pulling single crystal silicon,
Recently, multi-pulling has been performed to reduce costs. In other words, one quartz crucible was used for one pull, but an attempt was made to increase the number of times the quartz crucible was used in order to reduce costs, and two to three single crystal silicon ingots were pulled with the same crucible. Have been tried.

【0003】また、大口径に移行していることから、シ
リコン多結晶の大重量チャージにより熱負荷が大きく、
かつ長時間化の方向になっている。このような使用条件
下では、石英ガラスは軟化し、失透し、あるいは気泡の
破裂がおこることが多くなる。これによりシリコン融液
中にガラスおよびクリストバライトが混入すると、シリ
コン単結晶が乱れ、収率が悪くなる。
[0003] In addition, since the diameter has been shifted to a large diameter, the heat load is large due to the heavy charge of the polycrystalline silicon,
And it is in the direction of longer time. Under such use conditions, the quartz glass is often softened, devitrified, or ruptured in bubbles. Thus, when glass and cristobalite are mixed in the silicon melt, the silicon single crystal is disturbed, and the yield is reduced.

【0004】この不具合を解決するため、まず、シリコ
ン融液と直接接触するルツボ内面に透明層を形成する技
術が開示されている(特公平4−22861号)。ま
た、同様の内面層のガラス化度を向上させて、結晶化し
にくいという技術も開示されている(特公平6−560
6号)。またルツボを電気分解して低アルカリ化を行う
という技術もある(特公昭64−6158号)さらに溶
融後のルツボ内面はかなり汚染されているために50μ
m程度のエッチングにより汚染層を取り除くことが特開
昭63−166791号に開示されている。
[0004] In order to solve this problem, there is disclosed a technique of forming a transparent layer on the inner surface of a crucible in direct contact with a silicon melt (Japanese Patent Publication No. 4-22861). In addition, a technique has been disclosed in which a similar degree of vitrification of the inner surface layer is improved so that it is difficult to crystallize (Japanese Patent Publication No. 6-560).
No. 6). In addition, there is a technique in which the crucible is electrolyzed to reduce alkalinity (Japanese Patent Publication No. 64-6158).
The removal of the contaminant layer by etching of about m is disclosed in JP-A-63-166793.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、DF化
率のよい石英ルツボについて鋭意研究した結果、石英ル
ツボ表面にNa,Kの不純物が存在するとシリコン単結
晶引き上げ時高温にさらされることによって、ガラスは
β−クリストバライトに転移し、これが剥離してシリコ
ン融液に溶け込み、単結晶シリコンの収率を低下させる
ことを発見した。さらにこの現象は極めて内表面の純度
に大きく依存していることがわかった。
SUMMARY OF THE INVENTION The present inventors have conducted intensive studies on quartz crucibles having a good DF conversion rate. As a result, when the surface of quartz crucible contains impurities of Na and K, they are exposed to a high temperature when pulling a silicon single crystal. Discovered that the glass was transformed into β-cristobalite, which exfoliated and melted into the silicon melt, lowering the yield of single crystal silicon. Furthermore, it was found that this phenomenon was extremely dependent on the purity of the inner surface.

【0006】上記知見に基づき、石英ガラスルツボ表面
のNa,Kの不純物を取り除く方法について検討した結
果、高温使用時でも結晶化しにくいルツボを製造する方
法を開発したものである。
Based on the above findings, a method of removing impurities of Na and K from the surface of a quartz glass crucible was examined, and as a result, a method of producing a crucible that is difficult to crystallize even at a high temperature was developed.

【0007】[0007]

【課題を解決するための手段】本発明は、石英ガラスル
ツボの製造方法において、原料石英砂を1300℃以上
で塩化水素ガスおよびまたは塩素ガスにより処理するこ
とにより、Na,Kをそれぞれ50ppb 以下とし、その
原料石英砂を回転モールド法により単結晶シリコン引き
上げ用ルツボを製造することを特徴とする高純度石英ル
ツボの製造方法であり、このルツボを使用すれば単結晶
シリコンを高収率で得ることができることを要旨として
いる。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a quartz glass crucible, wherein Na and K are each reduced to 50 ppb or less by treating raw quartz sand with hydrogen chloride gas and / or chlorine gas at 1300 ° C. or more. A method for producing a high-purity quartz crucible characterized by producing a crucible for pulling single-crystal silicon from the raw material quartz sand by a rotary molding method, and by using this crucible, it is possible to obtain single-crystal silicon in a high yield. The point is that you can do it.

【0008】[0008]

【発明の実施の形態】石英ガラスルツボとシリコン単結
晶とは直接界面で接触しているために、単結晶シリコン
の品質は石英ガラスルツボの特性に深く関与している。
従来、単結晶引き上げ装置のトラブル以外では、異物が
単結晶の端に付着してポリ化することがわかっていた
が、最近の本発明者等の研究により石英ガラスの失透に
より剥離したβ−クリストバライトがシリコン融液中に
混入し、それがシリコン単結晶端に付着してポリ化する
ために単結晶シリコンの引き上げが中断し、DF化率が
低下することをつきとめた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The quality of single crystal silicon is deeply related to the characteristics of a quartz glass crucible because the quartz glass crucible is in direct contact with the silicon single crystal at the interface.
Conventionally, it has been known that foreign matters adhere to the edges of the single crystal and become polycrystalline except for troubles in the single crystal pulling apparatus. It has been found that cristobalite is mixed into the silicon melt and adheres to the edge of the silicon single crystal to be polycrystallized, whereby the pulling of the single crystal silicon is interrupted, and the DF conversion rate is reduced.

【0009】引き上げ終了後に見られる茶色のリングを
ブラウンマークと称するが、このリングは酸素欠乏状ク
リストバライトであり、溶融シリコンとの反応で還元さ
れ、再結合してクリストバライトに転移したものであ
る。
The brown ring seen after the completion of the pulling is called a brown mark. This ring is an oxygen-deficient cristobalite, which is reduced by a reaction with molten silicon, recombined and transferred to cristobalite.

【0010】この平面状の失透は、溶損との平衡関係に
より時間の経過とともにあたかも広がって大きくなるよ
うに見える。しかしながら、平面的なブラウンマークは
表面からβ−クリストバライトが剥離しにくく、高温で
時間とともに溶損して行くのでDF化率低下の問題は起
こりにくい。
The planar devitrification seems to spread and become larger with the passage of time due to the equilibrium relationship with the erosion. However, in the case of a planar brown mark, β-cristobalite hardly peels off from the surface, and is melted with time at a high temperature.

【0011】問題となるのは三次元失透で、その結晶
は、まず結晶核ができ、それが三次元的に成長して大き
くなる。そのクリストバライトは物理的特性が石英ガラ
スと異なるために剥離してシリコン融液に混入する。そ
して確率論的に結晶端に付着してポリ化を起こす。この
三次元的な失透の原因は石英ガラス中に含まれる不純物
によるところが大きい。特にアルカリ金属は石英ガラス
中を三次元的に移動する。Na,Kは、非架橋酸素とイ
オン結合しており、これが高温で切れやすく、再結合を
促進させる。
The problem is three-dimensional devitrification, and the crystal first has crystal nuclei, which grow three-dimensionally and become large. Since cristobalite has physical properties different from quartz glass, it is exfoliated and mixed into the silicon melt. Then, it stochastically adheres to the crystal edge and causes poly-crystallization. The cause of the three-dimensional devitrification is largely due to impurities contained in the quartz glass. In particular, alkali metals move three-dimensionally in quartz glass. Na and K are ionically bonded to non-crosslinked oxygen, which are easily broken at high temperatures and promote recombination.

【0012】本発明者等はまず、珪石や珪砂は、通常石
英のみの形で得られることに着目した。不純物、特に問
題となるNa,Kはイオン半径が大きく、石英の結晶骨
格には入りきれず、例えば、長石や雲母として石英とは
別に存在する。この除去方法として、粉砕したものから
石英と雲母を分離し、浮遊選鉱を行うのが一般的であ
る。しかしながら、浮遊選鉱を完全に行ったものをさら
にフッ酸水溶液で石英粒子表面をエッチングしても、N
a,Kを0.5ppm 以下にすることは困難であった。
The present inventors first paid attention to the fact that quartzite and quartz sand are usually obtained only in the form of quartz. Impurities, particularly problematic Na and K, have a large ionic radius and cannot fit into the crystal skeleton of quartz, and exist separately from quartz, for example, as feldspar or mica. As a method for this removal, it is common practice to separate quartz and mica from the crushed material and carry out flotation. However, when the flotation is completely performed and the quartz particle surface is further etched with hydrofluoric acid aqueous solution,
It was difficult to reduce a and K to 0.5 ppm or less.

【0013】そこで、本発明者等は種々の石英砂を13
00℃以上で塩化水素ガスおよびまたは塩素ガスで処理
した場合、条件によってはNa,Kがそれぞれ50ppb
以下になることを見い出したものである。
Therefore, the present inventors have prepared various kinds of quartz sands.
When treated with hydrogen chloride gas and / or chlorine gas at 00 ° C or more, Na and K may be 50 ppb depending on the conditions.
It has been found that:

【0014】その原理について簡単に説明すると、N
a,Kは塩化水素ガスおよびまたは塩素ガスと反応して
塩化物になる。塩化物の沸点はNaclで1413℃、Kcl
は1500℃であるが、融点がNaclで800.4℃,Kc
l で776℃になっているため、対応する蒸気圧の関係
で原料粉から分離される。
The principle will be briefly described.
a and K react with hydrogen chloride gas and / or chlorine gas to form chloride. The boiling point of chloride is 1413 ℃ in Nacl, Kcl
Has a melting point of 800.4 ° C., Kc
Since it is 776 ° C. in l, it is separated from the raw material powder in relation to the corresponding vapor pressure.

【0015】処理温度を1300℃以上としたのは、通
常の石英砂の場合、Na,Kを50ppb 以下とするため
には、石英の粒子の極表面をクリストバライト化するこ
とが必要であるからである。しかしながら、1500℃
以上にすると石英粒子は焼結をはじめ、もとの粒子径を
維持できないので1300〜1500℃が最も望まし
い。
The reason why the treatment temperature is set to 1300 ° C. or higher is that, in the case of ordinary quartz sand, in order to reduce Na and K to 50 ppb or less, it is necessary to convert the extreme surface of quartz particles into cristobalite. is there. However, 1500 ° C
In this case, since the quartz particles cannot maintain their original particle diameters, including sintering, 1300 to 1500 ° C. is most desirable.

【0016】Na,Kを50ppb 以下としたのは、この
ルツボを使用して実際にシリコン単結晶の引き上げを行
った場合において、その歩留りすなわちDF化率はN
a,Kそれぞれ50ppb を境に劇的に改善されるからで
ある。
The reason why Na and K are set to 50 ppb or less is that when a silicon single crystal is actually pulled up using this crucible, the yield, that is, the DF conversion rate is N
This is because a and K are dramatically improved after 50 ppb.

【0017】特に目標としている22”ルツボでの10
0時間操業(2 Ingots)において100%の歩留りを達
成できるからである。
In particular, a target of 10 "in a 22" crucible
This is because 100% yield can be achieved in a zero-hour operation (2 Ingots).

【0018】以下、実施例および比較例について述べ
る。また、実施例と比較例に用いた原料石英を純化する
際に使用する装置を図1に示す。図1は純化処理装置の
概略説明図で図中、1はカーボン筒で、その外周面には
ヒーター2が形成され、付設された回転用モーターMで
回転される焼成炉である。カーボン筒1は原料投入用ホ
ッパー3の原料投入口4側から原料出口5側へ傾斜され
た構成からなり、原料投入用ホッパー3の原料は、投入
口4から投入され炉内で焼成されながら出口5より外部
へ排出されて行く。6は塩化水素ガス源で、炉内にその
塩化水素ガスが供給口7より供給され、排ガスは排気口
8より外部へ排出される。
Hereinafter, examples and comparative examples will be described. FIG. 1 shows an apparatus used for purifying the raw material quartz used in Examples and Comparative Examples. FIG. 1 is a schematic explanatory view of a purification apparatus, in which 1 is a carbon cylinder, which is a firing furnace formed with a heater 2 on its outer peripheral surface and rotated by an attached rotation motor M. The carbon cylinder 1 is configured so as to be inclined from the raw material input port 4 side of the raw material input hopper 3 to the raw material outlet 5 side, and the raw material of the raw material input hopper 3 is input from the input port 4 and fired in the furnace while exiting. It is discharged outside from 5. Reference numeral 6 denotes a hydrogen chloride gas source. The hydrogen chloride gas is supplied into the furnace from a supply port 7, and exhaust gas is discharged to the outside from an exhaust port 8.

【0019】[0019]

【実施例1】IOTA-4(米国 Unimine社製シリカ粉の商品
名、特性(石英砂の純度)を表1に示す。)を図1の回
転したカーボン筒に10Kg/Hで供給し、塩化水素ガスを
10l/min で流した。炉内温度は1400℃とした。対
流時間は30分で、回収した粉をパイン油で浮遊選鉱し
てカーボンを除去し、H202:NH40H=2:1の
5%水溶液で洗浄した。乾燥後、純度を調べた。Na,
K,Liはゼーマン原子吸光々度計で、その他の元素は
ICP発光分光々度計で測定した。その結果(処理後の
砂の純度)を表2に示す。この原料砂を回転するSUS
水冷モールドに投入してアーク電極に電圧をかけて25
分で22”の石英ガラスルツボを溶融した。この溶融体
を取り出して高圧水で外表面の未溶融粉を除去し、高さ
をダイヤモンドカッターで400mmにそろえた。このル
ツボを酸性フッ化アンモニウム15wt%水溶液中に30
分浸け内表面を4μmエッチングした。次に超純水によ
り洗浄して、クラス1000のクリーンルームで自然乾
燥した。この22”ルツボを用いて実際に8”の単結晶
シリコンインゴットを引き上げたDF化率の結果(実施
例および比較例のルツボを使用して8”を2本以上上げ
た時の歩留り)を表3に示した。
[Example 1] IOTA-4 (product name and characteristics (purity of quartz sand) of silica powder manufactured by Unimine Co., USA) is supplied at 10 kg / H to the rotated carbon cylinder of FIG. Hydrogen gas was flowed at 10 l / min. The furnace temperature was 1400 ° C. The convection time was 30 minutes, and the recovered powder was float-fed with pine oil to remove carbon, and washed with a 5% aqueous solution of H202: NH40H = 2: 1. After drying, the purity was checked. Na,
K and Li were measured with a Zeeman atomic absorption spectrophotometer, and the other elements were measured with an ICP emission spectrophotometer. The results (purity of the treated sand) are shown in Table 2. SUS rotating this raw material sand
Put into a water-cooled mold and apply voltage to the arc electrode.
A 22 ″ quartz glass crucible was melted in minutes. The melt was taken out, the unmelted powder on the outer surface was removed with high-pressure water, and the height was adjusted to 400 mm with a diamond cutter. 30% aqueous solution
The inner surface was soaked by 4 μm. Next, the substrate was washed with ultrapure water and naturally dried in a class 1000 clean room. The results of the DF conversion ratio (yield when two or more 8 ″ were raised using the crucibles of the examples and the comparative examples) are shown in which the single crystal silicon ingot of 8 ″ was actually pulled up using the 22 ″ crucible. 3 is shown.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【実施例2】H-8 Sand(ワコム鉱産鉱業社製シリカ粉の
商品名、特性(石英砂の純度)を表1に示す。)を図1
の回転したカーボン筒に10Kg/Hで供給し、塩化水素ガ
スを10l/min で流した。炉内温度は1300℃とし
た。対流時間は30分で、回収した粉をパイン油で浮遊
選鉱してカーボンを除去し、H202:NH40H=
2:1の5%水溶液で洗浄した。乾燥後、純度を調べ
た。Na,K,Liはゼーマン原子吸光々度計で、その
他の元素はICP発光分光々度計で測定した。その結果
を表2に示す。この原料砂を回転するSUS水冷モール
ドに投入してアーク電極に電圧をかけて25分で22”
の石英ガラスルツボを溶融した。この溶融体を取り出し
て高圧水で外表面の未溶融粉を除去し、高さをダイヤモ
ンドカッターで400mmにそろえた。このルツボを酸性
フッ化アンモニウム15wt%水溶液中に30分浸け内表
面を4μmエッチングした。次に超純水により洗浄し
て、クラス1000のクリーンルームで自然乾燥した。
この22”ルツボを用いて実際に8”の単結晶シリコン
インゴットを引き上げたDF化率の結果を表3に示し
た。
Example 2 FIG. 1 shows H-8 Sand (trade names and characteristics (purity of quartz sand) of silica powder manufactured by Wacom Mining & Mining Co., Ltd.).
Was supplied at 10 kg / H, and hydrogen chloride gas was flowed at 10 l / min. The furnace temperature was 1300 ° C. The convection time was 30 minutes, and the recovered powder was floated with pine oil to remove carbon, and H202: NH40H =
Washed with a 2: 1 5% aqueous solution. After drying, the purity was checked. Na, K, and Li were measured with a Zeeman atomic absorption spectrophotometer, and the other elements were measured with an ICP emission spectrophotometer. Table 2 shows the results. This raw material sand is put into a rotating SUS water-cooled mold, a voltage is applied to the arc electrode, and 22 "is applied in 25 minutes.
Was melted. The melt was taken out, unmelted powder on the outer surface was removed with high-pressure water, and the height was adjusted to 400 mm with a diamond cutter. This crucible was immersed in a 15 wt% aqueous solution of ammonium acid fluoride for 30 minutes to etch the inner surface at 4 μm. Next, the substrate was washed with ultrapure water and naturally dried in a class 1000 clean room.
Table 3 shows the results of the DF conversion ratio when an 8 ″ single crystal silicon ingot was actually pulled up using the 22 ″ crucible.

【0024】[0024]

【比較例1】IOTA-4を図1の回転したカーボン筒に10
Kg/Hで供給し、塩化水素ガスを10l/min で流した。炉
内温度は1250℃ とした。対流時間は30分で、回
収した粉をパイン油で浮遊選鉱してカーボンを除去し、
H202:NH40H=2:1の5%水溶液で洗浄し
た。乾燥後、純度を調べた。Na,K,Liはゼーマン
原子吸光々度計、その他の元素はICP発光分光々度計
で測定した。その結果を表2に示す。この原料砂を回転
するSUS水冷モールドに投入してアーク電極に電圧を
かけて25分で22”の石英ガラスルツボを溶融した。
この溶融体を取り出して高圧水で外表面の未溶融粉を除
去し、高さをダイヤモンドカッターで400mmにそろえ
た。このルツボを酸性フッ化アンモニウム15wt%水溶
液中に30分浸け内表面を4μmエッチングした。次に
超純水により洗浄して、クラス1000のクリーンルー
ムで自然乾燥した。この22”ルツボを用いて実際に
8”の単結晶シリコンインゴットを引き上げたDF化率
の結果を表3に示した。
[Comparative Example 1] IOTA-4 was added to the rotated carbon cylinder of FIG.
The mixture was supplied at Kg / H, and hydrogen chloride gas was supplied at 10 l / min. The furnace temperature was 1250 ° C. The convection time is 30 minutes, and the collected powder is floated with pine oil to remove carbon,
It was washed with a 5% aqueous solution of H202: NH40H = 2: 1. After drying, the purity was checked. Na, K, and Li were measured with a Zeeman atomic absorption spectrophotometer, and the other elements were measured with an ICP emission spectrophotometer. Table 2 shows the results. This raw material sand was put into a rotating SUS water-cooled mold, and a voltage was applied to the arc electrode to melt a 22 ″ quartz glass crucible in 25 minutes.
The melt was taken out, unmelted powder on the outer surface was removed with high-pressure water, and the height was adjusted to 400 mm with a diamond cutter. This crucible was immersed in a 15 wt% aqueous solution of ammonium acid fluoride for 30 minutes to etch the inner surface at 4 μm. Next, the substrate was washed with ultrapure water and naturally dried in a class 1000 clean room. Table 3 shows the results of the DF conversion ratio when an 8 ″ single crystal silicon ingot was actually pulled up using this 22 ″ crucible.

【0025】[0025]

【比較例2】H-8 Sandを図1の回転したカーボン筒に1
0Kg/Hで供給し、塩化水素ガスを10l/min で流した。
炉内温度は1250℃とした。対流時間は30分で、回
収した粉をパイン油で浮遊選鉱してカーボンを除去し、
H202:NH40H=2:1の5%水溶液で洗浄し
た。乾燥後、純度を調べた。Na,K,Liはゼーマン
原子吸光々度計で、その他の元素はICP発光分光々度
計で測定した。その結果を表2に示す。この原料砂を回
転するSUS水冷モールドに投入してアーク電極に電圧
をかけて25分で22”の石英ガラスルツボを溶融し
た。この溶融体を取り出して高圧水で外表面の未溶融粉
を除去し、高さをダイヤモンドカッターで400mmにそ
ろえた。このルツボを酸性フッ化アンモニウム15wt%
水溶液中に30分浸け内表面を4μmエッチングした。
次に超純水により洗浄して、クラス1000のクリーン
ルームで自然乾燥した。この22”ルツボを用いて実際
に8”の単結晶シリコンインゴットを引き上げたDF化
率の結果を表3に示した。
[Comparative Example 2] H-8 Sand was added to the rotated carbon cylinder of Fig. 1.
The mixture was supplied at 0 kg / H, and hydrogen chloride gas was supplied at 10 l / min.
The furnace temperature was 1250 ° C. The convection time is 30 minutes, and the collected powder is floated with pine oil to remove carbon,
It was washed with a 5% aqueous solution of H202: NH40H = 2: 1. After drying, the purity was checked. Na, K, and Li were measured with a Zeeman atomic absorption spectrophotometer, and the other elements were measured with an ICP emission spectrophotometer. Table 2 shows the results. This raw material sand was put into a rotating SUS water-cooled mold and a voltage was applied to the arc electrode to melt a 22 ″ quartz glass crucible in 25 minutes. The melt was taken out and unmelted powder on the outer surface was removed with high-pressure water. The height of the crucible was adjusted to 400 mm with a diamond cutter.
It was immersed in an aqueous solution for 30 minutes and the inner surface was etched at 4 μm.
Next, the substrate was washed with ultrapure water and naturally dried in a class 1000 clean room. Table 3 shows the results of the DF conversion ratio when an 8 ″ single crystal silicon ingot was actually pulled up using the 22 ″ crucible.

【0026】[0026]

【発明の効果】本発明は、石英砂を1300℃以上で塩
化水素ガスおよびまたは塩素ガスを通じることによって
Na,Kがそれぞれ50ppb 以下とし、それを石英ガラ
スルツボの原料にすることで、シリコン単結晶の歩留り
を飛躍的に向上させることを可能としたものであり、本
発明の製造方法はその石英ガラスルツボの製造に欠かせ
ない技術を提供するものである。
According to the present invention, silicon sand is reduced to 50 ppb or less by passing hydrogen chloride gas and / or chlorine gas at 1300 ° C. or more, which is used as a raw material for a quartz glass crucible. This makes it possible to dramatically improve the yield of crystals, and the manufacturing method of the present invention provides a technique indispensable for manufacturing the quartz glass crucible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】原料石英砂を純化する際に使用する装置の概略
図である。
FIG. 1 is a schematic diagram of an apparatus used for purifying raw material quartz sand.

【符号の説明】[Explanation of symbols]

1 カーボン筒 2 ヒーター 3 原料投入用ホッパー 4 原料投入口 5 原料出口 6 塩化水素ガス源 7 塩化水素ガス供給口 8 排気口 DESCRIPTION OF SYMBOLS 1 Carbon cylinder 2 Heater 3 Material input hopper 4 Material input port 5 Material outlet 6 Hydrogen chloride gas source 7 Hydrogen chloride gas supply port 8 Exhaust port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料石英砂を1300℃以上で塩化水素
ガスおよびまたは塩素ガスにより処理することにより、
Na,Kをそれぞれ50ppb 以下とし、その原料石英砂
を用いて回転モールド法により単結晶シリコン引き上げ
用ルツボを製造することを特徴とする高純度石英ガラス
ルツボの製造方法
1. A raw quartz sand is treated with hydrogen chloride gas and / or chlorine gas at 1300 ° C. or more,
A method for producing a high-purity quartz glass crucible, characterized in that a crucible for pulling single-crystal silicon is produced by a rotary molding method using a raw material quartz sand with Na and K each being 50 ppb or less.
JP9216012A 1997-07-24 1997-07-24 Production of quartz glass crucible for pulling up high-purity single crystal silicon Pending JPH1143394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9216012A JPH1143394A (en) 1997-07-24 1997-07-24 Production of quartz glass crucible for pulling up high-purity single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9216012A JPH1143394A (en) 1997-07-24 1997-07-24 Production of quartz glass crucible for pulling up high-purity single crystal silicon

Publications (1)

Publication Number Publication Date
JPH1143394A true JPH1143394A (en) 1999-02-16

Family

ID=16681927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9216012A Pending JPH1143394A (en) 1997-07-24 1997-07-24 Production of quartz glass crucible for pulling up high-purity single crystal silicon

Country Status (1)

Country Link
JP (1) JPH1143394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2138468A2 (en) 2008-06-28 2009-12-30 Japan Super Quartz Corporation Water-cooled mold
JP2010202515A (en) * 2010-06-21 2010-09-16 Shinetsu Quartz Prod Co Ltd Method for producing quartz glass crucible for pulling up silicon single crystal
WO2024093654A1 (en) * 2022-10-31 2024-05-10 隆基绿能科技股份有限公司 Method for preparing high-purity quartz sand from waste quartz crucible, high-temperature furnace and method for preparing high-purity quartz sand and high-purity quartz sand

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2138468A2 (en) 2008-06-28 2009-12-30 Japan Super Quartz Corporation Water-cooled mold
US8082757B2 (en) 2008-06-28 2011-12-27 Japan Super Quartz Corporation Fluid-cooled mold
JP2010202515A (en) * 2010-06-21 2010-09-16 Shinetsu Quartz Prod Co Ltd Method for producing quartz glass crucible for pulling up silicon single crystal
WO2024093654A1 (en) * 2022-10-31 2024-05-10 隆基绿能科技股份有限公司 Method for preparing high-purity quartz sand from waste quartz crucible, high-temperature furnace and method for preparing high-purity quartz sand and high-purity quartz sand

Similar Documents

Publication Publication Date Title
TWI472485B (en) Use of acid washing to provide purified silicon crystals
TWI443237B (en) Method for processing silicon powder to obtain silicon crystals
JPS6283313A (en) Method for highly purifying silica
US20170057831A1 (en) Flux composition useful in directional solidification for purifying silicon
RU2451635C2 (en) Method of producing highly pure elementary silicon
JPH08268727A (en) Fused quartz crucible and its production
JP4160400B2 (en) Method for preparing silicon and optionally aluminum and silmine (aluminum silicon alloy)
JP2006027940A (en) Method for refining metal
EA009888B1 (en) Method of production of pure silicon
KR20010070123A (en) Quartz crucible reproducing method
JPH1143394A (en) Production of quartz glass crucible for pulling up high-purity single crystal silicon
JPH02188489A (en) Method for regenerating quartz crucible for pulling up silicon single crystal
JP2840195B2 (en) Method for producing quartz glass crucible for single crystal pulling
JP4931106B2 (en) Silica glass crucible
JPH1143395A (en) Production of quartz glass crucible for pulling up high-purity single crystal silicon
CN113337738A (en) Method for recovering germanium waste
JP2714684B2 (en) Purification method of metallic gallium
JP3123696B2 (en) Method for manufacturing quartz glass crucible
JPH05270814A (en) Production of silicon for solar battery
JPH0585893A (en) Process for producing semiconductor foil and its usage
RU2588627C1 (en) Method of refining metallurgical silicon
JP2000072589A (en) Quartz glass crucible for pulling single silicon crystal and its production
CN108658080A (en) The method of oxidation processes purifying metal silicon
JPS60195016A (en) Purification of metallic silicon
JPH02175686A (en) Quartz crucible for pulling silicon single crystal