JPH1143379A - Production of ceramic - Google Patents

Production of ceramic

Info

Publication number
JPH1143379A
JPH1143379A JP19819197A JP19819197A JPH1143379A JP H1143379 A JPH1143379 A JP H1143379A JP 19819197 A JP19819197 A JP 19819197A JP 19819197 A JP19819197 A JP 19819197A JP H1143379 A JPH1143379 A JP H1143379A
Authority
JP
Japan
Prior art keywords
ceramic
sintering
ceramic part
calcined
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19819197A
Other languages
Japanese (ja)
Inventor
Shizuyasu Yoshida
静安 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19819197A priority Critical patent/JPH1143379A/en
Publication of JPH1143379A publication Critical patent/JPH1143379A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a strong ceramic high in air tightness and capable of realizing high insulation performance by nipping a paste comprising ceramic powder having specific physical properties, an organic binder and a solvent between a ceramic part preliminarily calcined at a temperature below a sintering temperature and another calcined ceramic part and subsequently sintering the combination. SOLUTION: This method for producing a ceramic comprises nipping a paste comprising an organic binder, a solvent and ceramic powder capable of being sintered at the same sintering temperature as that of a ceramic part, having the approximately same contraction coefficient as that of the ceramic part, and giving the approximately same thermal expansion rate as that of the ceramic part after sintered, between the ceramic part and another calcined ceramic part and subsequently sintering the combination. The ceramic part is obtained by mixing 0.5-3 μm ceramic raw material powder with a binder and a softening agent, spray-drying the mixture, molding the obtained molding raw material having particle diameters of 100-200 μm into a desired shape and subsequently calcining the molded product at a temperature below the sintering temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミナ、窒化ア
ルミニウム等を成形したセラミックス同士の接合方法に
関する。
The present invention relates to a method for joining ceramics formed of alumina, aluminum nitride, or the like.

【0002】[0002]

【従来の技術】セミックスの特性や機能を生かすため、
複雑な形状や大型のセラミックス焼結体に対する要求が
高まっている。複雑な形状のセラミックス焼結体の製造
方法としては、まず、水を含んだセラミックス原料を、
ろくろ成形や押出し成形等で成形して、幾つかの部品に
分けて成形体を作り、乾燥前の部品の接合面に同質のセ
ラミックス原料のスラリーを塗布して成形体を接着、乾
燥した後、焼結する方法がある。
2. Description of the Related Art In order to make use of the characteristics and functions of SEMIX,
Demands for complicated shapes and large ceramic sintered bodies are increasing. As a method of manufacturing a ceramic sintered body having a complicated shape, first, a ceramic raw material containing water is used.
Molded by potter's wheel molding, extrusion molding, etc., divided into several parts to make a molded body, apply a slurry of the same ceramic raw material to the joining surface of the parts before drying, adhere the molded body, and dry, There is a method of sintering.

【0003】しかし、ろくろ成形や押出し成形等、水や
有機結合剤を多く含む成形体の接合面に、セラミックス
原料のスラリー等を塗布して接合する方法では、セラミ
ックスの材料や成形方法、成形密度の不均一、特に水分
の不均一、或いは肉厚の不均一等により、乾燥の際、接
合部に割れが発生し易い。一方、例えば、乾式の金型成
形で作った成形体のような、水や有機結合剤の少ない原
料の成形体に上記の接合方法を用いると、やはり接合部
の割れが多発する。これは、接合部に塗布したスラリー
中の水分が成形体に侵入し、成形体の結合力を低下させ
るためである。
However, in a method of applying a ceramic raw material slurry or the like to a joining surface of a molded article containing a large amount of water or an organic binder, such as potter's wheel molding or extrusion molding, and joining, the ceramic material, molding method, molding density, etc. Cracks are likely to occur at the joints during drying due to unevenness of water, especially unevenness of moisture or uneven thickness. On the other hand, for example, when the above-described joining method is used for a molded body made of a raw material having a small amount of water or an organic binder, such as a molded body formed by dry die molding, cracks in the joined portion also occur frequently. This is because the water in the slurry applied to the joining portion penetrates into the molded body and lowers the bonding strength of the molded body.

【0004】複雑な形状のセラミックス焼結体をつくる
ための別の製造方法としては、セラミックス焼成体を作
り、その焼成体を接合する方法がある。従来、セラミッ
クス同士の接合方法としては、 セラミックス焼結体をセメント、無機接着剤、或いは
接着剤を用いて接合する。 接合しようとするセラミックス表面に金属粉を塗布
し、或いは塗布後高温焼き付けをおこない、それらの金
属面を介して、ろう材を用いてろう付けする。 接合面にガラス粉末を塗布し、加熱溶着する。 などの方法がおこなわれている。
As another manufacturing method for producing a ceramic sintered body having a complicated shape, there is a method in which a ceramic fired body is formed and the fired body is joined. Conventionally, as a method of joining ceramics, a ceramic sintered body is joined using cement, an inorganic adhesive, or an adhesive. A metal powder is applied to the ceramic surface to be joined, or high-temperature baking is performed after the application, and brazing is performed using a brazing material through the metal surface. A glass powder is applied to the joint surface and welded by heating. And so on.

【0005】これらの接合方法の内で、の金属を介在
させる接合は、強度や気密性、耐熱性に優れた方法であ
り、複雑な形状の接合も可能である。図3は、の方法
で作った高圧開閉器の絶縁筒の外観図である。一方の端
にフランジ6と、通電電極2をもつアルミナの二つの絶
縁筒1が、他の一方の端にメタライズして接続された溶
接金具3同士で溶接されている。4は溶接部である。
[0005] Among these joining methods, joining with a metal is excellent in strength, airtightness, and heat resistance, and joining of a complicated shape is also possible. FIG. 3 is an external view of an insulating cylinder of a high-voltage switch made by the method described above. Two insulating cylinders 1 made of alumina having a flange 6 and an energizing electrode 2 at one end are welded to each other by metallized metal fittings 3 connected to the other end. Reference numeral 4 denotes a weld.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記のセラミ
ックス同士の接合方法においても、それぞれ問題があ
る。のセメントや無機或いは有機系接着剤を用いた接
合では、接合部の強度が接合するセラミックス自体の強
度より低く、耐熱性も低く、更に気密性が劣る場合が多
い。
However, each of the above-mentioned methods for joining ceramics has a problem. In the bonding using cement or an inorganic or organic adhesive, the strength of the bonding portion is lower than the strength of the ceramic itself to be bonded, the heat resistance is low, and the airtightness is often poor.

【0007】の金属を介在させる接合は、強度や気密
性、耐熱性に優れた方法であり、複雑な形状の接合も可
能であるが、セラミックスの特徴である絶縁性が失われ
る。例えば、図3の絶縁筒を用いた開閉器の上下の通電
電極間の耐電圧試験では、同じ縁面距離をもつ、中間に
金属部分の無い絶縁筒を用いた耐電圧試験より、20〜
30%低い耐電圧となる。これは、中間に導電部がある
ため、この導電部を介して放電が起きるためである。従
って、高い絶縁性能が要求される高電圧機器では、金属
を介在物とした接合は好ましくない。
[0007] The joining using a metal is a method excellent in strength, airtightness, and heat resistance, and it is possible to join in a complicated shape. However, the insulation characteristic of ceramics is lost. For example, in the withstand voltage test between the upper and lower conducting electrodes of the switch using the insulating cylinder of FIG. 3, the withstand voltage test using the insulating cylinder having the same edge surface distance and having no metal part in the middle is 20 to 20.
The withstand voltage is 30% lower. This is because there is a conductive portion in the middle, and discharge occurs through this conductive portion. Therefore, in high-voltage equipment that requires high insulation performance, joining using a metal as an inclusion is not preferable.

【0008】またセラミックス表面は、金属との濡れ性
を示さない場合が一般的で、直接的に接合が出来ないた
め、高融点のMoを高温で焼き付ける方法やスパッタ等
によるCr−Niの製膜によるメタライズなど、複雑な
前処理を必要とし、更にロウ付等の接合を必要とする。
の接合面にガラス粉末を塗布し溶着する方法は、ガラ
ス材料が脆いため、熱衝撃性が劣る。
In general, the ceramic surface does not show wettability with metal, and cannot be directly bonded. Therefore, a method of baking high melting point Mo at a high temperature or forming a Cr—Ni film by sputtering or the like. Requires complicated pre-processing such as metallization, and further requires joining such as brazing.
The method of applying and welding glass powder to the joint surface of (1) is inferior in thermal shock resistance because the glass material is brittle.

【0009】以上の問題に鑑み本発明の目的は、強固
で、気密性が高く、高い絶縁性能を実現しうるセラミッ
クスの製造方法を提供することにある。
In view of the above problems, an object of the present invention is to provide a method for producing a ceramic which is strong, has high airtightness, and can realize high insulation performance.

【0010】[0010]

【課題を解決するための手段】上記課題解決のため本発
明のセラミックスの製造方法は、予め焼結温度以下の温
度で仮焼したセラミックス部品と他の仮焼したセラミッ
クス部品との間に、セラミックス部品と同じ焼結温度で
焼結し同じ収縮率をもち、かつ焼結後の熱膨張率がセラ
ミックス部品のそれとほぼ等しくなる、セラミックス粉
末を挟んで、焼結するものとする。
Means for Solving the Problems To solve the above-mentioned problems, a method of manufacturing a ceramic according to the present invention comprises the steps of: providing a ceramic component between a ceramic component preliminarily calcined at a temperature lower than a sintering temperature and another calcined ceramic component; It is assumed that the ceramic component is sintered at the same sintering temperature as the component, has the same contraction rate, and has a thermal expansion coefficient after sintering substantially equal to that of the ceramic component.

【0011】そのようにすれば、仮焼したセラミックス
部品が型くずれせず、またセラミック部品の焼結と接合
とが同時に行われるが、その際、一部のセラミックス粉
末が仮焼体表面の空孔に入り、接合時の接合強度、気密
性等をより優れたものとする。焼成時および焼成後の冷
却時に接合部での歪みによる割れが防止できる特に、セ
ラミックス粉末の主原料が、セラミックス部品と同じも
のであれば、焼結温度、収縮率および焼結後の熱膨張率
が、ほぼ完全に一致する。
By doing so, the calcined ceramic part does not lose its shape, and the sintering and joining of the ceramic part are performed at the same time. To improve the bonding strength and airtightness at the time of bonding. Sintering temperature, shrinkage rate and thermal expansion coefficient after sintering can be prevented, especially when the main material of the ceramic powder is the same as the ceramic component. But almost exactly match.

【0012】セラミックス粉末と有機結合剤と溶媒とを
含むペーストを挟んで、焼結することとすれば、多孔質
の仮焼体の孔内にペースト中の溶媒が侵入し、ペースト
中のセラミックス粉末の濃度が高まって、ペーストが一
層緻密になり、セラミックス部品に密着する。ペースト
を接合部端面に塗布すれば、適量を均一に配置すること
ができる。
If the paste containing the ceramic powder, the organic binder and the solvent is interposed and sintered, the solvent in the paste penetrates into the pores of the porous calcined body, and the ceramic powder in the paste And the paste becomes more dense and adheres closely to the ceramic parts. If the paste is applied to the end face of the joint, an appropriate amount can be uniformly arranged.

【0013】[0013]

【発明の実施の形態】図1は、本発明の工程フロー図で
ある。セラミックス原料を調製し成形した後、焼成温度
より低い温度で仮焼して仮焼体とし、一方セラミックス
と類似の特性のペーストを調製し、それを先の仮焼体の
間に挟んで、圧接し、焼成する方法をとる。
FIG. 1 is a process flow chart of the present invention. After preparing and forming the ceramic material, it is calcined at a temperature lower than the firing temperature to form a calcined body, while a paste having similar characteristics to ceramics is prepared, and it is sandwiched between the calcined bodies and pressed. And firing.

【0014】以下、本発明の実施例を説明する。 [実施例1]アルミナを用いた実施例を説明する。アル
ミナに酸化けい素、酸化マグネシウム、酸化カルシウム
を添加して、湿式で粒径0.5〜3μm程度に粉砕混合
し、さらに結合バインダーとしてポリビニルアルコール
(PVA)を2%、柔軟剤としてワックスエマルジョン
1%を添加して混合後、このスラリーを噴霧乾燥機によ
り乾燥し、粒径100〜200μmのアルミナ成形原料
を調製した。成分比は、例えばアルミナ90〜100
%、酸化けい素0〜8%、酸化マグネシウム0〜2%、
酸化カルシウム0〜2%である。
Hereinafter, embodiments of the present invention will be described. [Example 1] An example using alumina will be described. Silicon oxide, magnesium oxide, and calcium oxide are added to alumina, pulverized and mixed by a wet method to a particle size of about 0.5 to 3 μm, and 2% of polyvinyl alcohol (PVA) is used as a binder, and wax emulsion 1 is used as a softener. %, And the slurry was dried by a spray dryer to prepare an alumina forming raw material having a particle size of 100 to 200 μm. The component ratio is, for example, alumina 90 to 100.
%, Silicon oxide 0-8%, magnesium oxide 0-2%,
Calcium oxide is 0 to 2%.

【0015】この原料を静水圧プレスを用いて筒状に成
形した後、焼結時収縮を見込んだ寸法に機械加工し、外
径240/内径210×高さ250mmの成形体を得
た。この成形体成形体を大気雰囲気中、セラミックの焼
結温度より10〜30%低い温度すなわち、1200〜
1300℃で2時間焼成し、多孔質の仮焼体を得た。仮
焼時の収縮は、1%程度であった。
The raw material was formed into a cylindrical shape using an isostatic press, and then machined to a size that allows for shrinkage during sintering to obtain a formed body having an outer diameter of 240 / inner diameter of 210 and a height of 250 mm. This molded body is placed in an air atmosphere at a temperature lower than the sintering temperature of the ceramic by 10 to 30%, ie, 1200 to 200
It was fired at 1300 ° C. for 2 hours to obtain a porous calcined body. Shrinkage during calcination was about 1%.

【0016】一方、アルミナに酸化けい素、酸化マグネ
シウム、酸化カルシウムを添加して、湿式で粒径0.5
〜3μm程度に粉砕混合したスラリーを加熱乾燥した粉
末に、エチルセルロースを5%溶解したセラソルブ溶液
を添加混合し、接合用ペーストを作製した。このペース
トを仮焼体の筒端面にスクリーン印刷機により、塗布厚
30〜50μmに印刷した。印刷後、直ちに、その塗布
面に、他の仮焼した筒の端面を当て圧接した。印刷は一
方の仮焼体の端面にしたが、両方の仮焼体の端面に印刷
しても良い。
On the other hand, silicon oxide, magnesium oxide, and calcium oxide are added to alumina, and a particle size of 0.5 is obtained by a wet method.
To a powder obtained by heating and drying a slurry pulverized and mixed to about 3 μm, a Cerasolve solution in which 5% of ethyl cellulose was dissolved was added and mixed to prepare a bonding paste. This paste was printed on the end face of the calcined body by a screen printer to a coating thickness of 30 to 50 μm. Immediately after printing, the end face of another calcined cylinder was pressed against the coated surface. Although the printing is performed on the end face of one calcined body, the printing may be performed on the end faces of both calcined bodies.

【0017】この仮焼体を圧接した筒を、1550〜1
650℃で2〜3時間焼成し、アルミナの焼結と、仮焼
体の接合とを同時におこない、外径197/内径172
×高さ405mmのアルミナ筒を得た。このアルミナ筒
の上下を密閉し、筒内を真空にし、接合部の気密度をヘ
リウムリーク装置で測定したところ、真空度1.33m
Paにおいて、もれ量は、1mPa・mL/sec以下
であった。
The cylinder in which the calcined body was pressed was set to 1550-1
Baking at 650 ° C. for 2 to 3 hours, sintering of alumina and joining of the calcined body are performed simultaneously, and the outer diameter is 197 / the inner diameter is 172.
X An alumina cylinder having a height of 405 mm was obtained. The upper and lower sides of the alumina cylinder were sealed, the interior of the cylinder was evacuated, and the air density at the joint was measured with a helium leak device.
In Pa, the leakage amount was 1 mPa · mL / sec or less.

【0018】セラミックス部品は、仮焼してあるので、
塗布したスラリー中の溶媒が成形体に侵入し、成形体の
結合力を低下させることはない。そして、多孔質の仮焼
体にペーストを塗布した時、孔内にペースト中の溶媒が
侵入し、塗布したペーストのセラミック粉末の濃度が高
まり、塗布したペーストがより緻密なものとなる。また
一部ペーストが仮焼体表面の空孔に入り、接合時の接合
強度、気密性等をより優れたものとするのである。
Since the ceramic parts are calcined,
The solvent in the applied slurry does not penetrate into the molded body and does not lower the bonding strength of the molded body. When the paste is applied to the porous calcined body, the solvent in the paste penetrates into the holes, the concentration of the ceramic powder in the applied paste increases, and the applied paste becomes denser. In addition, a part of the paste enters the pores on the surface of the calcined body, so that the bonding strength and airtightness at the time of bonding are further improved.

【0019】またこのアルミナ筒を−40℃〜+350
℃の温度サイクルを10サイクル行ったが、割れや剥離
等の外観上の異常は無く、また気密の低下も認められな
かった。上記と同じ条件で作製したアルミナ筒の接合部
と接合部以外の部分を寸法3×4×50mmに切り出
し、4点曲げ強度試験を行った。
Further, the alumina cylinder is placed at -40 ° C. to + 350 ° C.
A temperature cycle of 10 ° C. was performed 10 times, but there was no abnormality in appearance such as cracking or peeling, and no decrease in airtightness was observed. A joint part of the alumina cylinder produced under the same conditions as above and a part other than the joint part were cut into a size of 3 × 4 × 50 mm and subjected to a four-point bending strength test.

【0020】その結果は、いずれの試験片においても強
度が、300〜350MPaの範囲にあり、特に接合部
を有する試験片において、接合部で破壊するものはなか
った。上記のアルミナ筒に施釉後、両端面にMoメタラ
イズ、更にNiメッキを施し、真空遮断器の開閉部の絶
縁筒とした。図2は、この方法で作った高圧開閉器の消
弧室の外観図である。一方の端にフランジ6と、通電電
極2をもつアルミナの二つの絶縁筒1が、接合されてい
る。5は接合部である。
As a result, the strength was in the range of 300 to 350 MPa in all the test pieces, and there was no breakage at the joint especially in the test piece having the joint. After glazing the above-mentioned alumina cylinder, both ends were subjected to Mo metallization and further Ni plating to obtain an insulating cylinder at the opening / closing portion of the vacuum circuit breaker. FIG. 2 is an external view of the arc-extinguishing chamber of the high-voltage switch made by this method. At one end, two insulating cylinders 1 made of alumina having a flange 6 and a current-carrying electrode 2 are joined. Reference numeral 5 denotes a joint.

【0021】図3の従来例のように絶縁筒2個を金属部
分の溶接により接合したものと比較して、耐電圧は20
〜30%高くなった。従って、同じ耐電圧の開閉部であ
れば、絶縁距離を短くすることが出来るため、開閉器の
小型化ができる。またこの接合した絶縁筒を用いた開閉
器において、真空の低下は認められず、気密性能も優れ
ていることも確認された。
As compared with the conventional example in which two insulating cylinders are joined by welding metal parts as in the conventional example of FIG.
~ 30% higher. Therefore, if the switching unit has the same withstand voltage, the insulation distance can be shortened, and the size of the switch can be reduced. Further, in the switch using the joined insulating cylinder, no reduction in vacuum was observed, and it was also confirmed that the airtight performance was excellent.

【0022】なお、比較のため、仮焼体の筒端面に接合
剤を塗布せずに、上下に仮焼体を重ね合わせ、上記と同
じ方法で焼成し、気密試験と強度試験を行ったところ、
接合部からリークするものや、強度が250MPa以下
で接合部が破壊するものが少なからず認められた。セラ
ミックスの造粒のための結合剤は、PVAに限らず、メ
チルセルロース等の有機結合剤でもよい。また、成形方
法も静水圧プレスに限らず、一軸金型加圧成形、押出し
成形等によってもよい。
For comparison, a calcined body was placed on top and bottom without applying a bonding agent to the cylindrical end surface of the calcined body, fired in the same manner as above, and subjected to an airtightness test and a strength test. ,
Notably, there were leaks from the joints and breakage of the joints at a strength of 250 MPa or less. The binder for granulating ceramics is not limited to PVA, but may be an organic binder such as methylcellulose. The molding method is not limited to the isostatic pressing, but may be a uniaxial press molding, an extrusion molding, or the like.

【0023】ペースト状とするための有機結合剤として
は、メチルセルロース、ポリビニルブチラール等を、ま
たその溶媒としては、水、アルコール等を用いることも
できる。 [実施例2]次に、窒化アルミニウムを用いた実施例を
説明する。
As the organic binder for forming the paste, methylcellulose, polyvinyl butyral and the like can be used, and as the solvent, water, alcohol and the like can be used. Embodiment 2 Next, an embodiment using aluminum nitride will be described.

【0024】窒化アルミニウム粉末に酸化イットリウム
を3〜7%添加して、アルコール中で粒径0.3〜2μ
m程度に粉砕混合し、さらに結合バインダーとしてポリ
ビニルブチラールを2%添加して混合後、このスラリー
を噴霧乾燥機により乾燥し、粒径100〜200μmの
窒化アルミニウム成形原料を作製した。この原料を一軸
金型加圧成形プレスを用いて筒状に成形し、外径75/
内径61×高さ35mmの成形体を得た。
3-7% of yttrium oxide is added to aluminum nitride powder, and the particle size is 0.3-2 μm in alcohol.
After mixing and pulverizing to about m, polyvinyl butyral (2%) was added and mixed as a binder, and this slurry was dried by a spray dryer to prepare an aluminum nitride forming raw material having a particle size of 100 to 200 μm. This raw material is formed into a cylindrical shape using a uniaxial pressurizing press and has an outer diameter of 75 /
A molded body having an inner diameter of 61 and a height of 35 mm was obtained.

【0025】この成形体を窒素雰囲気中、1500〜1
700℃で2時間焼成し、多孔質の仮焼体を得た。一
方、窒化アルミニウム粉末に酸化イットリウムを3〜7
%添加して、アルコール中で粒径0.3〜2μm程度に
粉砕混合したスラリーを加熱乾燥した粉末に、エチルセ
ルロースを5%溶解したセラソルブ溶液を添加混合し、
接合用ペーストを作製した。
The molded body is placed in a nitrogen atmosphere at 1500 to 1
It was fired at 700 ° C. for 2 hours to obtain a porous calcined body. On the other hand, yttrium oxide is added to aluminum nitride powder in a range of 3 to 7%.
%, And a slurry obtained by heating and drying a slurry obtained by pulverizing and mixing the particles in an alcohol to a particle size of about 0.3 to 2 μm is mixed with a Cerasolve solution in which 5% of ethyl cellulose is dissolved.
A joining paste was prepared.

【0026】このペーストを仮焼体の筒端面にスクリー
ン印刷機により、塗布厚30〜50μmに印刷した。印
刷後直ちに、その塗布面に、他の仮焼した筒の端面を圧
接した。この仮焼体を圧接した筒を窒素雰囲気中、17
50〜1850℃で2〜3時間焼成し、窒化アルミニュ
ウムの焼結と2個の仮焼体の接合とをおこない、外径6
2/内径50.5×高さ59mmの窒化アルミニュウム
筒を得た。
This paste was printed on a cylindrical end surface of the calcined body by a screen printing machine to a coating thickness of 30 to 50 μm. Immediately after printing, the end face of another calcined cylinder was pressed against the coated surface. This calcined body was pressed against a cylinder in a nitrogen atmosphere,
Baking at 50-1850 ° C for 2-3 hours, sintering of aluminum nitride and joining of two calcined bodies,
2 / An aluminum nitride cylinder having an inner diameter of 50.5 and a height of 59 mm was obtained.

【0027】実施例1と同様の方法により、気密試験、
温度サイクル試験、強度試験を行った。その結果、接合
部での気密もれは無く、温度サイクルにおいても、異常
は認められなかった。また強度も280〜350MPa
と窒化アルミニュウム焼結体並みの強度があり、特に接
合部で破壊するものはなかった。
An airtightness test was performed in the same manner as in Example 1.
A temperature cycle test and a strength test were performed. As a result, there was no air leak at the joint, and no abnormality was observed in the temperature cycle. In addition, strength is 280-350MPa
And a strength comparable to that of an aluminum nitride sintered body, and there was no breakage particularly at the joint.

【0028】このように、窒化アルミニュウムにおいて
も、本発明の方法によりセラミックスの製造が可能であ
ることが分かった。以上、接合しようとするセラミック
スとペーストとを同質材料としたことにより、焼成時の
収縮率および熱膨張係数が一致し、接合部での割れを防
止し、歪みによる破壊を無くすることができることを明
らかにした。なお、焼結温度、焼成収縮率、熱膨張係数
がほぼ一致すれば、必ずしも同質材料でなくてもよく、
本方法の適用は可能である。
As described above, it was found that ceramics can be produced by using the method of the present invention also with aluminum nitride. As described above, by using the same material for the ceramic and paste to be joined, the shrinkage rate and the coefficient of thermal expansion during firing match, preventing cracks at the joint and eliminating damage due to distortion. Revealed. It should be noted that if the sintering temperature, the firing shrinkage rate, and the thermal expansion coefficient are almost the same, the materials need not necessarily be the same,
Application of this method is possible.

【0029】セラミックス部品間にセラミックス粉末を
配置する方法としては、多少均一性は劣るが、セラミッ
クス粉末を懸濁させた液をスプレーするとか、あるいは
単に粉末を篩で振りかけるとかの方法でも良い。
As a method of disposing the ceramic powder between the ceramic parts, it is possible to spray a liquid in which the ceramic powder is suspended or to simply sprinkle the powder with a sieve, although the uniformity is somewhat poor.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、
予め低い温度で仮焼したセラミックス部品と他の仮焼し
たセラミックス部品との間に、セラミックス部品と類似
の特性をもつ粉末或いは粉末を含むペーストを挟んで、
焼結することにより、強固で、気密性が高く、高い絶縁
性能を実現しうるセラミックスが製造できる。
As described above, according to the present invention,
In between a ceramic part calcined at a low temperature in advance and another calcined ceramic part, a powder or a paste containing the powder having characteristics similar to the ceramic part is sandwiched,
By sintering, a ceramic which is strong, has high airtightness, and can realize high insulation performance can be manufactured.

【0031】そして本発明は、種々のセラミックス材料
の大型或いは複雑な形状のセラミックスの製造方法に適
するので、その工業的価値は大である。
Since the present invention is suitable for a method for producing large-sized or complicated-shaped ceramics of various ceramic materials, its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の工程フロー図FIG. 1 is a process flow chart of the present invention.

【図2】本発明を適用した開閉器の絶縁筒の外観図FIG. 2 is an external view of an insulating cylinder of a switch to which the present invention is applied.

【図3】従来の開閉器の絶縁筒の外観図FIG. 3 is an external view of an insulating cylinder of a conventional switch.

【符号の説明】[Explanation of symbols]

1 絶縁筒 2 通電電極 3 溶接金具 4 溶接部 5 接合部 6 フランジ DESCRIPTION OF SYMBOLS 1 Insulation cylinder 2 Current-carrying electrode 3 Welding bracket 4 Welded part 5 Joint part 6 Flange

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】予め焼結温度以下の温度で仮焼したセラミ
ックス部品と他の仮焼したセラミックス部品との間に、
セラミックス部品と同じ焼結温度で焼結し、ほぼ同じ収
縮率をもち、かつ焼結後の熱膨張率がセラミックス部品
のそれとほぼ等しくなる、セラミックス粉末を挟んで、
焼結することを特徴とするセラミックスの製造方法。
A ceramic component which has been calcined at a temperature not higher than the sintering temperature and another calcined ceramic component.
It sinters at the same sintering temperature as ceramic parts, has almost the same shrinkage rate, and the coefficient of thermal expansion after sintering is almost equal to that of ceramic parts, sandwiching ceramic powder,
A method for producing ceramics, comprising sintering.
【請求項2】セラミックス粉末の主原料が、セラミック
ス部品と同じものであることを特徴とする請求項1記載
のセラミックスの製造方法。
2. The method according to claim 1, wherein the main raw material of the ceramic powder is the same as the ceramic component.
【請求項3】セラミックス粉末と有機結合剤と溶媒とを
含むペーストを挟んで、焼結することを特徴とする請求
項1または2に記載のセラミックスの製造方法。
3. The method for producing ceramics according to claim 1, wherein a paste containing ceramic powder, an organic binder and a solvent is sandwiched and sintered.
【請求項4】ペーストを接合部に塗布することを特徴と
する請求項3記載のセラミックスの製造方法。
4. The method according to claim 3, wherein the paste is applied to the joint.
JP19819197A 1997-07-24 1997-07-24 Production of ceramic Withdrawn JPH1143379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19819197A JPH1143379A (en) 1997-07-24 1997-07-24 Production of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19819197A JPH1143379A (en) 1997-07-24 1997-07-24 Production of ceramic

Publications (1)

Publication Number Publication Date
JPH1143379A true JPH1143379A (en) 1999-02-16

Family

ID=16386995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19819197A Withdrawn JPH1143379A (en) 1997-07-24 1997-07-24 Production of ceramic

Country Status (1)

Country Link
JP (1) JPH1143379A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137830A (en) * 2007-11-16 2009-06-25 Denso Corp Bonding material and method of manufacturing ceramic bonded body
JP2011073967A (en) * 2006-01-17 2011-04-14 Air Products & Chemicals Inc Method of joining at least two sintered bodies and composite structure prepared thereby
US8696841B2 (en) 2007-11-16 2014-04-15 Denso Corporation Bonding material with increased reliability and method of manufacturing ceramic bonded body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073967A (en) * 2006-01-17 2011-04-14 Air Products & Chemicals Inc Method of joining at least two sintered bodies and composite structure prepared thereby
JP2009137830A (en) * 2007-11-16 2009-06-25 Denso Corp Bonding material and method of manufacturing ceramic bonded body
JP4600553B2 (en) * 2007-11-16 2010-12-15 株式会社デンソー Manufacturing method of gas sensor
US8696841B2 (en) 2007-11-16 2014-04-15 Denso Corporation Bonding material with increased reliability and method of manufacturing ceramic bonded body

Similar Documents

Publication Publication Date Title
US3531853A (en) Method of making a ceramic-to-metal seal
US5742123A (en) Sealing structure for light-emitting bulb assembly and method of manufacturing same
KR102399753B1 (en) Joined body manufacturing method and joined body
CN109153235A (en) The method for preparing ceramics insulator
CN1166045A (en) High pressure discharge lamps and processes for production of the same
JPH1143379A (en) Production of ceramic
WO2001017045A3 (en) Layer between a cathode and an interconnector of a fuel cell and method for producing a layer of this type
JPH10172855A (en) Laminated layer chip parts and conductive paste used for the parts
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
KR20140058367A (en) Bonded body of ceramic member and metal member and method for manufacturing the same
JPH05286776A (en) Metal-ceramics composite structure and production therefor
WO2015105148A1 (en) Metal/ceramic bonded body, diaphragm vacuum gauge, bonding method for metal and ceramic, and production method for diaphragm vacuum gauge
KR102038799B1 (en) Aluminium nitride ceranic heater reparing method
WO2022077821A1 (en) Electrostatic chuck provided with heating function and preparation method therefor
US3113846A (en) Titanium ceramic composite bodies
JP3486833B2 (en) Electrostatic chuck and method for manufacturing the same
KR101977394B1 (en) Method of manufacturing ceramic electrostatic chuck using liquid sintering method
CN103350541B (en) Ceramic metallization structure and manufacturing method of ceramic metallization structure
JPH0624880A (en) Metal-ceramic material and production thereof
JP2000252353A (en) Electrostatic chuck and its manufacture
JP3806794B2 (en) Tube occlusion structure
JP7293052B2 (en) CERAMIC PARTS FOR MAGNETRON AND MANUFACTURING METHOD THEREOF
JP2005033069A (en) Method for manufacturing thermal stress relaxation pad for thermoelectric converter
KR100285789B1 (en) Metallizing metal paste composition
JP3688156B2 (en) Ceramic joined body and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050912