JPH1142705A - Production of biaxially stretched surface-roughened film - Google Patents
Production of biaxially stretched surface-roughened filmInfo
- Publication number
- JPH1142705A JPH1142705A JP20277797A JP20277797A JPH1142705A JP H1142705 A JPH1142705 A JP H1142705A JP 20277797 A JP20277797 A JP 20277797A JP 20277797 A JP20277797 A JP 20277797A JP H1142705 A JPH1142705 A JP H1142705A
- Authority
- JP
- Japan
- Prior art keywords
- film
- resin
- biaxially stretched
- stretching
- stretched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、フィルム表面に凹
凸を有するポリエステル系二軸延伸粗面化フィルムを逐
次二軸延伸法により製造する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyester biaxially stretched roughened film having irregularities on the film surface by a sequential biaxial stretching method.
【0002】[0002]
【従来の技術】ポリエチレンテレフタレートフィルムで
代表されるポリエステル二軸延伸フィルムは、優れた物
理的、化学的特性を有し、磁気記録材料、包装材料、電
気絶縁材料、感光材料、各種写真材料、合成紙など多く
の用途に使用されている。2. Description of the Related Art Polyester biaxially stretched films represented by polyethylene terephthalate films have excellent physical and chemical properties, and are used for magnetic recording materials, packaging materials, electric insulating materials, photosensitive materials, various photographic materials, synthetic materials. It is used for many purposes such as paper.
【0003】ポリエステルフィルムは、その用途に応じ
て要求特性が異なるが、製造、加工時の工程通過性、取
扱い時の作業性、筆記性などの観点から、表面を粗面化
することが必要である。[0003] Polyester films have different required characteristics depending on the application, but it is necessary to roughen the surface from the viewpoints of processability during manufacturing and processing, workability during handling, and writing. is there.
【0004】フィルム表面を粗面化する方法としては、
フィルム表面に硬い粒状砂などを吹き付けて粗面化する
サンドブラスト法、フィルム表面に無機微粒子などを含
有した樹脂をコートする方法、フィルム用樹脂の中にシ
リカ、二酸化チタンなどの無機微粒子をあらかじめ練り
込んでおく方法、酸、アルカリ、溶媒などでフィルム表
面を浸食するケミカルエッチング法などがある。ポリエ
ステルフィルムの粗面化は、主としてサンドブラスト法
あるいはコート法で実施されており、いずれもフィルム
表面の処理であるため、フィルムヘーズを40%以上にす
ることは困難であった。[0004] As a method of roughening the film surface,
Sand blasting method in which hard granular sand is sprayed on the film surface to roughen it, method of coating resin containing inorganic fine particles on the film surface, kneading inorganic fine particles such as silica and titanium dioxide in the resin for the film in advance And a chemical etching method in which the film surface is eroded with an acid, an alkali, a solvent, or the like. Roughening of the polyester film is mainly performed by a sand blast method or a coating method, and it is difficult to reduce the film haze to 40% or more because each is a treatment of the film surface.
【0005】また、特開平6ー206291号公報には、熱可
塑性ポリエステル樹脂90〜96重量%と非晶性ポリアミド
樹脂のようなガラス転移温度の高い熱可塑性樹脂10〜4
重量%とからなる二軸延伸粗面化フィルムとその製造法
が開示されている。Japanese Patent Application Laid-Open No. 6-206291 discloses a thermoplastic polyester resin having a high glass transition temperature of 90 to 96% by weight and a thermoplastic resin having a high glass transition temperature, such as an amorphous polyamide resin.
A biaxially stretched surface-roughened film comprising 1% by weight and a method for producing the same are disclosed.
【0006】しかし、この方法では、光学的特性の良好
なフィルムが得られるものの、非晶性ポリアミドを添加
することにより、得られるフィルムの強度が低下する傾
向が見られる。特に高い粗面化度あるいは高い表面ヘー
ズが要求される場合には、定法として、非晶性ポリアミ
ドの配合量を多くする方法が採られるが、そのようにす
ると、フィルム強度が低下して問題となる。特に縦方向
の強度が不十分であると、印刷やラミネート等の加工工
程で加工不良が発生しやすい。However, in this method, although a film having good optical properties can be obtained, the strength of the obtained film tends to be reduced by adding an amorphous polyamide. In particular, when a high degree of surface roughening or high surface haze is required, a method of increasing the amount of the amorphous polyamide is adopted as a standard method. Become. In particular, if the strength in the vertical direction is insufficient, processing defects are likely to occur in processing steps such as printing and lamination.
【0007】[0007]
【発明が解決しようとする課題】本発明は、熱可塑性ポ
リエステル樹脂に非晶性ポリアミド樹脂を配合した樹脂
組成物からなり、表面ヘーズが高く、高強度の二軸延伸
粗面化フィルムを操業性良く製造する方法を提供しよう
とするものである。SUMMARY OF THE INVENTION The present invention provides a biaxially stretched, roughened film having a high surface haze and a high strength, which comprises a resin composition obtained by blending an amorphous polyamide resin with a thermoplastic polyester resin. It is intended to provide a method of manufacturing well.
【0008】[0008]
【課題を解決するための手段】本発明は、上記課題を解
決するもので、その要旨は、熱可塑性ポリエステル樹脂
A85〜92重量%とガラス転移温度が樹脂Aのそれよりも
高く、臨界表面張力が樹脂Aのそれと0.1dyn/cm以上異
なり、かつ、温度 280℃、剪断速度102sec-1における溶
融粘度が 500〜50000 ポイズの非晶性ポリアミド樹脂B
15〜8重量%とからなる混合物を溶融製膜して未延伸フ
ィルムとし、縦延伸後、横延伸する逐次二軸延伸法によ
り二軸延伸フィルムを製造する方法において、縦延伸後
のフィルムの複屈折率が 120×10-3〜 150×10-3となる
ように縦延伸した後、温度90〜150 ℃、横延伸倍率 3.0
〜4.0 倍の条件で横延伸することを特徴とする二軸延伸
粗面化フィルムの製造法にある。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems. The gist of the present invention is that the thermoplastic polyester resin A has a glass transition temperature of 85 to 92% by weight, which is higher than that of the resin A, and has a critical surface tension. Is different from that of resin A by at least 0.1 dyn / cm, and has a melt viscosity of 500 to 50,000 poise at a temperature of 280 ° C. and a shear rate of 10 2 sec -1 .
In a method of producing a biaxially stretched film by a sequential biaxial stretching method in which a mixture consisting of 15 to 8% by weight is melt-formed into a non-stretched film, longitudinally stretched, and then transversely stretched, the film is stretched in a longitudinal direction. After longitudinal stretching so that the refractive index is 120 × 10 -3 to 150 × 10 -3 , the temperature is 90 to 150 ° C., and the transverse stretching ratio is 3.0.
A method for producing a biaxially stretched roughened film, characterized in that the film is transversely stretched under conditions of up to 4.0 times.
【0009】[0009]
【発明の実施の形態】以下、本発明について詳細に説明
する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
【0010】本発明において、熱可塑性ポリエステル樹
脂Aとしては、ポリエチレンテレフタレート(PE
T)、ポリブチレンテレフタレート(PBT)、ポリ−
1,4−シクロヘキシレンジメチレンテレフタレート(P
CT)、ポリ−p−エチレンオキシベンゾエート(PE
OB)及びこれらの共重合体あるいは混合物が好ましく
用いられる。In the present invention, as the thermoplastic polyester resin A, polyethylene terephthalate (PE)
T), polybutylene terephthalate (PBT), poly-
1,4-cyclohexylene dimethylene terephthalate (P
CT), poly-p-ethyleneoxybenzoate (PE
OB) and their copolymers or mixtures are preferably used.
【0011】ガラス転移温度(Tg)は、示差熱分析
(DSC)法により測定され、PETは約70℃、PBT
は約50℃、PCTは約95℃、PEOBは約60℃である。The glass transition temperature (Tg) is measured by a differential thermal analysis (DSC) method.
Is about 50 ° C, PCT is about 95 ° C, and PEOB is about 60 ° C.
【0012】次に、本発明において使用する樹脂Bは、
Tgが樹脂Aのそれよりも高く、臨界表面張力が樹脂A
のそれと0.1dyn/cm以上異なる非晶性ポリアミドであ
る。Next, the resin B used in the present invention is:
Tg is higher than that of resin A, and critical surface tension is higher than that of resin A.
Is an amorphous polyamide different from that of No. 0.1 dyn / cm or more.
【0013】樹脂BのTgが樹脂Aのそれよりも低い
と、延伸に際して樹脂Aと一緒に塑性変形し、樹脂Bが
核とならず、目的とする粗面化フィルムが得られない。
樹脂Bは、樹脂AよりもTgが10℃以上、特に20℃以上
高いものが好ましい。なお、樹脂BのTgは高いほど、
粗面化効果を発揮しやすいが、重縮合あるいは溶融製膜
時の加工性を考慮して 200℃以下であることが好まし
い。If the Tg of the resin B is lower than that of the resin A, the resin B is plastically deformed together with the resin A during stretching, and the resin B does not become a nucleus, so that an intended roughened film cannot be obtained.
The resin B preferably has a Tg higher than that of the resin A by 10 ° C. or more, particularly preferably 20 ° C. or more. The higher the Tg of the resin B, the more
Although the surface roughening effect is easily exhibited, the temperature is preferably 200 ° C. or less in consideration of workability during polycondensation or melt film formation.
【0014】また、樹脂Aと樹脂Bとは、溶融混合され
ることにより、樹脂Aが海成分となり、樹脂Bが島成分
を形成するような組成物となり、フィルム状に押し出さ
れ、さらに延伸されて粗面化フィルムとなるのである
が、樹脂Bの臨界表面張力が樹脂Aのそれと同じか近似
していると、相溶性が認められて、目的とする粗面化フ
ィルムが得られない。樹脂Aと樹脂Bとの臨界表面張力
の差は、0.1dyn/cm以上あることが必要であり、0.5dyn
/cm以上の差があることが望ましい。The resin A and the resin B are melt-mixed to form a composition in which the resin A forms a sea component and the resin B forms an island component, and is extruded into a film and further stretched. However, if the critical surface tension of the resin B is the same as or close to that of the resin A, compatibility is recognized, and the desired roughened film cannot be obtained. The difference between the critical surface tensions of the resin A and the resin B needs to be 0.1 dyn / cm or more.
/ Cm or more is desirable.
【0015】また、樹脂Bは、温度 280℃、剪断速度10
2sec-1における溶融粘度が 500〜50000 ポイズの範囲に
あることが必要である。溶融粘度が 500ポイズ未満の場
合、樹脂Aのマトリックスに分散する樹脂Bの粒子が小
さくなり、フィルム表面突起形成度及び隠蔽性が不十分
となり、一方、50000 ポイズを超える場合、分散する樹
脂Bの粒子が大きくなりすぎ、操業性が悪化したり、得
られるフィルムの物性が損なわれたりする。Further, the resin B is used at a temperature of 280 ° C. and a shear rate of 10
The melt viscosity at 2 sec -1 must be in the range of 500 to 50000 poise. When the melt viscosity is less than 500 poise, the particles of the resin B dispersed in the matrix of the resin A become small, and the degree of film surface projection formation and concealing properties become insufficient. The particles become too large, the operability deteriorates, and the physical properties of the obtained film are impaired.
【0016】樹脂A中に分散される樹脂Bはできるだけ
球状であることが好ましく、平均粒径が好ましくは 0.5
〜6.0 μm の範囲、さらに好ましくは 1.0〜5.0 μm の
範囲となるようにするのがよい。The resin B dispersed in the resin A is preferably as spherical as possible and has an average particle diameter of preferably 0.5
It is preferable that the thickness be in the range of 6.0 to 6.0 μm, more preferably in the range of 1.0 to 5.0 μm.
【0017】樹脂Bとしては、5−t−ブチルイソフタ
ル酸、 1,1,3−トリメチル−3−フェニルインダン−
3,5−ジカルボン酸、3−アミノメチル− 3,5,5−トリ
メチル−シクロヘキシルアミン、 1,3−ジアミノシクロ
ヘキサン、メタキシリレンジアミン、 1,3−ビス(アミ
ノメチル)シクロヘキサン、 2,4,4−トリメチルヘキサ
メチレンジアミン、ビス(4−アミノシクロヘキシル)
メタンなどの成分を構成成分として含有する非晶性ポリ
アミドが好適である。Examples of the resin B include 5-t-butylisophthalic acid, 1,1,3-trimethyl-3-phenylindane-
3,5-dicarboxylic acid, 3-aminomethyl-3,5,5-trimethyl-cyclohexylamine, 1,3-diaminocyclohexane, metaxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 2,4, 4-trimethylhexamethylenediamine, bis (4-aminocyclohexyl)
Amorphous polyamides containing components such as methane as constituents are preferred.
【0018】非晶性ポリアミドを構成するその他の成分
としては、エチレンジアミン、テトラメチレンジアミ
ン、ヘキサメチレジアミン、フェニレンジアミン、アジ
ピン酸、セバシン酸、シクロヘキサンジカルボン酸、イ
ソフタル酸、テレフタル酸、ナフタレンジカルボン酸、
ε−カプロラクタム又はε−アミノカプロン酸、11−ア
ミノウンデカン酸、ω−ラウロラクタム又は12−アミノ
ドデカン酸、 4−アミノ安息香酸などが挙げられる。Other components constituting the amorphous polyamide include ethylenediamine, tetramethylenediamine, hexamethylenediamine, phenylenediamine, adipic acid, sebacic acid, cyclohexanedicarboxylic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid,
ε-caprolactam or ε-aminocaproic acid, 11-aminoundecanoic acid, ω-laurolactam or 12-aminododecanoic acid, 4-aminobenzoic acid and the like.
【0019】樹脂Aと樹脂Bとの割合は、樹脂Aが92〜
85重量%、樹脂Bが8〜15重量%となるようにすること
が必要である。両樹脂をこの範囲内の割合で混合し、単
軸あるいは二軸押出機で溶融混合して製膜することによ
り、樹脂A中に樹脂Bがサブミクロン級の大きさで分散
したフィルムが得られる。The ratio of the resin A to the resin B is as follows:
It is necessary that 85% by weight and resin B be 8 to 15% by weight. By mixing both resins at a ratio within this range, melt-mixing with a single-screw or twin-screw extruder to form a film, a film in which resin B is dispersed in resin A in a submicron class size is obtained. .
【0020】本発明においては、まず、樹脂Aと樹脂B
とを所定の割合で混合したものを用いて、常法によって
未延伸フィルムを製膜する。すなわち、樹脂Aと樹脂B
との混合物を単軸あるいは二軸の押出機で溶融混練して
樹脂Bを樹脂A中に微細分散させ、Tダイから膜状に押
出してキャスティングローラで冷却する。この際、微細
分散の程度を、両樹脂の配合割合や粗面化の程度に応じ
て、溶融混練の条件によって調節する。適正な溶融混練
条件は、使用する押出機により試験的に混練することに
より、容易に決定することができる。In the present invention, first, resin A and resin B
And an unstretched film is formed by a conventional method using a mixture of the above components at a predetermined ratio. That is, resin A and resin B
Is melt-kneaded with a single-screw or twin-screw extruder to finely disperse the resin B in the resin A, extrude it from a T-die into a film, and cool it with a casting roller. At this time, the degree of fine dispersion is adjusted by the conditions of melt-kneading according to the mixing ratio of both resins and the degree of surface roughening. Suitable melt-kneading conditions can be easily determined by experimentally kneading with the extruder used.
【0021】次いで、未延伸フィルムを縦延伸した後、
横延伸して二軸延伸フィルムとするが、縦延伸後のフィ
ルムの複屈折率が 120×10-3〜 150×10-3となるように
縦延伸することが必要である。縦延伸後のフィルムの複
屈折率がこの範囲より小さいと、目的とする縦方向強度
の大きいフィルムが得られず、一方、この範囲を超える
と、続いて行う横延伸工程において、クリップ掴み部分
からの連続的な破断が生じ、延伸フィルムを得ることが
できない。Next, after stretching the unstretched film longitudinally,
The film is biaxially stretched by transverse stretching, but it is necessary to longitudinally stretch the film after longitudinal stretching so that the birefringence of the film is 120 × 10 −3 to 150 × 10 −3 . If the birefringence of the film after longitudinal stretching is smaller than this range, a film with a desired longitudinal strength is not obtained, while if it exceeds this range, in the subsequent transverse stretching step, from the clip gripping portion Is continuously broken, and a stretched film cannot be obtained.
【0022】縦延伸は、通常のロール延伸機を用いて行
うことができ、1段延伸あるいは2段以上の多段延伸の
いずれでもよく、複屈折率が上記範囲に入るように延伸
倍率を調整して行えばよい。縦延伸倍率が高い方が、よ
り表面ヘーズの高いフィルムが得られるが、あまり高く
すると、複屈折率が上記の範囲を超え、横延伸を円滑に
行うことができなくなる。なお、縦延伸の温度は、85〜
90℃とするのが適当である。The longitudinal stretching can be performed using a usual roll stretching machine, and may be either one-stage stretching or multi-stage stretching of two or more stages. The stretching ratio is adjusted so that the birefringence falls within the above range. Just do it. A film having a higher longitudinal stretching ratio gives a film having a higher surface haze. However, if it is too high, the birefringence exceeds the above range, making it impossible to perform transverse stretching smoothly. The temperature for longitudinal stretching is 85 to
A suitable temperature is 90 ° C.
【0023】横延伸は、通常のテンター式横延伸機を用
いて行うことができ、85〜110 ℃の熱風で予熱した後、
90〜150 ℃の熱風下、横延伸倍率 3.0〜4.0 倍で行う。
横延伸温度が上記範囲を外れた場合、横延伸時に破断が
生じ、延伸フィルムを得ることができない。また、横延
伸倍率が 3.0倍未満では、目的とする横方向強度の大き
いフィルムが得られない。横延伸倍率を高くするほど、
フィルムの横方向の強度は高くなるが、フィルム表面ヘ
ーズは低くなり、横延伸倍率が 4.0倍を超えると、目的
とする表面ヘーズの高いフィルムが得られない。The transverse stretching can be performed using a normal tenter type transverse stretching machine, and after preheating with hot air at 85 to 110 ° C.,
The film is stretched under hot air at 90 to 150 ° C with a transverse stretching ratio of 3.0 to 4.0.
When the transverse stretching temperature is out of the above range, breakage occurs during transverse stretching, and a stretched film cannot be obtained. On the other hand, if the transverse stretching ratio is less than 3.0 times, an intended film having a large transverse strength cannot be obtained. The higher the transverse stretching ratio,
Although the strength in the transverse direction of the film increases, the haze of the film surface decreases. When the transverse stretching ratio exceeds 4.0 times, a film having a desired high surface haze cannot be obtained.
【0024】本発明の方法で得られる粗面化フィルム
は、表面ヘーズが30以上で、縦方向の引張破断強度が20
0MPa以上、横方向の引張破断強度が150MPa以上であると
いう優れた特性を有し、包装用マットフィルム、写真印
刷用マットフィルム、アルミ蒸着用マットフィルム、合
成紙用などとして有用である。The roughened film obtained by the method of the present invention has a surface haze of 30 or more and a tensile strength at break in the longitudinal direction of 20 or more.
It has excellent properties of not less than 0 MPa and tensile strength in the transverse direction of not less than 150 MPa, and is useful as a matte film for packaging, a matte film for photographic printing, a matte film for aluminum vapor deposition, a synthetic paper, and the like.
【0025】また、本発明において、粗面化フィルム
は、PETフィルムなどの他の熱可塑性樹脂フィルムと
の積層フィルムとすることもできる。特に、PETフィ
ルムのようなポリエステルフィルムとの積層フィルム
は、共押し出し法によって、効率的に製造することがで
きる。In the present invention, the roughened film may be a laminated film with another thermoplastic resin film such as a PET film. In particular, a laminated film with a polyester film such as a PET film can be efficiently produced by a co-extrusion method.
【0026】[0026]
【実施例】次に、実施例により本発明を具体的に説明す
る。なお、測定方法は、次の通りである。 (a) 複屈折率 ニコン社製偏光顕微鏡でレターデーションを測定し、こ
れをフィルム厚さで除して複屈折率を求めた。 (b) 引張破断強度 2軸延伸フィルムから縦方向又は横方向に長さ 150mm、
幅10mmのサンプルを採取し、島津製作所製オートグラフ
AG−100E型を使用し、フィルムをチャック間距離 100mm
で掴み、引張速度 500mm/分で引張って破断させ、その
ときの強度を測定した。 (c) 全ヘーズ 東京電色社製ヘーズメーターを用いて、ASTM D1003−61
に準じて測定した。 (d) 内部ヘーズ フィルム表面にα−ブロモナフタレンを塗布し、フィル
ム表面の凹凸を消去した後、全ヘーズと同様にしてヘー
ズを測定した。 (e) 表面ヘーズ 全ヘーズから内部ヘーズを引いて求めた。Next, the present invention will be described specifically with reference to examples. In addition, the measuring method is as follows. (a) Birefringence The birefringence was determined by measuring the retardation with a polarizing microscope manufactured by Nikon Corporation and dividing this by the film thickness. (b) Tensile rupture strength 150 mm in length in the longitudinal or transverse direction from the biaxially stretched film,
A 10 mm wide sample was collected and used for Shimadzu Autograph.
Using AG-100E type, the distance between chucks is 100mm.
, And broken at a tensile speed of 500 mm / min to measure the strength at that time. (c) All hazes Using a haze meter manufactured by Tokyo Denshoku Co., Ltd., ASTM D1003-61
It measured according to. (d) Internal haze After coating α-bromonaphthalene on the film surface and eliminating irregularities on the film surface, the haze was measured in the same manner as for all the haze. (e) Surface haze Calculated by subtracting the internal haze from the total haze.
【0027】実施例1 フェノールと四塩化エタンとの等重量混合物を溶媒と
し、温度20℃で測定した極限粘度が0.78、臨界表面張力
が 41dyn/cm、Tgが70℃のPET90重量%と、溶融粘
度が2600ポイズ、臨界表面張力が 46dyn/cm、Tgが 1
50℃のEMS社製非晶性ポリアミド樹脂「グリボリ−XE
3038」(イソフタル酸、テレフタル酸、ヘキサメチレン
ジアミン及びビス−(4−アミノ−3−メチルシクロヘ
キシル)メタンの共重合物)10重量%との混合物を単軸
押出機に供給し、温度 280℃で溶融混練し、幅 630mmの
Tダイから押出し、静電印可キャスト法により20℃の回
転ドラムに密着させて急冷し、実質的に無定形の未延伸
フィルムを得た。次いで、この未延伸フィルムを周速の
異なる一連の加熱ローラ群からなる縦延伸機に導き、90
℃の温度に加熱し、 3.0倍に縦延伸し、30℃に冷却し
て、縦延伸フィルムを得た。続いて、この縦延伸フィル
ムをテンター式横延伸機に導いてクリップに把持させ、
90℃の熱風で予熱した後、 100℃の温度下で 3.3倍に横
延伸した。その後、同テンター内で 230℃で定幅熱処理
を施し、 200℃の温度で弛緩処理を施し、厚さ12μm の
二軸延伸フィルムを得た。Example 1 Using an equal weight mixture of phenol and ethane tetrachloride as a solvent, the intrinsic viscosity measured at a temperature of 20 ° C. is 0.78, the critical surface tension is 41 dyn / cm, the Tg is 70% by weight, and 90% by weight of PET. Viscosity of 2600 poise, critical surface tension of 46 dyn / cm, Tg of 1
50 ° C EMS amorphous polyamide resin "Grivory-XE
3038 "(copolymer of isophthalic acid, terephthalic acid, hexamethylenediamine and bis- (4-amino-3-methylcyclohexyl) methane) was fed to a single screw extruder at a temperature of 280 ° C. The mixture was melt-kneaded, extruded from a T-die having a width of 630 mm, brought into close contact with a rotating drum at 20 ° C. by an electrostatic application casting method, and rapidly cooled to obtain a substantially amorphous unstretched film. Next, the unstretched film was guided to a longitudinal stretching machine consisting of a series of heating rollers having different peripheral speeds, and 90
The film was heated to a temperature of 300 ° C., longitudinally stretched 3.0 times, and cooled to 30 ° C. to obtain a longitudinally stretched film. Subsequently, this longitudinally stretched film is guided to a tenter-type transverse stretching machine to be gripped by clips,
After preheating with hot air at 90 ° C, the film was stretched 3.3 times at 100 ° C. Thereafter, a constant width heat treatment was performed at 230 ° C. in the same tenter, and a relaxation treatment was performed at a temperature of 200 ° C. to obtain a biaxially stretched film having a thickness of 12 μm.
【0028】実施例2〜6 縦延伸倍率、横延伸温度、横延伸倍率、延伸フィルム厚
さを表1に記載したように変えて、実施例1に準じた方
法で二軸延伸フィルムを得た。Examples 2 to 6 A biaxially stretched film was obtained in the same manner as in Example 1 except that the longitudinal stretching ratio, the transverse stretching temperature, the transverse stretching ratio, and the thickness of the stretched film were changed as shown in Table 1. .
【0029】実施例7 実施例1と同等の未延伸フィルムを縦延伸機に導き、 1
15℃に加熱し、 1.5倍に延伸した後、90℃に冷却し、さ
らに 2.6倍に延伸し、30℃に冷却して、縦延伸フィルム
を得た。以後、実施例1と同様に表1記載の条件横延伸
して厚さ12μmの二軸延伸フィルムを得た。Example 7 An unstretched film equivalent to that of Example 1 was guided to a longitudinal stretching machine.
The film was heated to 15 ° C., stretched 1.5 times, cooled to 90 ° C., further stretched 2.6 times, and cooled to 30 ° C. to obtain a longitudinally stretched film. Thereafter, the film was transversely stretched in the same manner as in Example 1 under the conditions shown in Table 1 to obtain a biaxially stretched film having a thickness of 12 μm.
【0030】比較例1〜7 縦延伸倍率、横延伸温度、横延伸倍率、延伸フィルム厚
さを表1に記載したように変えて、実施例1に準じた方
法で二軸延伸した。Comparative Examples 1 to 7 Biaxial stretching was performed in the same manner as in Example 1 except that the longitudinal stretching ratio, the transverse stretching temperature, the transverse stretching ratio, and the thickness of the stretched film were changed as shown in Table 1.
【0031】上記の実施例及び比較例で得られた二軸延
伸フィルムの特性値をまとめて表1に示す。Table 1 summarizes the characteristic values of the biaxially stretched films obtained in the above Examples and Comparative Examples.
【0032】[0032]
【表1】 [Table 1]
【0033】実施例では、いずれも引張破断強度が高
く、表面ヘーズの高い二軸延伸粗面化フィルムを操業性
良く製造することができた。これに対して、比較例で
は、縦あるいは横方向の引張破断強度が低い、表面ヘー
ズが低い、横延伸性が悪く、二軸延伸フィルムを得るこ
とができないなどの問題があった。In each of the examples, a biaxially stretched roughened film having high tensile strength at break and high surface haze could be produced with good operability. On the other hand, in the comparative example, there were problems such as low tensile strength in the longitudinal or transverse direction, low surface haze, poor transverse stretchability, and inability to obtain a biaxially stretched film.
【0034】[0034]
【発明の効果】本発明によれば、機械的性質に優れ、か
つ、適度の表面ヘーズ及び低光沢度の逐次二軸延伸粗面
化フィルムを操業性良く製造することが可能となる。According to the present invention, it is possible to produce a successively biaxially stretched roughened film having excellent mechanical properties, moderate surface haze and low glossiness with good operability.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 77:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 77:00
Claims (1)
%とガラス転移温度が樹脂Aのそれよりも高く、臨界表
面張力が樹脂Aのそれと0.1dyn/cm以上異なり、かつ、
温度 280℃、剪断速度102sec-1における溶融粘度が 500
〜50000 ポイズの非晶性ポリアミド樹脂B15〜8重量%
とからなる混合物を溶融製膜して未延伸フィルムとし、
縦延伸後、横延伸する逐次二軸延伸法により二軸延伸フ
ィルムを製造する方法において、縦延伸後のフィルムの
複屈折率が 120×10-3〜 150×10-3となるように縦延伸
した後、温度90〜150 ℃、横延伸倍率 3.0〜4.0 倍の条
件で横延伸することを特徴とする二軸延伸粗面化フィル
ムの製造法。1. A thermoplastic polyester resin having a glass transition temperature of 85 to 92% by weight which is higher than that of resin A, a critical surface tension different from that of resin A by 0.1 dyn / cm or more, and
Melt viscosity of 500 at 280 ° C and shear rate of 10 2 sec -1
Up to 50,000 poise amorphous polyamide resin B 15 to 8% by weight
Melt-formed into a non-stretched film,
After longitudinal stretching, in the method of manufacturing a biaxially stretched film by sequential biaxial stretching method of transverse stretching, longitudinal stretching so that the birefringence of the film after longitudinal stretching is 120 × 10 -3 ~ 150 × 10 -3 And then subjecting the film to transverse stretching at a temperature of 90 to 150 ° C. and a transverse stretching ratio of 3.0 to 4.0 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20277797A JPH1142705A (en) | 1997-07-29 | 1997-07-29 | Production of biaxially stretched surface-roughened film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20277797A JPH1142705A (en) | 1997-07-29 | 1997-07-29 | Production of biaxially stretched surface-roughened film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1142705A true JPH1142705A (en) | 1999-02-16 |
Family
ID=16463021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20277797A Pending JPH1142705A (en) | 1997-07-29 | 1997-07-29 | Production of biaxially stretched surface-roughened film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1142705A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1338204A1 (en) * | 2002-02-20 | 2003-08-27 | Kalle GmbH & Co. KG | Shirred casing stick and process for the preparation of a shirred casing |
-
1997
- 1997-07-29 JP JP20277797A patent/JPH1142705A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1338204A1 (en) * | 2002-02-20 | 2003-08-27 | Kalle GmbH & Co. KG | Shirred casing stick and process for the preparation of a shirred casing |
US6808771B2 (en) | 2002-02-20 | 2004-10-26 | Kalle Gmbh & Co. Kg | Shirred stick packaging casing on high shirred density |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109181242B (en) | Opening agent master batch for plastic film and preparation method thereof | |
WO2008020726A1 (en) | Multilayered aliphatic polyester film | |
JP2013522413A (en) | Heat-shrinkable polyester single layer film | |
US5055337A (en) | Polyester film | |
JP2007130759A (en) | Polyamide resin film roll and its manufacturing method | |
JP2018095863A (en) | Biaxially stretched polyamide resin film and laminate using the same | |
CN111873587A (en) | Release film base film for low-roughness MLCC (multilayer ceramic chip carrier) manufacturing process and preparation method thereof | |
JPH05200858A (en) | Syndiotactic polystyrenic film | |
JP4585735B2 (en) | Heat-shrinkable polyester film | |
JP2003020349A (en) | Polyamide film and its production method | |
JP2007039515A (en) | Biaxially oriented polyester film | |
JPH1142705A (en) | Production of biaxially stretched surface-roughened film | |
JP6787129B2 (en) | Biaxially oriented polyester film | |
JPH11217448A (en) | Polyester film | |
JP2014186319A (en) | Reflective film, and liquid crystal display device, illumination device, and decorative articles having the same | |
JP2000309051A (en) | Manufacture of thermoplastic resin film | |
JP3640282B2 (en) | Method for producing biaxially stretched polyester film | |
JP2007182509A (en) | Biaxially stretched polyester film for molding transfer | |
JP2005068392A (en) | Heat shrinkable polyester film | |
JP2545462B2 (en) | Biaxially oriented polyamide film | |
JP4636067B2 (en) | Method for producing heat-shrinkable polyester film | |
JP2010013569A (en) | Longitudinally monoaxially oriented polyethylene naphthalate film and method for producing the same | |
JP2014084446A (en) | High fogging degree biaxial oriented rough surfaced film | |
JP2005008740A (en) | Biaxially oriented polyester film | |
KR101525826B1 (en) | White film and A method of manufacturing Opaque White film |