JPH1141861A - Electric rotating machine - Google Patents

Electric rotating machine

Info

Publication number
JPH1141861A
JPH1141861A JP19581097A JP19581097A JPH1141861A JP H1141861 A JPH1141861 A JP H1141861A JP 19581097 A JP19581097 A JP 19581097A JP 19581097 A JP19581097 A JP 19581097A JP H1141861 A JPH1141861 A JP H1141861A
Authority
JP
Japan
Prior art keywords
rotor
bearing
cooling fluid
seal member
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19581097A
Other languages
Japanese (ja)
Other versions
JP3841240B2 (en
Inventor
Akihisa Kokubo
彰久 小久保
Katsuya Ishii
勝也 石井
Masahiro Seguchi
瀬口  正弘
Hiroaki Kajiura
裕章 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP19581097A priority Critical patent/JP3841240B2/en
Publication of JPH1141861A publication Critical patent/JPH1141861A/en
Application granted granted Critical
Publication of JP3841240B2 publication Critical patent/JP3841240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric rotating machine which is superior in lubricating property, cooling property, and sealing property. SOLUTION: A refrigerant containing oil is blown out to the rotor accommodation space within a housing through holes 301-303 of a rotary shaft 202 from an external cooling fluid supplier. In particular in this constitution, a refrigerant containing oil is blown out between the bearings 201 and 201 for bearing a rotor 10 and the sealing members 210 and 111 on its outside, and the blown-out refrigerant which contains oil is led into the rotor accommodation space through the bearings 201 and 203 and is returned again to the cooling fluid supplier from the rotor accommodation space. In this way, an electric rotating machine superior in cooling property and lubricating property can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単ロータ形式又は
二重ロータ形式などの回転電機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating electric machine of a single rotor type or a double rotor type.

【0002】[0002]

【従来の技術】特願平3−508783号公報は、ステ
ータおよびロータが格納されているハウジングの内部空
間に気液二相冷媒を循環させる単ロータ形式の電動機を
開示している。同公報には、外部の冷媒をステータ内の
ロ−タ収容空間に出入させるために、周壁部に設けた注
入口及び帰還口を通じてそれを行う周壁部経由冷媒出入
方式と、固定軸に設けた注入口及び帰還口を通じてそれ
を行う固定軸経由冷媒出入方式とが開示されている。
2. Description of the Related Art Japanese Patent Application No. 3-508783 discloses a single-rotor motor in which a gas-liquid two-phase refrigerant is circulated in an internal space of a housing in which a stator and a rotor are stored. In the same publication, a refrigerant outlet / injection system through a peripheral wall portion through an inlet and a return port provided in the peripheral wall portion to allow an external refrigerant to enter and exit a rotor accommodating space in a stator, and a stationary shaft are provided. It discloses a refrigerant flow through a fixed shaft that does so through an inlet and a return.

【0003】また、特願平9−56010号公報や同2
3509号公報は、内側のインナーロ−タと、外側のス
テータと、電磁的にトルク授受する二重ロータ形式の回
転電機を開示している。
Further, Japanese Patent Application No. 9-56010 and Japanese Patent Application No.
Japanese Patent No. 3509 discloses a rotating electric machine of a double rotor type that transmits and receives torque electromagnetically to an inner inner rotor, an outer stator, and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た二重ロータ形式の回転電機は、ローターコイルを有す
るインナーロータがアウターロ−タにより囲包され、更
にその外周側にステータが装備される構成を有するの
で、両ロータの構造や軸受け構造が複雑化し、特に外側
のアウター軸受けが径大化して、その摩擦発熱が増大す
るという問題があった。なお、これは、アウター回転軸
の外周面の周速が原理的に増大するためである。すなわ
ち、この種の二重ロータ形式の回転電機では、原理的に
構造が複雑化するために冷却流体の流れが悪くなって冷
却がどうしても不十分となり易いにも関らず、軸受け部
分の冷却の必要性はかえって増大するという矛盾を内包
していた。
However, the above-mentioned rotary electric machine of the double rotor type has a structure in which an inner rotor having a rotor coil is surrounded by an outer rotor, and a stator is provided on the outer peripheral side. As a result, the structure of both rotors and the bearing structure become complicated, and the outer outer bearing in particular has a large diameter, which causes a problem of increased frictional heat generation. This is because the peripheral speed of the outer peripheral surface of the outer rotating shaft increases in principle. In other words, in this type of double-rotor type rotating electric machine, although the structure is complicated in principle, the flow of the cooling fluid is deteriorated and the cooling tends to be insufficient, but the cooling of the bearing part The necessity contained a contradiction that it would rather increase.

【0005】そこで、この二重ロータ形式の回転電機
に、上述した気液二相冷媒を循環させて潜熱冷却(沸騰
冷却)の利用により、少ない冷却流体流量で大きな冷却
効果を奏する案が考えられる。しかしながら、このよう
な気液二相冷媒による冷却を採用するためには、シール
部材によりロ−タ収容空間を密閉せねばならないが、二
重ロータ形式の回転電機では上述したように外側のアウ
ター回転軸の周速が増大するため、このアウター回転軸
の外周をシールするアウターシール部材の摩耗が増大す
るという問題があった。
In view of the above, it is conceivable to provide a large cooling effect with a small cooling fluid flow rate by using the latent heat cooling (boiling cooling) by circulating the above-described gas-liquid two-phase refrigerant in the rotating electric machine of the double rotor type. . However, in order to adopt such cooling by the gas-liquid two-phase refrigerant, the rotor accommodating space must be hermetically sealed by a sealing member. Since the peripheral speed of the shaft increases, there is a problem that the wear of the outer seal member for sealing the outer periphery of the outer rotating shaft increases.

【0006】そこで、気液二相冷媒からなる冷却流体に
オイルを混入することにより、これら軸受けやシール部
材を潤滑することが考えられるが、気液二相冷媒に含ま
れるオイルミストは、上記周壁部経由冷媒出入方式では
ハウジングの内壁面やステータ表面やステータコイル表
面などに付着して流下する割合が大きく、末端の軸受け
やシール部材の潤滑に回ることが少ないという問題があ
った。また、上記固定軸経由冷媒出入方式では、ハウジ
ング内部に吹き出されたオイルはその遠心力にハウジン
グ内周面などに吹き飛ばされてしまい、その結果、再び
回転軸の帰還口に回帰することが難しく、ハウジングの
底部に滞留してしまうという問題があった。
Accordingly, it is conceivable to lubricate these bearings and seal members by mixing oil into a cooling fluid composed of a gas-liquid two-phase refrigerant. In the through-portion refrigerant inflow / outflow method, there is a problem that the rate of adhering to the inner wall surface of the housing, the surface of the stator, the surface of the stator coil, and the like and flowing down is large, and the lubrication of the end bearing and the seal member is small. Also, in the above-described fixed shaft refrigerant inflow and outflow system, the oil blown into the housing is blown off to the inner peripheral surface of the housing by the centrifugal force, and as a result, it is difficult to return to the return port of the rotating shaft again, There has been a problem that it stays at the bottom of the housing.

【0007】本発明は上記問題点に鑑みなされたもので
あり、冷却性、潤滑性に優れた回転電機を提供すること
をその第一の課題とし、特に、シール部材の摩耗や軸受
けの発熱、摩耗の良好な抑止が果たしつつ、冷却性を向
上した二重ロータ形式の回転電機を提供することを、そ
の第二の課題としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its first object to provide a rotating electric machine having excellent cooling and lubricating properties. A second object of the present invention is to provide a rotating electric machine of a double rotor type in which cooling performance is improved while satisfactorily suppressing wear.

【0008】[0008]

【課題を解決するための手段】請求項1記載の回転電機
によれば、外部の冷却流体供給部から回転軸の穴を通じ
てハウジング内のロ−タ収容空間にオイル含有冷媒を吹
き出す。特に、この構成では、ロ−タを支承する軸受け
と、その外側のシール部材との間にオイル含有冷媒を吹
き出し、吹き出したオイル含有冷媒を、軸受けを通じて
上記ロ−タ収容空間に導入し、ロ−タ収容空間から再び
冷却流体供給部に戻す。
According to the rotating electric machine of the present invention, the oil-containing refrigerant is blown from the external cooling fluid supply unit to the rotor accommodating space in the housing through the hole of the rotating shaft. In particular, in this configuration, the oil-containing refrigerant is blown out between the bearing supporting the rotor and the seal member outside the bearing, and the blown-out oil-containing refrigerant is introduced into the rotor housing space through the bearing. -Return to the cooling fluid supply section again from the storage space.

【0009】このようにすれば、冷却性、潤滑性に優れ
た回転電機を実現することができる。以下、更に詳しく
説明すると、オイル含有冷媒は回転軸を通じてハウジン
グ内に導入された後、軸受けの軸方向外側に設けられる
ハウジング内部気密用のシール部材と上記軸受けとの間
に開口された噴出口からハウジング内部に吹き出され
る。したがって、オイル含有冷媒に当初、豊かに含まれ
るオイルはまず軸受け及びシール部材に真っ先に接触し
て、それらを良好に潤滑することができる。更に、その
後、オイル含有冷媒は軸受けを通じて軸受けよりも軸方
向内側のロ−タ収容空間に導入されるので、軸受けはオ
イル含有冷媒中にまだ十分含まれるオイルにより良好に
潤滑される。更に、オイル含有冷媒はこれら軸受けやシ
ール部材の冷却も十分に行い、その後、ややオイル分が
減少した冷媒がロ−タ収容空間中でロ−タ及びステータ
を冷却する。
With this configuration, it is possible to realize a rotating electric machine having excellent cooling and lubricating properties. More specifically, after the oil-containing refrigerant is introduced into the housing through the rotation shaft, the oil-containing refrigerant is injected from a spout port opened between the bearing and the seal member for hermetically sealing the inside of the housing provided outside in the axial direction of the bearing. It is blown out inside the housing. Therefore, the oil initially richly contained in the oil-containing refrigerant first comes into contact with the bearing and the seal member first, and the oil can be favorably lubricated. Further, since the oil-containing refrigerant is thereafter introduced into the rotor housing space axially inside the bearing through the bearing, the bearing is well lubricated by the oil still sufficiently contained in the oil-containing refrigerant. Further, the oil-containing refrigerant sufficiently cools these bearings and seal members, and thereafter, the refrigerant having a slightly reduced oil content cools the rotor and the stator in the rotor accommodating space.

【0010】請求項2記載の構成によれば、 請求項1
記載の回転軸経由冷媒出入方式の冷却技術を二重ロータ
形式の回転電機に適用した。詳しく説明すると、インナ
ー回転軸からインナー側の軸受けとシール部材との間に
吹き出されたオイル含有冷媒は、アウター回転軸の貫通
孔を通じてアウター側の軸受けとシール部材との間に吹
き出され、更に、アウター側の軸受けを通じてロ−タ収
容空間に吹き込まれる。
According to the second aspect of the present invention, the first aspect is provided.
The described cooling technology of the refrigerant flow through the rotating shaft was applied to a rotating electric machine of a double rotor type. To be more specific, the oil-containing refrigerant blown out from the inner rotation shaft to between the inner bearing and the seal member is blown out between the outer bearing and the seal member through the through hole of the outer rotation shaft, and further, It is blown into the rotor housing space through the outer bearing.

【0011】このようにすれば、請求項1記載の構成の
効果に加えて更に、アウター回転軸から吹き出すまだオ
イル成分に富む冷媒により良好にアウター側の軸受け及
びシール部材を潤滑し、冷却することができる。特に、
アウター側の軸受け及びシール部材の内径は径大であっ
て、面積が大きいので、この効果は大きい。アウター軸
受け及びインナー軸受けの外周面に付着したオイルはシ
ール効果向上も実現する。
According to this structure, in addition to the effect of the first aspect, the outer bearing and the seal member can be further lubricated and cooled by the refrigerant rich in the oil component blown out from the outer rotating shaft. Can be. Especially,
Since the inner diameter of the outer bearing and the seal member is large and the area is large, this effect is large. Oil adhering to the outer peripheral surfaces of the outer bearing and the inner bearing also improves the sealing effect.

【0012】請求項3記載の構成によれば請求項1又は
2記載の回転電機において更に、外部の冷却流体供給部
に冷却流体を帰還させるための冷却流体帰還口は、ハウ
ジングの周壁下部に開口される。このようにすれば、オ
イル成分も良好に帰還させて再び、上記シール部材と軸
受けとの間に吹き出させることができ、都合が良い。更
に、冷却流体はロ−タ収容空間内にて回転軸やロ−タの
回転により遠心方向に付勢されるので、吹き出された含
有冷媒はオイルを伴ってハウジングの周壁内周面に付着
し、不要なオイルの循環に有効である。また、上記した
冷却流体の遠心付勢は冷却流体の循環のための動力とし
ての機能も果たすことができる。
According to a third aspect of the present invention, in the rotating electric machine according to the first or second aspect, the cooling fluid return port for returning the cooling fluid to the external cooling fluid supply unit is opened at a lower portion of the peripheral wall of the housing. Is done. By doing so, the oil component can be satisfactorily returned and blown out again between the seal member and the bearing, which is convenient. Further, since the cooling fluid is urged in the centrifugal direction by the rotation of the rotating shaft and the rotor in the rotor accommodating space, the blown refrigerant is attached to the inner peripheral surface of the peripheral wall of the housing together with the oil. Effective for circulating unnecessary oil. Further, the above-described centrifugal bias of the cooling fluid can also function as a power for circulating the cooling fluid.

【0013】この構成では、ハウジングの周壁部底部か
ら外部の冷却流体供給部に冷却流体を帰還させるので、
帰還する冷却流体はその密度が小さくても容易に帰還す
ることができ、しかも帰還に際して、ハウジングの周壁
部底部に滞留するオイルを随伴してそれを行うので、好
都合となる。請求項4記載の構成によれば請求項1ない
し3のいずれかに記載の回転電機において更に、ロ−タ
と軸受けとの間に位置して回転軸から冷却流体が直接噴
出口からロ−タ収容空間に直接噴出される。
In this configuration, the cooling fluid is returned from the bottom of the peripheral wall of the housing to the external cooling fluid supply unit.
The returning cooling fluid can be easily returned even if its density is low, and it is advantageous that the returning cooling fluid is accompanied by the oil staying at the bottom of the peripheral wall of the housing. According to a fourth aspect of the present invention, in the rotating electric machine according to any one of the first to third aspects, the cooling fluid is further disposed between the rotor and the bearing, and the cooling fluid is directly supplied from the rotary shaft to the rotor from the rotary port. Spouted directly into the containment space.

【0014】このようにすれば、ロ−タ及びステータの
発熱量が大きくても、シール部材および軸受けに必要な
オイル量を補給するためのオイル含有冷媒を除く、他の
オイル含有冷媒を直接、ロ−タ収容空間に供給できるの
で、オイル含有冷媒循環経路の流体損失を低減してロ−
タ及びステータの冷却性を向上することができる。請求
項5記載の構成によれば請求項3および4記載の回転電
機において更に、冷却流体帰還口はロ−タを挟んで直接
噴出口と反対側に開口される。このようにすれば、直接
噴出口からロ−タ収容空間に噴出された冷却流体はロ−
タ収容空間中を軸方向に流れて冷却流体帰還口に達する
ので、ロ−タ及びステータの冷却性が向上する。
In this way, even if the amount of heat generated by the rotor and the stator is large, other oil-containing refrigerants except for the oil-containing refrigerant for replenishing the amount of oil necessary for the seal member and the bearing are directly transferred. Since it can be supplied to the rotor storage space, the fluid loss in the oil-containing refrigerant circulation path is reduced,
The cooling performance of the stator and the stator can be improved. According to the fifth aspect of the present invention, in the rotating electric machine according to the third and fourth aspects, the cooling fluid return port is directly opened on the opposite side of the rotor from the jet port. In this case, the cooling fluid jetted directly from the jet port into the rotor accommodating space is rotatable.
Since it flows in the rotor housing space in the axial direction and reaches the cooling fluid return port, the cooling performance of the rotor and the stator is improved.

【0015】[0015]

【発明の実施の形態】外部の冷却流体供給部としては、
回転電機を蒸発器とする冷凍サイクル装置が好適である
が、冷却流体供給部を冷却流体ガスの圧縮、凝縮を伴わ
ない、加圧、冷却手段で構成することも可能である。本
発明の好適な態様を以下の実施例を参照して詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an external cooling fluid supply unit,
A refrigeration cycle apparatus using a rotary electric machine as an evaporator is preferable, but the cooling fluid supply unit may be configured with a pressurizing and cooling means that does not involve compression and condensation of the cooling fluid gas. Preferred embodiments of the present invention will be described in detail with reference to the following examples.

【0016】[0016]

【実施例】本発明を適用した二重ロータ形式の車両用回
転電機の実施例を図1に示す。 (冷凍サイクルの構成及び動作)この車両用回転電機
は、電気自動車の駆動装置であって、モータ−1を蒸発
器とする冷凍サイクル装置となっている、2は冷媒蓄液
用のアキュムレ−タ、4はコンプレッサ、5はコンデン
サ、6はコンデンサ冷却用のファン、7は膨張弁、8は
膨張弁7の開度制御用の感温筒である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a rotating electric machine for a vehicle of a double rotor type to which the present invention is applied. (Structure and Operation of Refrigeration Cycle) This vehicular rotating electric machine is a driving device for an electric vehicle, and is a refrigeration cycle device using a motor-1 as an evaporator. Reference numeral 2 denotes an accumulator for storing a refrigerant. 4 is a compressor, 5 is a condenser, 6 is a condenser cooling fan, 7 is an expansion valve, and 8 is a temperature sensing cylinder for controlling the opening of the expansion valve 7.

【0017】上記各機器を冷媒配管で閉回路接続して冷
凍サイクル装置が構成され、周知のように、コンプレッ
サ4で圧縮された冷媒ガスはコンデンサ5で凝縮され、
膨張弁7で断熱膨張され、気液二相冷媒となってモ−タ
−1に導入され、モ−タ−1を冷却してアキュムレ−タ
2で気液分離されて、コンプレッサ4に帰還する。9は
オイル戻し穴であって、このオイル戻し穴9から冷媒ガ
ス配管に流入したオイルは冷媒ガスとともにコンプレッ
サ4に吸引される。
A refrigeration cycle apparatus is constructed by connecting the above-described devices in a closed circuit with a refrigerant pipe. As is well known, the refrigerant gas compressed by the compressor 4 is condensed by the condenser 5,
The refrigerant is adiabatically expanded by the expansion valve 7, becomes a gas-liquid two-phase refrigerant, is introduced into the motor 1, cools the motor 1, is separated into gas and liquid by the accumulator 2, and returns to the compressor 4. . Reference numeral 9 denotes an oil return hole. Oil flowing into the refrigerant gas pipe from the oil return hole 9 is sucked into the compressor 4 together with the refrigerant gas.

【0018】上記冷媒サイクル装置における蒸発器以外
の部分は車両搭載のエアコン装置と共用することができ
る。 (モ−タの基本構成及び動作)モ−タ−1は、径内側の
第1ロ−タ10、径外側の第2ロ−タ20及びステータ
30をもつ二重ロータ構造を備えており、ステータ30
はハウジング40の内周面に固定されている。円筒状の
第2ロ−タ20の外周面はステータ30の内周面に微小
ギャップを隔てて対面しており、円筒状の第2ロータ2
0の外周面は第1ロ−タ10の内周面に微小ギャップを
隔てて対面している。
Parts other than the evaporator in the refrigerant cycle device can be shared with an air conditioner mounted on a vehicle. (Basic Structure and Operation of Motor) The motor-1 has a double rotor structure having a radially inner first rotor 10, a radially outer second rotor 20 and a stator 30, Stator 30
Is fixed to the inner peripheral surface of the housing 40. The outer peripheral surface of the cylindrical second rotor 20 faces the inner peripheral surface of the stator 30 with a small gap therebetween.
The outer peripheral surface 0 faces the inner peripheral surface of the first rotor 10 with a small gap.

【0019】ステータ30は、ステータコアに三相のス
テータコイルを巻装してなり、このステータコイルには
図示しないインバ−タ装置から三相交流電圧が印加され
ている。第1ロータ10も、ロ−タ−コアに三相のロ−
タコイルを巻装してなり、このロ−タコイルにはスリッ
プリング50を通じて図示しないインバ−タ装置から三
相交流電圧が印加されている。第2ロ−タ20は、円筒
状の継鉄の内、外周に円筒状の永久磁石をそれぞれ装着
してなり、外周側の上記永久磁石はステータ30と電磁
相互作用を行ってトルクを授受し、内側側の上記永久磁
石は第1ロ−タ10と電磁相互作用を行ってトルクを授
受する。たとえば、第1ロ−タ10はエンジンに結合さ
れ、第2ロ−タ20は車輪に結合され、走向負荷が大き
い場合には第2ロ−タ20は第1ロ−タ10及びステー
タ30から電磁付勢され、所定の軽負荷時には第2ロ−
タ20は第1ロ−タ10のみから電磁付勢され、更に場
合によっては、第2ロ−タ20は第1ロ−タ10から電
磁付勢されて第1ロ−タ10に発電を生じさせるなどの
種々の動作モ−ドが切り替えて実行される。60は第1
ロ−タ10の回転角度を検出する角度センサであり、7
0は第2ロ−タ20の回転角度を検出する角度センサで
ある。角度センサ60、70が検出した両ロ−タ10、
20の角度は図示しないコントロ−ラに入力され、コン
トロ−ラはこれら入力信号に基づいて両インバ−タ装置
を制御し、上記各動作モ−ドなどを遂行するが、これら
の回転制御自体はこの実施例の要旨ではないので説明を
省略する。
The stator 30 is formed by winding a three-phase stator coil around a stator core, and a three-phase AC voltage is applied to the stator coil from an inverter (not shown). The first rotor 10 also has a three-phase rotor on the rotor core.
A three-phase AC voltage is applied to this rotor coil from an inverter (not shown) through a slip ring 50. The second rotor 20 has cylindrical permanent magnets mounted on the outer periphery of a cylindrical yoke, and the permanent magnets on the outer peripheral side perform electromagnetic interaction with the stator 30 to transfer torque. The permanent magnet on the inner side performs an electromagnetic interaction with the first rotor 10 to transfer torque. For example, the first rotor 10 is connected to the engine, the second rotor 20 is connected to the wheels, and when the strike load is large, the second rotor 20 is separated from the first rotor 10 and the stator 30. When the electromagnetic load is applied, the second row
The rotor 20 is electromagnetically energized only from the first rotor 10, and in some cases, the second rotor 20 is electromagnetically energized from the first rotor 10 to generate electric power at the first rotor 10. And various operation modes are switched and executed. 60 is the first
An angle sensor for detecting the rotation angle of the rotor 10;
An angle sensor 0 detects the rotation angle of the second rotor 20. Both rotors 10 detected by the angle sensors 60 and 70,
The angle of 20 is input to a controller (not shown), and the controller controls both the inverter devices based on these input signals and performs the above-described operation modes. Since this is not the gist of this embodiment, the description is omitted.

【0020】(モ−タの軸支構造の詳細構成)次に、モ
−タ−1の支軸構造を詳細に説明する。ハウジング40
は、フロントフレ−ム41と、フロントフレ−ム41の
後端開口を閉鎖するエンドフレ−ム42と、エンドフレ
−ム42に嵌合して内部にスリップリング収容空間を形
成するエンドカバ−43とからなる。
(Detailed Structure of Motor Support Structure) Next, the motor support structure of the motor 1 will be described in detail. Housing 40
Is composed of a front frame 41, an end frame 42 for closing a rear end opening of the front frame 41, and an end cover 43 fitted to the end frame 42 to form a slip ring accommodating space therein. Become.

【0021】フロントフレ−ム41の前端壁内周には、
アウタ−軸受け101が嵌入され、アウタ−軸受け10
1はフランジ状のアウタ−回転軸102の径小な軸部を
回転自在に支承している。アウタ−回転軸102の後端
は、第2ロ−タ200の前端に固定されている。同様
に、フロントフレ−ム41の後端壁内周には、アウタ−
軸受け103が嵌入され、アウタ−軸受け103はフラ
ンジ状のアウタ−回転軸104の径小な軸部を回転自在
に支承している。アウタ−回転軸104の前端は、第2
ロ−タ200の後端に固定されている。
On the inner periphery of the front end wall of the front frame 41,
The outer bearing 101 is inserted into the outer bearing 10.
Reference numeral 1 denotes a small-diameter shaft portion of a flange-shaped outer rotary shaft 102 which is rotatably supported. The rear end of the outer rotary shaft 102 is fixed to the front end of the second rotor 200. Similarly, the outer periphery of the rear end wall of the front frame 41
The bearing 103 is fitted therein, and the outer bearing 103 rotatably supports the small diameter shaft portion of the outer rotating shaft 104 having a flange shape. The front end of the outer rotary shaft 104 is
It is fixed to the rear end of the rotor 200.

【0022】アウタ−回転軸102の上記軸部の内周に
は、インナ−軸受け201が嵌入され、インナ−軸受け
201はインナ−回転軸202を回転自在に支承してい
る。インナ−回転軸202には第1ロ−タ10が嵌着、
固定されている。同様に、アウタ−回転軸104の上記
軸部の内周には、インナ−軸受け203が嵌入され、イ
ンナ−軸受け203はインナ−回転軸202を回転自在
に支承している。
An inner bearing 201 is fitted into the inner periphery of the shaft portion of the outer rotary shaft 102, and the inner bearing 201 rotatably supports the inner rotary shaft 202. The first rotor 10 is fitted on the inner rotating shaft 202,
Fixed. Similarly, an inner bearing 203 is fitted on the inner periphery of the shaft portion of the outer rotary shaft 104, and the inner bearing 203 rotatably supports the inner rotary shaft 202.

【0023】なお、第2ロ−タ20は径大であるので、
アウタ−回転軸102、104は、上述したようにフラ
ンジ形状をもち、それらの円盤部外周側に第2ロ−タ2
0の前、後端が固定される構造となっている。フロント
フレ−ム41の端壁外側にはカバ−44が固定され、カ
バ−44にはアウタ−軸受け101の前方に位置してア
ウタ−シ−ル部材110が嵌入され、アウタ−シ−ル部
材110の内周はアウタ−回転軸102の上記筒部の外
周に摺接している。同様に、エンドフレ−ム42の後端
部にはカバ−45が固定され、カバ−45にはアウタ−
軸受け103及びインナ−軸受け203の後方に位置し
てシ−ル部材111が嵌入され、シ−ル部材111の内
周はアウタ−回転軸104の上記筒部の外周に摺接して
いる。更に、エンドカバ−43の後端にはカバ−46が
固定され、カバ−46にはシ−ル部材112が嵌入さ
れ、シ−ル部材112の内周は回転軸202の外周に摺
接している。アウタ−回転軸102の筒部内周には、イ
ンナ−軸受け201の前方に位置してインナ−シ−ル部
材210が嵌入され、インナ−シ−ル部材210の内周
はインナ−回転軸202の外周に摺接している。
Since the second rotor 20 has a large diameter,
The outer rotary shafts 102 and 104 have a flange shape as described above, and the second rotor 2
The structure is such that the front and rear ends are fixed. A cover 44 is fixed to the outside of the end wall of the front frame 41, and an outer seal member 110 is fitted into the cover 44 in front of the outer bearing 101, and an outer seal member is fitted. The inner periphery of 110 is in sliding contact with the outer periphery of the cylindrical portion of the outer-rotating shaft 102. Similarly, a cover 45 is fixed to the rear end of the end frame 42, and the cover 45 has an outer cover.
A seal member 111 is fitted behind the bearing 103 and the inner bearing 203, and the inner periphery of the seal member 111 is in sliding contact with the outer periphery of the cylindrical portion of the outer rotary shaft 104. Further, a cover 46 is fixed to the rear end of the end cover 43, a seal member 112 is fitted into the cover 46, and the inner periphery of the seal member 112 is in sliding contact with the outer periphery of the rotating shaft 202. . An inner seal member 210 is fitted to the inner periphery of the cylindrical portion of the outer rotary shaft 102 in front of the inner bearing 201, and the inner periphery of the inner seal member 210 is the inner rotary shaft 202. It is in sliding contact with the outer circumference.

【0024】シ−ル部材110はアウタ−回転軸102
の外周に沿っての冷媒漏れを抑止し、シ−ル部材21
0、111はインナ−回転軸102の外周に沿っての冷
媒漏れを抑止する。 (モ−タ内の冷媒流路の詳細構成)エンドカバ−43の
後端壁中央部には開口が形成され、この開口には膨張弁
7から伸びる冷媒配管が接続されている。
The seal member 110 is an outer rotating shaft 102.
To prevent refrigerant leakage along the outer periphery of the seal member 21.
Numerals 0 and 111 suppress refrigerant leakage along the outer periphery of the inner rotary shaft 102. (Detailed Structure of Refrigerant Flow Path in Motor) An opening is formed at the center of the rear end wall of the end cover 43, and a refrigerant pipe extending from the expansion valve 7 is connected to this opening.

【0025】インナ−回転軸202には、その後端面か
ら軸方向前方に伸びる長穴300と、長穴300から径
方向に貫通する噴出口301〜303が形成されてい
る。噴出口301は、インナ−軸受け201とインナ−
シ−ル部材210との間に形成され、噴出口302は、
インナ−軸受け203の直前方に形成され、噴出口30
3は、インナ−軸受け203の直後方に形成されてい
る。
The inner rotary shaft 202 is formed with an elongated hole 300 extending axially forward from a rear end face thereof, and jet ports 301 to 303 penetrating radially from the elongated hole 300. The spout 301 is provided between the inner bearing 201 and the inner bearing.
The jet port 302 is formed between the seal member 210 and the
The spout 30 is formed immediately before the inner bearing 203.
Reference numeral 3 is formed immediately after the inner bearing 203.

【0026】噴出口304は、アウタ−回転軸102に
形成される貫通孔であって、インナ−軸受け201とイ
ンナ−シ−ル部材210との間の内周側空間と、アウタ
−軸受け101とアウタ−シ−ル部材110との間の外
周側空間とを連通している。噴出口305は、アウタ−
回転軸104に形成される貫通孔であって、インナ−軸
受け203より後方に位置するアウタ−回転軸104の
内周側空間と、アウタ−軸受け103より後方に位置す
るアウタ−回転軸104の外周側空間とを連通してい
る。
The injection port 304 is a through hole formed in the outer rotary shaft 102, and is formed as an inner space between the inner bearing 201 and the inner seal member 210 and the outer bearing 101. The outer peripheral space between the outer seal member 110 and the outer seal member 110 is communicated. The spout 305 is an outer
A through hole formed in the rotating shaft 104, the inner peripheral space of the outer rotating shaft 104 located behind the inner bearing 203, and the outer periphery of the outer rotating shaft 104 located behind the outer bearing 103 It communicates with the side space.

【0027】更に、アウタ−回転軸102の円盤部には
両ロ−タ10、20間のギャップに面して貫通孔306
が形成されている。同様に、アウタ−回転軸104の円
盤部には、貫通孔307が形成されている。 なお、こ
の実施例において、各軸受けは転動軸受けであり、その
隙間を軸方向へ冷媒が容易に通過する構造となってい
る。一方、シ−ル部材としては、公知の各種のものを採
用することができる。
Further, the disc portion of the outer rotary shaft 102 has a through hole 306 facing the gap between the rotors 10 and 20.
Are formed. Similarly, a through hole 307 is formed in the disk portion of the outer-rotating shaft 104. In this embodiment, each bearing is a rolling bearing, and has a structure in which the refrigerant easily passes through the gap in the axial direction. On the other hand, various known seal members can be employed.

【0028】(モ−タ内の冷媒流れの説明)膨張弁7を
出たミスト状のオイルを含有する気液二相冷媒は、エン
ドカバ−43の開口400からインナ−回転軸202の
先細の長穴300に流入し、噴出口301〜303から
噴出する。ロ−タ−前方における冷媒流れを図3を参照
して説明する。
(Explanation of Refrigerant Flow in Motor) The gas-liquid two-phase refrigerant containing the mist-like oil which has exited the expansion valve 7 passes through the opening 400 of the end cover 43 through the tapered portion of the inner rotary shaft 202. It flows into the hole 300 and is ejected from the ejection ports 301 to 303. The refrigerant flow in front of the rotor will be described with reference to FIG.

【0029】噴出口301からインナ−軸受け201と
インナ−シ−ル部材210との間に吹き出したオイル含
有冷媒は、インナ−軸受け201とインナ−シ−ル部材
210とを潤滑し、冷却する。その後、オイル含有冷媒
の一部はインナ−軸受け201を後方へ貫通した後、第
1ロ−タ10やアウタ−回転軸102の回転に付勢され
て遠心方向に流れる。このとき、第1ロ−タ10、第2
ロ−タ20及びステータ30の前端部が冷却される。残
りのオイル含有冷媒は、噴出口304からアウタ−軸受
け101とアウタ−シ−ル部材110との間に吹き出
し、これらアウタ−軸受け101及びアウタ−シ−ル部
材110を潤滑、冷却しつつ、アウタ−回転軸102の
回転に付勢されて遠心方向に流れる。最終的に、フロン
トハウジング41の周壁前端最下位位置に開口された冷
媒出口500からアキュムレ−タ2に帰還する。
The oil-containing refrigerant blown out from the jet port 301 between the inner bearing 201 and the inner seal member 210 lubricates and cools the inner bearing 201 and the inner seal member 210. After that, a part of the oil-containing refrigerant passes through the inner bearing 201 backward, and is urged by the rotation of the first rotor 10 and the outer rotary shaft 102 to flow in the centrifugal direction. At this time, the first rotor 10, the second rotor
The front ends of the rotor 20 and the stator 30 are cooled. The remaining oil-containing refrigerant blows out from the jet port 304 between the outer bearing 101 and the outer seal member 110, and lubricates and cools the outer bearing 101 and the outer seal member 110 while cooling the outer bearing 101 and the outer seal member 110. -It is urged by the rotation of the rotating shaft 102 and flows in the centrifugal direction. Finally, the refrigerant returns to the accumulator 2 from the refrigerant outlet 500 opened at the lowermost position of the front end of the peripheral wall of the front housing 41.

【0030】ロ−タ−後方における冷媒流れを図4を参
照して説明する。噴出口302から吹き出したオイル含
有冷媒は、アウタ−回転軸104や両ロ−タ10、20
の後端面に付勢されつつ遠心方向に流れ、この時、これ
らロ−タ10、20やステータ30を冷却する。 次
に、噴出口303からインナ−軸受け203の直後に吹
き出したオイル含有冷媒の一部はインナ−軸受け203
を潤滑、冷却しつつ、インナ−軸受け203を貫通して
から、噴出口302から吹き出したオイル含有冷媒に混
ざる。
The flow of the refrigerant behind the rotor will be described with reference to FIG. The oil-containing refrigerant blown out from the jet port 302 is supplied to the outer rotary shaft 104 and the two rotors 10 and 20.
The air flows in the centrifugal direction while being urged to the rear end face, and at this time, the rotors 10 and 20 and the stator 30 are cooled. Next, a part of the oil-containing refrigerant blown out from the outlet 303 immediately after the inner bearing 203 is removed.
While being lubricated and cooled, penetrates the inner bearing 203 and mixes with the oil-containing refrigerant blown out from the jet port 302.

【0031】また、噴出口303からインナ−軸受け2
03の直後に吹き出したオイル含有冷媒の残部は噴出口
305から、アウタ−軸受け103の直後に吹き出し、
アウタ−軸受け103やシ−ル部材111を潤滑、冷却
した後、アウタ−軸受け103を貫通してから、噴出口
302から吹き出したオイル含有冷媒に混ざる。これら
噴出口302、303から吹き出したオイル含有冷媒
は、第2ロ−タ20と第1ロ−タ10やステータ30と
の間のギャップの後端からこれらギャップ内を軸方向前
方へ流れ、これら第1ロ−タ10、第2ロ−タ20及び
ステータ30を冷却しつつ、冷媒出口500に集まり、
最終的にアキュムレ−タ2に帰還する。
Further, the inner bearing 2
The remaining portion of the oil-containing refrigerant blown out immediately after 03 is blown out from the jet port 305 immediately after the outer-bearing 103,
After the outer bearing 103 and the seal member 111 are lubricated and cooled, they penetrate the outer bearing 103 and then mix with the oil-containing refrigerant blown out from the jet port 302. The oil-containing refrigerant blown out from the jet ports 302 and 303 flows axially forward from the rear end of the gap between the second rotor 20 and the first rotor 10 and the stator 30, and While cooling the first rotor 10, the second rotor 20, and the stator 30, they gather at the refrigerant outlet 500,
Finally, it returns to the accumulator 2.

【0032】(変形態様)第1ロ−タ10や第2ロ−タ
20の後端面に遠心羽根を設ければ、更にオイル含有冷
媒の流れを加速することができ、冷却性を向上すること
ができる。また、第1ロ−タ10や第2ロ−タ20の前
端面に径内方向へオイル含有冷媒を付勢する求心羽根を
設ければ、更にオイル含有冷媒の流れを加速することが
でき、冷却性を向上することができる。
(Modification) If centrifugal blades are provided on the rear end face of the first rotor 10 or the second rotor 20, the flow of the oil-containing refrigerant can be further accelerated and the cooling performance can be improved. Can be. Also, if a centripetal blade for urging the oil-containing refrigerant in the radial direction is provided on the front end face of the first rotor 10 or the second rotor 20, the flow of the oil-containing refrigerant can be further accelerated. Cooling performance can be improved.

【0033】(実施例の効果)上述の実施例の構成によ
れば、冷却性、潤滑性に優れた回転電機を実現すること
ができ、シ−ル部材の摩耗も少ないので、冷媒漏れも減
少することができる。
(Effects of Embodiment) According to the configuration of the above-described embodiment, it is possible to realize a rotating electric machine having excellent cooling and lubricating properties, and less wear of the seal member, thereby reducing refrigerant leakage. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例の車両用回転電機の一部を示す断面図
である。
FIG. 1 is a sectional view showing a part of a vehicular rotating electric machine according to an embodiment.

【図2】 実施例の車両用回転電機の残部を示すブロッ
ク図である。
FIG. 2 is a block diagram illustrating a remaining portion of the rotating electric machine for a vehicle according to the embodiment.

【図3】 図1のロ−タ前方における冷媒流れを示す部
分拡大軸方向断面図である。
FIG. 3 is a partially enlarged axial sectional view showing a refrigerant flow in front of a rotor of FIG. 1;

【図4】 図1のロ−タ後方における冷媒流れを示す部
分拡大軸方向断面図である。
FIG. 4 is a partially enlarged axial sectional view showing a refrigerant flow behind the rotor of FIG. 1;

【符号の説明】[Explanation of symbols]

1はモ−タ、2はアキュムレ−タ(冷却流体供給部の一
部)、4はコンプレッサ(冷却流体供給部の一部)、5
はコンデンサ(冷却流体供給部の一部)、6は膨張弁
(冷却流体供給部の一部)、10は第1ロ−タ(ロ−
タ、インナ−ロ−タ)、20は第2ロ−タ(ロ−タ、ア
ウタ−ロ−タ)、30はステータ30、41はフロント
フレ−ム(ハウジングの一部)、42はエンドフレ−ム
(ハウジングの一部)、101はアウタ−軸受け(軸受
け)、102はアウタ−回転軸(回転軸)、103はア
ウタ−軸受け(軸受け)、104はアウタ−回転軸(回
転軸)、110はアウタ−シ−ル部材(シ−ル部材)、
111はシ−ル部材、201はインナ−軸受け(軸受
け)、202はインナ−回転軸(回転軸)、203はイ
ンナ−軸受け(軸受け)、210はインナ−シ−ル部材
(シ−ル部材)、301〜305は噴出口、302は直
接噴出口、500は冷媒出口(冷却流体帰還口)。
1 is a motor, 2 is an accumulator (a part of a cooling fluid supply part), 4 is a compressor (a part of a cooling fluid supply part), 5
Is a condenser (part of the cooling fluid supply unit), 6 is an expansion valve (part of the cooling fluid supply unit), and 10 is a first rotor (rotor).
, Inner rotor), 20 is a second rotor (rotor, outer rotor), 30 is a stator 30, 41 is a front frame (part of the housing), and 42 is an end frame. (Part of the housing), 101 is an outer bearing (bearing), 102 is an outer rotating shaft (rotating shaft), 103 is an outer bearing (bearing), 104 is an outer rotating shaft (rotating shaft), 110 is Outer seal member (seal member),
111 is a seal member, 201 is an inner bearing (bearing), 202 is an inner rotary shaft (rotary shaft), 203 is an inner bearing (bearing), 210 is an inner seal member (seal member). , 301 to 305 are jet ports, 302 is a direct jet port, and 500 is a refrigerant outlet (cooling fluid return port).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶浦 裕章 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroaki Kajiura 1-1-1, Showa-cho, Kariya-shi, Aichi Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ハウジングに内設されるステータと、前記
ステータ内に冷却流体を噴出する噴出口を外周面に有す
る回転軸と、前記回転軸に固定されて前記ステータの径
内側のロ−タ収容空間に収容されるロ−タと、前記ロ−
タの軸方向両側に位置して前記回転軸を回転自在に支持
する複数の軸受けと、前記軸受けの軸方向反ロ−タ側に
位置して前記回転軸の外周面に摺接するシール部材と、
前記回転軸に冷却流体を供給する冷却流体供給部とを備
える回転電機において、 前記噴出口は、オイル含有冷媒から構成されて前記軸受
けを通じて前記ロ−タ収容空間に送入される前記冷却流
体を、前記軸受けと前記シール部材との間に噴出するこ
とを特徴とする回転電機。
1. A stator provided in a housing, a rotating shaft having an ejection port for ejecting a cooling fluid into the stator on an outer peripheral surface, and a rotor fixed to the rotating shaft and radially inside the stator. A rotor housed in the housing space;
A plurality of bearings located on both axial sides of the rotor and rotatably supporting the rotary shaft; a seal member located on an axially opposite rotor side of the bearing and slidably contacting the outer peripheral surface of the rotary shaft;
A rotating electrical machine comprising: a cooling fluid supply unit configured to supply a cooling fluid to the rotating shaft; wherein the ejection port is formed of an oil-containing coolant and supplies the cooling fluid to the rotor accommodating space through the bearing. A rotating electric machine, which jets between the bearing and the seal member.
【請求項2】請求項1記載の回転電機において、 インナーロータをなす前記ロータと前記ステータとの間
にそれぞれ所定間隙を隔てて配設されて前記ステータ及
びインナーロータと電磁相互作用によるトルク授受を行
う円筒状のアウターロ−タと、インナー軸受けをなす前
記軸受けを通じてインナー回転軸をなす前記回転軸を支
承するとともに前記アウターロ−タの両端を回転自在に
支承するアウター回転軸と、前記ハウジングに支承され
て前記アウター回転軸を回転自在に支承するアウター軸
受けと、前記アウター軸受けの軸方向反アウターロ−タ
側に位置して前記アウター回転軸の外周面に摺接するア
ウターシール部材と、前記アウター軸受けと前記アウタ
ーシール部材との間に位置して前記アウター回転軸に形
成されたアウター噴出口とを備え、 前記アウター噴出口は、前記インナー軸受け及びアウタ
ー軸受けと前記インナーシール部材及びアウターシール
部材との間に位置して貫設されて前記アウター軸受けを
通じて前記冷却流体を前記ロ−タ収容空間に送入するこ
とを特徴とする回転電機。
2. A rotating electric machine according to claim 1, wherein said stator and said inner rotor are provided with a predetermined gap between said rotor and said stator, and transmit and receive torque by electromagnetic interaction with said stator and inner rotor. A cylindrical outer rotor, an outer rotating shaft that rotatably supports both ends of the outer rotor while supporting the rotating shaft that forms the inner rotating shaft through the bearing that forms the inner bearing, and the housing. An outer bearing that rotatably supports the outer rotating shaft, an outer seal member that is located on the outer rotor side in the axial direction of the outer bearing and slides on the outer peripheral surface of the outer rotating shaft, and the outer bearing and the outer bearing. An outer outlet formed on the outer rotation shaft and located between the outer seal member and the outer seal member; The outer spout is provided between the inner bearing and the outer bearing and the inner seal member and the outer seal member, and penetrates through the outer bearing, so that the cooling fluid flows through the outer bearing and into the rotor accommodating space. A rotating electric machine, which is fed to
【請求項3】請求項1又は2記載の回転電機において、 前記ハウジングの周壁下部に開口されて前記冷却流体を
前記冷却流体供給部に帰還させる冷却流体帰還口を有す
ることを特徴とする回転電機。
3. The rotating electric machine according to claim 1, further comprising a cooling fluid return port opened at a lower portion of a peripheral wall of the housing to return the cooling fluid to the cooling fluid supply unit. .
【請求項4】請求項1ないし3のいずれかに記載の回転
電機において、 前記ロ−タと前記軸受けとの間に位置して前記回転軸に
開口されて前記冷却流体を前記ロ−タ収容空間に直接噴
出する直接噴出口を有することを特徴とする回転電機。
4. The rotating electric machine according to claim 1, wherein the cooling fluid is located between the rotor and the bearing and opened to the rotating shaft to accommodate the cooling fluid. A rotating electric machine having a direct ejection port for directly ejecting into a space.
【請求項5】請求項3および4記載の回転電機におい
て、 前記冷却流体帰還口は前記ロ−タを挟んで前記直接噴出
口と反対側に開口されることを特徴とする回転電機。
5. The rotating electric machine according to claim 3, wherein said cooling fluid return port is opened on a side opposite to said direct jet port with said rotor interposed therebetween.
JP19581097A 1997-07-22 1997-07-22 Rotating electric machine Expired - Fee Related JP3841240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19581097A JP3841240B2 (en) 1997-07-22 1997-07-22 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19581097A JP3841240B2 (en) 1997-07-22 1997-07-22 Rotating electric machine

Publications (2)

Publication Number Publication Date
JPH1141861A true JPH1141861A (en) 1999-02-12
JP3841240B2 JP3841240B2 (en) 2006-11-01

Family

ID=16347371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19581097A Expired - Fee Related JP3841240B2 (en) 1997-07-22 1997-07-22 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP3841240B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371562B1 (en) * 2000-09-18 2003-02-07 삼성테크윈 주식회사 Operator for vehicle
EP1484518A2 (en) * 2003-06-05 2004-12-08 Nissan Motor Company, Limited Bearing lubricating structure of electric motor
US6897581B2 (en) * 2002-10-04 2005-05-24 Honeywell International Inc. High speed generator with the main rotor housed inside the shaft
US7001297B2 (en) * 2002-11-14 2006-02-21 Nissan Motor Co., Ltd. Hybrid transmission
EP1821393A2 (en) 2006-02-21 2007-08-22 Honeywell International Inc. High power generator with enhanced stator heat removal
JP2007318821A (en) * 2006-05-23 2007-12-06 Mitsubishi Electric Corp Motor
JP2011083139A (en) * 2009-10-08 2011-04-21 Toshiba Corp Rotary electric machine
JP2011142788A (en) * 2010-01-08 2011-07-21 Toyota Motor Corp Cooling structure for electric motor
JP2011250620A (en) * 2010-05-28 2011-12-08 Toyota Central R&D Labs Inc Rotary electric machine
WO2011158685A1 (en) * 2010-06-18 2011-12-22 株式会社小松製作所 Electric motor for construction machinery, and cooling circuit for electric motor
JP2012005290A (en) * 2010-06-18 2012-01-05 Komatsu Ltd Electric motor of construction machinery and cooling circuit of the electric motor
JP2014017890A (en) * 2012-07-05 2014-01-30 Toyota Industries Corp Rotary electric machine
US8749102B2 (en) 2011-06-20 2014-06-10 Komatsu Ltd. Electric motor
JP2014135859A (en) * 2013-01-11 2014-07-24 Kobe Steel Ltd Electric motor
US9083214B2 (en) 2012-03-29 2015-07-14 Sumitomo Heavy Industries, Ltd. Motor
WO2015174346A1 (en) * 2014-05-13 2015-11-19 株式会社豊田自動織機 Rotary electrical machine
WO2019138965A1 (en) * 2018-01-09 2019-07-18 Ntn株式会社 Wheel bearing apparatus and vehicle provided with wheel bearing apparatus
CN110389039A (en) * 2018-04-23 2019-10-29 昕芙旎雅有限公司 Rotating machinery
CN112383171A (en) * 2020-10-13 2021-02-19 速珂智能科技(上海)有限公司 Oil-cooling heat dissipation type electric vehicle motor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371562B1 (en) * 2000-09-18 2003-02-07 삼성테크윈 주식회사 Operator for vehicle
US6897581B2 (en) * 2002-10-04 2005-05-24 Honeywell International Inc. High speed generator with the main rotor housed inside the shaft
US7001297B2 (en) * 2002-11-14 2006-02-21 Nissan Motor Co., Ltd. Hybrid transmission
EP1484518A2 (en) * 2003-06-05 2004-12-08 Nissan Motor Company, Limited Bearing lubricating structure of electric motor
EP1484518A3 (en) * 2003-06-05 2006-03-01 Nissan Motor Company, Limited Bearing lubricating structure of electric motor
EP1821393A2 (en) 2006-02-21 2007-08-22 Honeywell International Inc. High power generator with enhanced stator heat removal
EP1821393A3 (en) * 2006-02-21 2009-01-21 Honeywell International Inc. High power generator with enhanced stator heat removal
JP2007318821A (en) * 2006-05-23 2007-12-06 Mitsubishi Electric Corp Motor
JP2011083139A (en) * 2009-10-08 2011-04-21 Toshiba Corp Rotary electric machine
JP2011142788A (en) * 2010-01-08 2011-07-21 Toyota Motor Corp Cooling structure for electric motor
JP2011250620A (en) * 2010-05-28 2011-12-08 Toyota Central R&D Labs Inc Rotary electric machine
JP2012005290A (en) * 2010-06-18 2012-01-05 Komatsu Ltd Electric motor of construction machinery and cooling circuit of the electric motor
US9000632B2 (en) 2010-06-18 2015-04-07 Komatsu Ltd. Electric motor for construction machinery, and cooling circuit for electric motor
JP2012005289A (en) * 2010-06-18 2012-01-05 Komatsu Ltd Electric motor of construction machinery and cooling circuit thereof
CN102812622A (en) * 2010-06-18 2012-12-05 株式会社小松制作所 Electric motor for construction machinery, and cooling circuit for electric motor
WO2011158685A1 (en) * 2010-06-18 2011-12-22 株式会社小松製作所 Electric motor for construction machinery, and cooling circuit for electric motor
US8749102B2 (en) 2011-06-20 2014-06-10 Komatsu Ltd. Electric motor
US9083214B2 (en) 2012-03-29 2015-07-14 Sumitomo Heavy Industries, Ltd. Motor
JP2014017890A (en) * 2012-07-05 2014-01-30 Toyota Industries Corp Rotary electric machine
JP2014135859A (en) * 2013-01-11 2014-07-24 Kobe Steel Ltd Electric motor
WO2015174346A1 (en) * 2014-05-13 2015-11-19 株式会社豊田自動織機 Rotary electrical machine
WO2019138965A1 (en) * 2018-01-09 2019-07-18 Ntn株式会社 Wheel bearing apparatus and vehicle provided with wheel bearing apparatus
JP2019119360A (en) * 2018-01-09 2019-07-22 Ntn株式会社 Wheel bearing device and vehicle including the same
CN110389039A (en) * 2018-04-23 2019-10-29 昕芙旎雅有限公司 Rotating machinery
JP2019193395A (en) * 2018-04-23 2019-10-31 シンフォニアテクノロジー株式会社 Rotary machine
CN112383171A (en) * 2020-10-13 2021-02-19 速珂智能科技(上海)有限公司 Oil-cooling heat dissipation type electric vehicle motor

Also Published As

Publication number Publication date
JP3841240B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JPH1141861A (en) Electric rotating machine
JP6155517B2 (en) Motor cooling system
KR100550300B1 (en) Hybrid compressor device
US7704056B2 (en) Two-stage vapor cycle compressor
US7160086B2 (en) Rotary machine cooling system
CN109997296A (en) Method for cooling an electric machine and motor in this way
US20080199326A1 (en) Two-stage vapor cycle compressor
JP2009213231A (en) Electric motor
JP2015183568A (en) fluid machine
JP2008126798A (en) Engine cooling system for vehicle
JPH0810976B2 (en) Liquid cooling structure of motor
JP2006283694A (en) Scroll type fluid machine
JPH10336968A (en) Rotating electric machine for vehicle
WO2018207550A1 (en) Electrically driven supercharger
CN110224533A (en) Outer-rotor type rotating electric machine
WO2021065363A1 (en) Turbo compressor
JPH0382356A (en) Cooling structure of motor
JP4513633B2 (en) Compressor
CN211370766U (en) Compressor and air conditioner
JP6189070B2 (en) Rotating electric machine
JP2001251814A (en) Running gear for electric vehicle
JPH10281089A (en) Vacuum pump
KR100242152B1 (en) Water cooling type permanent-magnet generator
CN113107814A (en) Compressor and air conditioner
JP2010045905A (en) Motor integrated magnetic bearing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A131 Notification of reasons for refusal

Effective date: 20060421

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060721

A61 First payment of annual fees (during grant procedure)

Effective date: 20060803

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees