JPH1140429A - Transformer, detecting device for direct current magnetic deviation of transformer and evaluating device for direct current magnetic deviation - Google Patents

Transformer, detecting device for direct current magnetic deviation of transformer and evaluating device for direct current magnetic deviation

Info

Publication number
JPH1140429A
JPH1140429A JP9193594A JP19359497A JPH1140429A JP H1140429 A JPH1140429 A JP H1140429A JP 9193594 A JP9193594 A JP 9193594A JP 19359497 A JP19359497 A JP 19359497A JP H1140429 A JPH1140429 A JP H1140429A
Authority
JP
Japan
Prior art keywords
bias
transformer
core
magnetic
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9193594A
Other languages
Japanese (ja)
Other versions
JP3518260B2 (en
Inventor
Tomoyuki Uchiyama
倫行 内山
Akira Nishimizu
亮 西水
Tatsu Saito
達 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19359497A priority Critical patent/JP3518260B2/en
Publication of JPH1140429A publication Critical patent/JPH1140429A/en
Application granted granted Critical
Publication of JP3518260B2 publication Critical patent/JP3518260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate influence of leak magnetic flux produced by a main magnetic flux leaking from an iron core or by winding current upon a direct current magnetic deviation detecting device which detects amount of direct current magnetic deviation of the iron core of a transformer. SOLUTION: A detecting coil 8 is wound around a magnetic core 7 (7a-7c) of magnetic material. Ends 7a and 7b of the magnetic core 7 are extended in parallel and in the opposed direction between laminated steel plates 12 comprising an iron core of a transformer. A part 7c around which the detecting coil 8 is wound is formed in such a way that it is kept separated from the laminated surface of the laminated steel plates 12 by a specific distance. In this case, the detecting coil 8 is separated from the iron core by a specific distance in order to prevent or minimize a main magnetic flux leaking from the iron core from crossing the detecting coil 8. The influence of the main magnetic flux leaking from the iron core is accordingly avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器の直流偏磁量
を検出する技術に係り、具体的には直流偏磁検出素子、
これを備えた変圧器及び直流偏磁評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for detecting a DC bias amount of a transformer, and more specifically, to a DC bias detecting element,
The present invention relates to a transformer and a DC bias evaluation apparatus provided with the transformer.

【0002】[0002]

【従来の技術】パワーエレクトロニクス技術の進歩と相
俟って、GTO等の自己消孤形半導体素子を用いた自励
式電力変換器を電力分野に応用することが進められてい
る。一般に、自励式電力変換器を電力系統に接続する場
合、変換用変圧器を介して接続される。このような変換
用変圧器においては、電力変換器の半導体スイッチ素子
の点弧角のバラツキなどに起因して印加電圧に直流分が
重畳するため、鉄心内部を通る磁束が正負いずれかの極
性に偏る直流偏磁現象が発生する。変圧器の鉄心が直流
偏磁すると、変圧器の損失や騒音の増加を引き起こすこ
とになる。また、直流偏磁の程度によっては鉄心が磁気
飽和して巻線に過大な励磁電流が流れ、巻線に接続され
た電力変換器の半導体スイッチ素子の損傷を招く恐れが
ある。
2. Description of the Related Art Along with advances in power electronics technology, a self-excited power converter using a self-extinguishing semiconductor device such as a GTO has been applied to the electric power field. Generally, when a self-excited power converter is connected to a power system, it is connected via a conversion transformer. In such a conversion transformer, the DC component is superimposed on the applied voltage due to a variation in the firing angle of the semiconductor switch element of the power converter, so that the magnetic flux passing through the inside of the iron core has a positive or negative polarity. A biased DC bias phenomenon occurs. If the core of the transformer is DC-polarized, it causes loss and noise of the transformer. Further, depending on the degree of DC bias, the iron core is magnetically saturated and an excessive exciting current flows through the winding, which may cause damage to the semiconductor switch element of the power converter connected to the winding.

【0003】従来、そのような変換用変圧器の直流偏磁
による鉄心の磁気飽和を未然に防止するため、鉄心の直
流偏磁量を検出し、これを打ち消すように電力変換器の
出力電圧すなわち変換用変圧器の印加電圧を調整する直
流偏磁抑制制御が行われている。鉄心の直流偏磁量を検
出する方法としては、例えば特公昭50−33213 号公報
に、変圧器の積層鉄心に直流偏磁検出素子を設置し、鉄
心中の主磁束(励磁磁束)を直接的に監視して直流偏磁量
を検出する方法が提案されている。この方法は、初期透
磁率が極めて高い磁心に検出コイルを巻き回して直流偏
磁検出素子を形成し、その直流偏磁検出素子の磁心の脚
部(両端部)を変圧器鉄心の積層鋼板に密着させて取り
付け、鉄心を通る主磁束の一部を透磁率の高い磁心に分
流させ、検出コイルに誘起される電圧を監視して直流偏
磁量を検出しようというものである。磁心は変圧器の鉄
心を形成する積層鋼板に比べて飽和磁束密度が低く、積
層鋼板より先に磁気飽和する。よって、積層鋼板中を通
る主磁束が正弦波状に変化しても、磁心に分流する磁束
(検出コイルに鎖交する磁束)は正弦波の波頭部が磁気
飽和により抑えられた台形状の正負波形となる。そのた
め、検出コイルには磁束の正負極性が変化する零点付近
で急峻なパルス状の電圧が誘起する。このパルス状電圧
が表れる時間間隔は、正側あるいは負側の直流偏磁量に
応じたものとなるから、そのパルス状電圧の時間間隔を
測定することにより直流偏磁量とその極性を検出するこ
とができるのである。
Conventionally, in order to prevent the magnetic saturation of the iron core due to the DC magnetic polarization of such a conversion transformer, the output voltage of the power converter, ie, the output voltage of the power converter, that is, the amount of the DC magnetic polarization of the iron core is detected so as to cancel this. DC bias suppression control for adjusting the voltage applied to the conversion transformer is performed. As a method for detecting the amount of direct current magnetization of the iron core, for example, in Japanese Patent Publication No. 50-33213, a direct current magnetization detection element is installed on the laminated core of the transformer, and the main magnetic flux (excitation magnetic flux) in the iron core is directly And a method of detecting the amount of DC bias by monitoring the temperature. In this method, a detection coil is wound around a magnetic core having an extremely high initial magnetic permeability to form a DC bias detecting element, and legs (both ends) of the magnetic core of the DC bias detecting element are attached to a laminated steel sheet of a transformer core. In this method, a part of a main magnetic flux passing through an iron core is diverted to a magnetic core having a high magnetic permeability, and a voltage induced in a detection coil is monitored to detect a DC bias amount. The magnetic core has a lower saturation magnetic flux density than the laminated steel sheet forming the iron core of the transformer, and is magnetically saturated before the laminated steel sheet. Therefore, even if the main magnetic flux passing through the laminated steel sheet changes sinusoidally, the magnetic flux shunted to the magnetic core (magnetic flux linked to the detection coil) has a trapezoidal positive / negative shape in which the wave front of the sinusoidal wave is suppressed by magnetic saturation. It becomes a waveform. Therefore, a steep pulse-like voltage is induced in the detection coil near the zero point where the positive / negative polarity of the magnetic flux changes. The time interval at which this pulse-like voltage appears depends on the positive or negative DC bias amount, so that by measuring the time interval of the pulse-like voltage, the DC bias amount and its polarity are detected. You can do it.

【0004】[0004]

【発明が解決しようとする課題】ところで、変圧器の鉄
心を構成する積層鋼板中を通る主磁束(励磁磁束)の磁
束密度が何らかの要因である程度高くなると、鋼板から
漏れて鋼板外部を通る主磁束(以下、漏れ主磁束とい
う)が増加する。その漏れ主磁束が従来(特公昭50−33
213 号公報)の直流偏磁検出素子の検出コイルに鎖交
し、その量が多くなると検出コイルの出力電圧に影響を
与えることになる。つまり、漏れ主磁束は鉄心中を通る
主磁束の最大値付近で大きくなり、磁心が磁気飽和して
空心状態となっている直流偏磁検出素子の検出コイルに
鎖交する。この時、本来ならば台形状の波形となるべき
検出コイルの鎖交磁束波形は、台形波の波頭中間部付近
に漏れ主磁束が重畳した波形となる。よって、検出コイ
ルには鉄心中を通る主磁束の零点付近で発生するパルス
状電圧以外に、鉄心中を通る主磁束の最大値付近でも電
圧が誘起される場合がある。この漏れ主磁束によって発
生するパルス状電圧は、漏れ主磁束の大きさによって発
生したりしなかったりするいわゆる外乱であり、パルス
状電圧の時間間隔を測定して直流偏磁量を検出する場合
の誤差要因となり、精度及び信頼性の点で問題となる。
その結果、そのような直流偏磁検出素子を電力変換シス
テムの直流偏磁評価装置に適用すると、変圧器の直流偏
磁抑制制御に失敗し、鉄心を磁気飽和に至らしめる恐れ
がある。
When the magnetic flux density of the main magnetic flux (exciting magnetic flux) passing through the laminated steel sheet constituting the iron core of the transformer becomes high to some extent, the main magnetic flux leaking from the steel sheet and passing through the outside of the steel sheet. (Hereinafter referred to as leakage main magnetic flux) increases. The leakage main magnetic flux is
No. 213), the output voltage of the detection coil is affected if the amount is increased. In other words, the leakage main magnetic flux increases near the maximum value of the main magnetic flux passing through the iron core, and the magnetic core is magnetically saturated and interlinks with the detection coil of the DC bias detection element in an air-core state. At this time, the linkage magnetic flux waveform of the detection coil, which should have a trapezoidal waveform, is a waveform in which the leakage main magnetic flux is superimposed near the middle part of the trapezoidal wave front. Therefore, in addition to the pulse voltage generated near the zero point of the main magnetic flux passing through the iron core, a voltage may be induced in the detection coil also near the maximum value of the main magnetic flux passing through the iron core. The pulse-like voltage generated by the main leakage magnetic flux is a so-called disturbance that may or may not be generated depending on the magnitude of the main leakage magnetic flux. It becomes an error factor and poses a problem in terms of accuracy and reliability.
As a result, when such a DC bias detection element is applied to a DC bias evaluation device of a power conversion system, DC bias suppression control of a transformer may fail and the core may be magnetically saturated.

【0005】本発明は上記の点に鑑み、変圧器の直流偏
磁量を検出する直流偏磁検出素子の検出コイルに鎖交す
る、鉄心から漏れた主磁束の影響を排除することを目的
とする。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to eliminate the influence of a main magnetic flux leaking from an iron core, which is linked to a detection coil of a DC bias detecting element for detecting a DC bias amount of a transformer. I do.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、次の手
段により達成することができる。
The object of the present invention can be achieved by the following means.

【0007】本発明の原理は、直流偏磁検出素子の検出
コイルに外乱となる鉄心からの漏れ主磁束が鎖交しない
ようにしたものである。
The principle of the present invention is to prevent the main magnetic flux leaking from the iron core, which is a disturbance, from interlinking the detection coil of the DC bias detecting element.

【0008】具体的な手段としては、磁性材の磁心に検
出コイルを巻き回し、変圧器鉄心に配置して変圧器の直
流偏磁を検出する直流偏磁検出素子において、磁心の両
端部を変圧器鉄心を形成する積層鋼板の積層面に接して
配置し、かつ磁心の検出コイルを巻き回した部分を変圧
器鉄心の表面から一定寸法離して形成させたことを特徴
とする。その結果、変圧器鉄心をなす積層鋼板の積層面
近傍に存在する漏れ主磁束が、直流偏磁検出素子の検出
コイルに鎖交するのを防止、もしくは極小化できるか
ら、漏れ主磁束が検出コイルの出力電圧に及ぼす影響を
排除することができる。
As a specific means, a detection coil is wound around a magnetic core of a magnetic material, and is disposed on a transformer core to detect a DC bias of the transformer. The laminated core is formed so as to be in contact with the laminated surface of the laminated steel sheet forming the transformer core, and a portion where the detection coil of the magnetic core is wound is formed at a certain distance from the surface of the transformer core. As a result, it is possible to prevent or minimize the leakage main magnetic flux existing near the lamination surface of the laminated steel sheet forming the transformer core, or to minimize the leakage main magnetic flux. Can be eliminated.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a description will be given based on an embodiment of the present invention.

【0010】図1に本発明の実施形態の電力変換システ
ムの全体構成図を示し、図2に要部の詳細図を示す。図
1に示すように、変換用変圧器1の交流側巻線2は図示
していない交流系統に接続され、変換器側巻線3は半導
体スイッチ素子を用いて形成されてなる電力変換器4に
接続されている。変換用変圧器1の鉄心5は電磁鋼板を
紙面垂直方向に積層して形成されており、その鉄心5に
直流偏磁検出素子6が取り付けられている。直流偏磁検
出素子6は、例えばπ型に形成された板状の磁心7に検
出コイル8を巻回して形成されている。検出コイル8の
出力端子は演算装置9に接続されている。これら直流偏
磁検出素子6と演算装置9により、偏磁評価装置10が
構成されている。演算装置9は検出コイル8の誘起電圧
を取り込み、これに基づいて変換用変圧器1の直流偏磁
量を算出して制御装置11に出力する。制御装置11
は、入力される直流偏磁量及びその極性に基づいて電力
変換器4の半導体スイッチ素子の点弧タイミングを制御
して変換用変圧器1の直流偏磁を解消するようになって
いる。なお、直流偏磁量を算出する演算装置9の機能を
制御装置11に持たせ、演算装置9を省略しても良い。
FIG. 1 shows an overall configuration diagram of a power conversion system according to an embodiment of the present invention, and FIG. 2 shows a detailed view of main parts. As shown in FIG. 1, an AC side winding 2 of a conversion transformer 1 is connected to an AC system (not shown), and a converter side winding 3 is a power converter 4 formed by using a semiconductor switch element. It is connected to the. The iron core 5 of the conversion transformer 1 is formed by laminating electromagnetic steel sheets in a direction perpendicular to the plane of the paper, and a DC magnetic field detecting element 6 is attached to the iron core 5. The DC bias detection element 6 is formed by winding a detection coil 8 around a plate-shaped magnetic core 7 formed in, for example, a π shape. The output terminal of the detection coil 8 is connected to the arithmetic unit 9. The DC bias detection element 6 and the arithmetic unit 9 constitute a bias evaluation device 10. The arithmetic unit 9 takes in the induced voltage of the detection coil 8, calculates the amount of DC bias of the conversion transformer 1 based on this, and outputs it to the control unit 11. Control device 11
Controls the ignition timing of the semiconductor switch element of the power converter 4 on the basis of the input DC bias amount and its polarity to eliminate the DC bias of the conversion transformer 1. Note that the function of the arithmetic unit 9 for calculating the amount of DC bias may be provided to the control device 11, and the arithmetic unit 9 may be omitted.

【0011】図2は、直流偏磁検出素子6が取り付けら
れた鉄心5の部分を拡大して示した斜視図である。同図
に示すように、直流偏磁検出素子6の磁心7は例えばπ
型の板状に形成されており、その両端部7a,7bは、
鉄心5を形成する積層鋼板12の表面に密着させて取り
付けられている。そして、磁心7のうち検出コイル8が
巻き回されている部分7c(π型の中央部)は、鉄心5
の積層面外となるよう一定寸法離して形成され、検出コ
イル8が鉄心5の外部に出るよう配置している。磁心7
は、初期透磁率が極めて高い磁性材、例えば鉄・ニッケ
ル合金または非晶質磁性材(アモルファス)により形成
することが好ましい。また、図2では、直流偏磁検出素
子6の磁心7の両端部7a,7bを積層鋼板の積層隙間
内に挿入するものとして示したが、最外層の鋼板表面に
取り付けるようにしてもよい。さらに、ここでは磁心形
状をπ型とした例について説明したが、本発明では検出
コイルを巻いた部分を鉄心外に配置できれば、特に磁心
形状を限定するものではない。
FIG. 2 is an enlarged perspective view of a portion of the iron core 5 to which the DC bias detecting element 6 is attached. As shown in the figure, the magnetic core 7 of the DC bias detecting element 6 is, for example, π
It is formed in a mold plate shape, and both ends 7a and 7b are
It is attached in close contact with the surface of the laminated steel sheet 12 forming the iron core 5. The portion 7c (the π-shaped central portion) of the magnetic core 7 around which the detection coil 8 is wound is the iron core 5
The detection coils 8 are arranged so as to be out of the lamination plane with a certain dimension, and are arranged so that the detection coil 8 extends out of the iron core 5. Magnetic core 7
Is preferably formed of a magnetic material having an extremely high initial magnetic permeability, such as an iron-nickel alloy or an amorphous magnetic material (amorphous). Although FIG. 2 shows that both end portions 7a and 7b of the magnetic core 7 of the DC bias detecting element 6 are inserted into the lamination gap of the laminated steel plate, it may be attached to the outermost steel plate surface. Further, although an example in which the shape of the magnetic core is a π type has been described here, the present invention does not particularly limit the shape of the magnetic core as long as the portion around which the detection coil is wound can be arranged outside the iron core.

【0012】このように形成される実施形態の動作につ
いて、次に説明する。
The operation of the embodiment thus formed will be described below.

【0013】図2に示すように、変換用変圧器1の鉄心
5を形成する積層鋼板12中を通る主磁束Φ1 の一部
は、透磁率が極めて高い磁心7の端部7aに分流し、こ
の分流磁束Φ2 は磁心7のうち検出コイル8が巻き回さ
れている部位7cを経由して端部7bから積層鋼板12
中を通る主磁束Φ1 に合流する。この時、分流磁束Φ2
が検出コイル8に鎖交し、検出コイル8には電圧が誘起
される。図3の(a),(b),(c)に、積層鋼板中の
主磁束Φ1 の時間変化の波形と、磁心7に分流し検出コ
イル8に鎖交する分流磁束Φ2 の時間変化の波形と、検
出コイル8の出力電圧Vの時間変化の波形とを示す。図
示のように、主磁束Φ1 は正弦波状に変化するが、磁心
7は積層鋼板12に比べて飽和磁束密度が低く積層鋼板
12より先に磁気飽和するため、分流磁束Φ2 は図示の
ように台形波状の波形となる。従って、検出コイル8の
端子8a,8bに表れる出力電圧Vの波形には、分流磁
束Φ2 が急変する時点、すなわち主磁束Φ1 の零点付近
で急峻なパルスが表れる。このパルス状電圧は正負の極
性を変えて交互に表れる。このパルス状電圧の最大値と
最小値の時間間隔Δt1 ,Δt2 が積層鋼板12の直流
偏磁量に対応して変化することを利用すれば、直流偏磁
量及びその極性を検出することができる。
[0013] As shown in FIG. 2, a portion of the main magnetic flux [Phi 1 through the laminated steel 12 medium to form the core 5 of the converting transformer 1, permeability to flow to the end 7a of the very high magnetic core 7 min The shunt magnetic flux Φ 2 is transmitted from the end 7 b to the laminated steel sheet 12 via the portion 7 c of the magnetic core 7 around which the detection coil 8 is wound.
Merges with the main magnetic flux Φ 1 passing through it. At this time, the shunt magnetic flux Φ 2
Are linked to the detection coil 8, and a voltage is induced in the detection coil 8. Figure 3 (a), (b) , (c), the main magnetic flux [Phi 1 of the waveform of time changes in the laminated steel sheet, the time variation of the flow flux [Phi 2 interlinked in the detection coil 8 to shunt magnetic core 7 And the waveform of the change over time of the output voltage V of the detection coil 8 are shown. As shown in the figure, the main magnetic flux Φ 1 changes sinusoidally, but the magnetic core 7 has a lower saturation magnetic flux density than the laminated steel sheet 12 and is magnetically saturated before the laminated steel sheet 12, so the shunt magnetic flux Φ 2 is as shown in the figure. It becomes a trapezoidal waveform. Therefore, the terminal 8a of the detection coil 8, the waveform of the output voltage V appearing on 8b, when the shunt magnetic flux [Phi 2 is suddenly changed, i.e. steep pulse appears near the zero point of the main magnetic flux [Phi 1. This pulse-like voltage appears alternately by changing the positive and negative polarities. By utilizing the fact that the time intervals Δt 1 and Δt 2 between the maximum value and the minimum value of the pulsed voltage change in accordance with the DC bias amount of the laminated steel sheet 12, the DC bias amount and its polarity can be detected. Can be.

【0014】次に、図1の実施形態により鋼板から漏れ
た主磁束の影響を排除できることについて説明する。こ
の漏れ主磁束は鋼板中を通る主磁束Φ1 の最大値付近で
鋼板12から漏れて鋼板外部を通る磁束であり、図2中
にΦa で示す。図から明らかなように、検出コイル8を
鋼板積層面から一定寸法離して配置しているので、検出
コイル8が巻き回されている付近には漏れ主磁束Φa
存在せず、検出コイル8には漏れ主磁束Φa は鎖交しな
い。また、漏れ主磁束Φa が大きくなるのは鋼板中の主
磁束Φ1 の最大値付近であり、この時磁心7は磁気飽和
して透磁率が低下し空心に近い状態になっている。それ
故、積層鋼板の積層面間に存在する漏れ主磁束Φa は、
磁心7を磁路とせず貫通するため、やはり検出コイル8
には漏れ磁束Φa は鎖交しない。よって、本実施形態に
よれば検出コイル8には分流磁束Φ2 のみが鎖交する。
そのため、図3(c)に示すように検出コイル8の出力
電圧には漏れ主磁束Φa による電圧は誘起されない。
Next, a description will be given of how the embodiment of FIG. 1 can eliminate the influence of the main magnetic flux leaking from the steel plate. This leakage main magnetic flux is a magnetic flux through the steel external leaks from the steel plate 12 in the vicinity of the maximum value of the main magnetic flux [Phi 1 through in the steel plate, indicated by [Phi a in FIG. As is apparent from the figure, since the spaced apart a predetermined dimension detection coil 8 of a steel plate laminated surface, there is no leakage main magnetic flux [Phi a in the vicinity of the detection coil 8 is wound, a detection coil 8 is not interlinked leakage main magnetic flux Φ a in. Further, the leakage main magnetic flux [Phi a larger is the vicinity of the maximum value of the main magnetic flux [Phi 1 in the steel sheet, this time the magnetic core 7 permeability and magnetic saturation is in the state close to an air core decreases. Therefore, the leakage main magnetic flux [Phi a existing between laminated surfaces of the laminated steel sheet,
Since the magnetic core 7 penetrates the magnetic core 7 without forming a magnetic path, the detection coil 8
Is not interlinked leakage magnetic flux Φ a in. Therefore, according to the present embodiment, only the shunt magnetic flux Φ 2 is linked to the detection coil 8.
Therefore, no voltage is induced by the leakage main magnetic flux [Phi a is the output voltage of the detection coil 8, as shown in Figure 3 (c).

【0015】これに対し、従来のように、直流偏磁検出
素子6全体を鉄心5を形成する積層鋼板12の表面に密
着させて取り付けた場合は、検出コイル8に漏れ主磁束
Φaが鎖交する。その結果、図4(a),(b)に示すよ
うな影響がでる。つまり、漏れ主磁束Φa の増加が問題
になるのは主磁束Φ1 の最大値付近であり、これが無視
し得ないレベルに達すると、同図(a)の(Φ2 +Φa )
に示すように、検出コイル8に鎖交する磁束には台形波
状の波形の中央部に斜線で示した部分の磁束が加わり、
これに応じて検出コイル8の出力電圧Vには同図(a)
再下段に斜線部で示した外乱パルスが表れる。その結
果、直流偏磁量を算出する際に用いるパルスの時間間隔
Δt1 ,Δt2 を特定できず、または誤って特定する場
合が生じ、直流偏磁量を精度良く、信頼性を持って評価
することができない。そのため、変圧器の直流偏磁抑制
制御を失敗する恐れがある。なお、同図(b)は鉄心5
が直流磁束Φdcだけ直流偏磁した状態における漏れ主磁
束Φa の影響を示した各部の波形図である。
[0015] In contrast, as in the prior art, when mounted across DC polarization磁検detecting element 6 is brought into close contact on the surface of the laminated steel plates 12 forming the core 5, the leakage main magnetic flux [Phi a is a chain in the detection coil 8 Intersect. As a result, the effects as shown in FIGS. In other words, the increase of the leakage main magnetic flux [Phi a becomes a problem is the vicinity of the maximum value of the main magnetic flux [Phi 1, when it reaches a level which can not be ignored, the diagram (a) (Φ 2 + Φ a)
As shown in the figure, the magnetic flux linked to the detection coil 8 is added with the magnetic flux in the hatched portion at the center of the trapezoidal waveform,
In response to this, the output voltage V of the detection coil 8 is shown in FIG.
The disturbance pulse indicated by the hatched portion appears in the lower stage. As a result, the time intervals Δt 1 and Δt 2 of the pulses used in calculating the DC bias amount may not be specified or may be incorrectly specified, and the DC bias amount is accurately and reliably evaluated. Can not do it. Therefore, there is a possibility that the DC bias suppression control of the transformer may fail. In addition, FIG.
There is a waveform diagram of each part shows the influence of the leakage main magnetic flux [Phi a in a state in which only the DC magnetic deviation DC magnetic flux [Phi dc.

【0016】図5に、本発明に係る直流偏磁検出素子の
他の実施形態を適用した変換用変圧器の断面図を、図6
にその直流偏磁検出素子近傍の拡大図を示す。ここで
は、単相センタコア構造の鉄心5の主脚部、すなわち交
流側巻線2及び変換器側巻線3が巻き回された鉄心脚に
本発明である直流偏磁検出素子6を取り付けた場合を例
に説明する。鉄心5は紙面に垂直な方向に鋼板を積層し
て形成されている。図中に運転中の変圧器の磁束分布を
矢印で示した。鉄心5中には、図中に実線の矢印で示す
ように巻線の印加電圧の積分値に対応した主磁束Φ
1 (励磁磁束)が存在している。一方、巻線の周囲に
は、図中に波線の矢印で示すように巻線を流れる負荷電
流によって発生する、いわゆる漏れ磁束ΦL が存在して
いる。漏れ磁束ΦL の分布は変圧器の巻線構成,配置等
に依存している。このような場合、直流偏磁検出素子6
の検出コイル8に巻線の漏れ磁束ΦL が鎖交し、検出コ
イル8の出力電圧に誘起電圧成分として表れ、外乱とな
る恐れがある。
FIG. 5 is a sectional view of a conversion transformer to which another embodiment of the DC bias detecting element according to the present invention is applied, and FIG.
FIG. 2 shows an enlarged view of the vicinity of the DC bias detecting element. Here, the case where the DC bias detecting element 6 according to the present invention is attached to the main leg of the iron core 5 having a single-phase center core structure, that is, the iron leg around which the AC side winding 2 and the converter side winding 3 are wound. Will be described as an example. The iron core 5 is formed by stacking steel plates in a direction perpendicular to the plane of the drawing. In the figure, the magnetic flux distribution of the operating transformer is indicated by arrows. In the iron core 5, a main magnetic flux Φ corresponding to the integrated value of the applied voltage of the winding as shown by a solid arrow in the drawing.
1 (Excitation flux) exists. On the other hand, around the winding, there is a so-called leakage magnetic flux Φ L generated by a load current flowing through the winding as shown by a broken arrow in the figure. The distribution of the leakage flux Φ L depends on the winding configuration and arrangement of the transformer. In such a case, the DC bias detection element 6
The leakage magnetic flux Φ L of the winding interlinks with the detection coil 8 and appears as an induced voltage component in the output voltage of the detection coil 8, which may cause disturbance.

【0017】そこで、図6に示すように直流偏磁検出素
子6の磁心7は例えばπ型の板状に形成し、その両端部
7a,7bを鉄心5を構成する積層鋼板12の表面に密
着させて取り付けるようにする。そして、磁心7のうち
検出コイル8が巻き回されている部分7cは、鉄心5の
積層面外となるよう形成し検出コイル8が鉄心5の外部
に出るよう配置する。さらに、本実施形態では検出コイ
ル8は変圧器の巻線2,3の漏れ磁束ΦL の方向に直交
するように、すなわち検出コイル8の軸心が巻線の漏れ
磁束ΦL に対し直角になるように配置している。
Therefore, as shown in FIG. 6, the magnetic core 7 of the DC bias detecting element 6 is formed in, for example, a π-shaped plate shape, and both end portions 7a and 7b are brought into close contact with the surface of the laminated steel plate 12 constituting the iron core 5. And attach it. A portion 7c of the magnetic core 7 around which the detection coil 8 is wound is formed so as to be out of the lamination plane of the iron core 5, and the detection coil 8 is arranged so as to protrude outside the iron core 5. Further, in this embodiment, the detection coil 8 is perpendicular to the direction of the leakage magnetic flux Φ L of the windings 2 and 3 of the transformer, that is, the axis of the detection coil 8 is perpendicular to the leakage magnetic flux Φ L of the winding. It is arranged so that it becomes.

【0018】このようにすることで、巻線2,3を流れ
る負荷電流により発生する漏れ磁束ΦL は検出コイル8
に鎖交しないから、検出コイル8には鋼板12中を通る
主磁束Φ1 から分流した磁束Φ2 以外の磁束による誘起
電圧は発生しない。これにより第1実施形態で説明した
ように図3(c)に示した出力電圧Vが得られるから、
変換用変圧器の直流偏磁評価装置またはこれを用いた電
力変換システムに適用して、変圧器の直流偏磁量を精度
良く、信頼性を持って評価でき、変圧器の直流偏磁抑制
制御を安定に行うことができる。
By doing so, the leakage magnetic flux Φ L generated by the load current flowing through the windings 2 and 3 is
Therefore, no induced voltage is generated in the detection coil 8 due to magnetic fluxes other than the magnetic flux Φ 2 shunted from the main magnetic flux Φ 1 passing through the steel plate 12. As a result, the output voltage V shown in FIG. 3C is obtained as described in the first embodiment.
Applied to DC bias evaluation device of conversion transformer or power conversion system using the same, DC bias of transformer can be evaluated accurately and reliably, and DC bias suppression control of transformer Can be performed stably.

【0019】図7に、本発明に係る直流偏磁検出素子の
他の実施形態を適用した変換用変圧器の要部断面図を示
す。本実施形態は、直流偏磁検出素子を図5に示したよ
うに鉄心主脚に配置した場合に、巻線周囲の漏れ磁束を
鎖交させないよう直流偏磁検出素子を磁気シールドした
例である。すなわち、図示のように直流偏磁検出素子6
の磁心7は例えばπ形の板状に形成されており、その両
端部7a,7bは鉄心5を形成する積層鋼板12の表面
に密着させて取り付けられている。磁心7のうち、検出
コイル8が巻き回されている部分7c(π型の中央部)
は、鉄心5の積層面外となるよう一定寸法離して形成さ
れ、検出コイル8が鉄心5の外部に出るよう配置してい
る。そして、直流偏磁検出素子6は、積層鋼板12に接
する面を除いて、シールド部材14によって覆われてい
る。シールド部材14には、表面を絶縁処理した磁性体
を用いることが望ましい。また、表面を絶縁処理した
銅,アルミニウム等の非磁性の導体を用いてもよい。
FIG. 7 is a cross-sectional view of a main part of a conversion transformer to which another embodiment of the DC bias detecting element according to the present invention is applied. This embodiment is an example in which, when the DC magnetic field detecting element is arranged on the iron main leg as shown in FIG. 5, the DC magnetic field detecting element is magnetically shielded so as not to interlink the leakage magnetic flux around the winding. . That is, as shown in FIG.
Is formed in, for example, a π-shaped plate shape, and both end portions 7a and 7b are attached to the surface of the laminated steel plate 12 forming the iron core 5 in close contact with each other. A portion 7c of the magnetic core 7 around which the detection coil 8 is wound (a π-shaped central portion)
Are formed apart from each other by a predetermined distance so as to be outside the lamination plane of the iron core 5, and are arranged so that the detection coil 8 extends outside the iron core 5. The DC bias detection element 6 is covered with the shield member 14 except for the surface in contact with the laminated steel plate 12. For the shield member 14, it is desirable to use a magnetic body whose surface is insulated. Further, a non-magnetic conductor such as copper or aluminum whose surface is insulated may be used.

【0020】このようなシールド部材14を設けること
により、変圧器の巻線を流れる負荷電流により発生する
漏れ磁束ΦL は検出コイル8に鎖交しないから、検出コ
イル8には鋼板12中を通る主磁束Φ1 から分流した磁
束Φ2 以外の磁束による電圧は誘起しない。これにより
第1実施形態で説明したように図3(c)に示した出力
電圧Vが得られるから、変換用変圧器の直流偏磁評価装
置またはこれを用いた電力変換システムに適用して、変
圧器の直流偏磁量を精度良く、信頼性を持って評価で
き、変圧器の直流偏磁抑制制御を安定に行うことができ
る。
By providing such a shield member 14, since the leakage magnetic flux Φ L generated by the load current flowing through the winding of the transformer does not interlink with the detection coil 8, the detection coil 8 passes through the steel plate 12. voltage due to the magnetic flux Φ 2 other than the magnetic flux that is diverted from the main magnetic flux Φ 1 is not induced. As a result, as described in the first embodiment, the output voltage V shown in FIG. 3C is obtained. Therefore, the output voltage V is applied to a DC bias evaluation device for a conversion transformer or a power conversion system using the same. The DC bias of the transformer can be accurately and reliably evaluated, and the DC bias suppression control of the transformer can be stably performed.

【0021】図8に、本発明に係る直流偏磁検出素子の
他の実施形態を適用した変換用変圧器の要部断面図を示
す。本実施形態は、直流偏磁検出素子を鉄心主脚に配置
した場合に巻線の漏れ磁束によって直流偏磁検出素子に
発生する誘起電圧成分を、補償素子で検出して補償する
ことにより、外乱の影響を排除するものである。直流偏
磁検出素子6は図7と同様に形成されて積層鋼板12に
密着して取り付けられている。補償素子20は、偏磁検
出素子6の近傍に積層鋼板12に取り付けられている。
補償素子20は、磁心7と同一の形状に形成された巻枠
21に補償コイル22を巻き回して形成されている。巻
枠21は非磁性の絶縁物で形成されている。検出コイル
8と補償コイル22は巻方向が互いに逆の関係で、巻数
及びコイル断面積等は両者の出力電圧が等しくなるよう
予め所定の値に調整されている。そして、検出コイル8
と補償コイル22はそれぞれの誘起電圧を打ち消し合う
ように、端子8aと端子22bを接続し、残りの端子8
b,22aを出力端子として、直列に接続されている。
FIG. 8 is a sectional view of a main part of a conversion transformer to which another embodiment of the DC bias detecting element according to the present invention is applied. In the present embodiment, when the DC bias detecting element is arranged on the iron core main leg, the induced voltage component generated in the DC bias detecting element by the leakage magnetic flux of the winding is detected by the compensating element to compensate for the disturbance. To eliminate the effects of The DC bias detecting element 6 is formed in the same manner as in FIG. The compensating element 20 is attached to the laminated steel plate 12 in the vicinity of the magnetic field detecting element 6.
The compensating element 20 is formed by winding a compensating coil 22 around a bobbin 21 formed in the same shape as the magnetic core 7. The winding frame 21 is formed of a non-magnetic insulator. The winding directions of the detection coil 8 and the compensation coil 22 are opposite to each other, and the number of turns, the coil cross-sectional area, and the like are adjusted to predetermined values so that the output voltages of the two become equal. And the detection coil 8
And the compensation coil 22 connect the terminal 8a and the terminal 22b so that the induced voltages cancel each other, and
b and 22a are connected in series with the output terminals.

【0022】このように構成されることから、直流偏磁
検出素子6においては、主磁束Φ1の一部は積層鋼板1
2の表面に密着して設けられた磁心7に分流し、検出コ
イル8にはこの分流磁束Φ2 の大きさ及び極性に応じた
電圧が誘起される。また、検出コイル8には巻線の漏れ
磁束ΦL も鎖交するため、このΦL による電圧も誘起さ
れる。一方、補償素子20の巻枠21は非磁性材で形成
されているため、主磁束Φ1 の一部は補償素子20には
分流しない。よって、補償コイル22には巻線の漏れ磁
束ΦL のみが鎖交し、この漏れ磁束ΦL による電圧のみ
が誘起される。検出コイル8及び補償コイル22に発生
する漏れ磁束ΦL による誘起電圧成分は、大きさが同じ
で極性が互いに逆となるように予め両コイルの巻数,有
効断面積等が調整されている。それ故、両者は互いにキ
ャンセルされ、端子8bと22aに表れる出力電圧Vに
は漏れ磁束ΦL による電圧成分は含まれない。
[0022] From such a configuration, the DC polarization磁検detecting element 6, a portion of the main magnetic flux [Phi 1 is laminated steel plates 1
The magnetic flux is shunted to the magnetic core 7 provided in close contact with the surface of the magnetic field 2 , and a voltage is induced in the detection coil 8 according to the magnitude and polarity of the shunt magnetic flux Φ 2 . Further, since the leakage magnetic flux Φ L of the winding is also linked to the detection coil 8, a voltage due to the Φ L is also induced. On the other hand, since the winding frame 21 of the compensating element 20 is formed of a non-magnetic material, a part of the main magnetic flux Φ 1 does not flow to the compensating element 20. Therefore, only the leakage magnetic flux Φ L of the winding is linked to the compensation coil 22, and only the voltage due to the leakage magnetic flux Φ L is induced. The number of turns, the effective cross-sectional area, and the like of both coils are previously adjusted so that the induced voltage components due to the leakage magnetic flux Φ L generated in the detection coil 8 and the compensation coil 22 have the same magnitude and opposite polarities. Hence, both are canceled each other, the output voltage V appearing at the terminal 8b and 22a does not include the voltage component due to leakage flux [Phi L.

【0023】その結果、前述した実施形態と同様に図3
(c)に示した出力電圧Vが得られるから、変換用変圧
器の直流偏磁評価装置またはこれを用いた電力変換シス
テムに適用して、変圧器の直流偏磁量を精度良く、信頼
性を持って評価でき、変圧器の直流偏磁抑制制御を安定
に行うことができる。
As a result, similar to the above-described embodiment, FIG.
Since the output voltage V shown in (c) is obtained, the present invention is applied to a DC bias evaluation device for a conversion transformer or a power conversion system using the same, and the DC bias amount of the transformer is accurately and reliably measured. Therefore, the DC bias suppression control of the transformer can be stably performed.

【0024】図9に、本発明に係る直流偏磁検出素子の
他の実施形態を適用した変換用変圧器の要部断面図を示
す。本実施形態は、直流偏磁検出素子を鉄心主脚に配置
した場合に巻線の漏れ磁束によって直流偏磁検出素子に
発生する誘起電圧成分を、補償素子で検出して補償する
ことにより外乱の影響を排除する他の例である。直流偏
磁検出素子6は図7と同様に形成されて積層鋼板12に
密着して取り付けられている。補償素子23は、偏磁検
出素子6の近傍に積層鋼板12に取り付けられている。
補償素子23は、例えば磁心7と同一の形状に形成され
た巻枠24に補償コイル25を巻き回して形成されてい
る。巻枠24は非磁性の絶縁物で形成されている。そし
て、検出コイル8と補償コイル25の出力電圧V1 ,V
2 は、それぞれ端子8a,8bと端子25a,25bか
ら演算装置26に入力されている。
FIG. 9 is a sectional view of a main part of a conversion transformer to which another embodiment of the DC bias detecting element according to the present invention is applied. In the present embodiment, when the DC bias detecting element is arranged on the iron core main leg, the induced voltage component generated in the DC bias detecting element by the leakage magnetic flux of the winding is detected by the compensating element to compensate for the disturbance. This is another example of eliminating the influence. The DC bias detecting element 6 is formed in the same manner as in FIG. The compensating element 23 is attached to the laminated steel plate 12 in the vicinity of the magnetic field detecting element 6.
The compensating element 23 is formed, for example, by winding a compensating coil 25 around a winding frame 24 formed in the same shape as the magnetic core 7. The winding frame 24 is formed of a non-magnetic insulator. Then, the output voltages V 1 and V of the detection coil 8 and the compensation coil 25 are output.
2 is input to the arithmetic unit 26 from the terminals 8a and 8b and the terminals 25a and 25b, respectively.

【0025】このように構成されることから、図9の実
施形態と同様に直流偏磁検出素子6には、分流磁束Φ2
の大きさ及び極性に応じた電圧と、巻線の漏れ磁束ΦL
に応じた電圧が重畳した電圧V1 が誘起される。一方、
補償素子23には、漏れ磁束ΦL に応じた電圧V2 が誘
起される。演算装置26は、それらの電圧V1 とV2
取り込み、次式(1)により分流磁束Φ2 の大きさ及び
極性に応じた電圧Vを求める。
With this configuration, the shunt magnetic flux Φ 2 is applied to the DC bias detecting element 6 as in the embodiment of FIG.
And the leakage flux Φ L of the winding according to the magnitude and polarity of
A voltage V 1 on which a voltage corresponding to the above is superimposed is induced. on the other hand,
A voltage V 2 according to the leakage magnetic flux Φ L is induced in the compensation element 23. The arithmetic unit 26 takes in these voltages V 1 and V 2 , and obtains a voltage V according to the magnitude and polarity of the shunt magnetic flux Φ 2 by the following equation (1).

【0026】 V=V1 −k・V2 …(1) ここで、kは巻線の漏れ磁束Φ1 による誘起電圧成分を
完全にキャンセルするための調整係数であり、検出コイ
ル8と補償コイル25の巻数,有効断面積等の差を調整
するためのものである。
V = V 1 −k · V 2 (1) Here, k is an adjustment coefficient for completely canceling the induced voltage component due to the leakage magnetic flux Φ 1 of the winding, and the detection coil 8 and the compensation coil It is for adjusting the difference between the number of turns of 25, the effective area, and the like.

【0027】これにより、演算装置26から出力される
電圧Vには、前述した実施形態と同様に図3(c)に示
した出力電圧Vが得られるから、変換用変圧器の直流偏
磁評価装置またはこれを用いた電力変換システムに適用
して、変圧器の直流偏磁量を精度良く、信頼性を持って
評価でき、変圧器の直流偏磁抑制制御を安定に行うこと
ができる。
As a result, the output voltage V shown in FIG. 3C is obtained as the voltage V output from the arithmetic unit 26 in the same manner as in the above-described embodiment. By applying the present invention to a device or a power conversion system using the same, the amount of DC bias of the transformer can be accurately and reliably evaluated, and the DC bias suppression control of the transformer can be stably performed.

【0028】以上は本発明である直流偏磁検出素子を巻
線に流れる負荷電流により発生する漏れ磁束ΦL の影響
が及ぶ部位に設置する場合の例であるが、本実施形態で
は巻線の漏れ磁束ΦL の影響が及ばない部位に設置する
場合について説明する。
The above is an example of the case where the DC bias detecting element of the present invention is installed at a position where the leakage magnetic flux Φ L generated by the load current flowing through the winding is affected. A case where the device is installed in a portion where the influence of the leakage magnetic flux Φ L does not affect will be described.

【0029】図10に本発明に係る直流偏磁検出素子の
設置位置の実施形態を示す。変換用変圧器1の鉄心5は
鋼板12を積層して形成されており、その鉄心5に直流
偏磁検出素子6が取り付けられている。直流偏磁検出素
子6は、例えばπ型に形成された板状の磁心7に検出コ
イル8を巻回して形成されている。磁心7の両端部7
a,7bは、鉄心5を構成する積層鋼板12の表面に密
着させて取り付けられている。そして、磁心7のうち検
出コイル8が巻き回されている部分7c(π型の中央
部)は、鉄心5の積層面外となるよう形成され、検出コ
イル8が鉄心5の外部に出るよう配置している。ここ
で、直流偏磁検出素子6の磁心7を鉄心5のうち、巻線
が巻かれていない上,下ヨークあるいは側脚部に配置
し、検出コイル8が巻線2,3に対向する鉄心面の反対
側の面に配置されるように形成する。
FIG. 10 shows an embodiment of the installation position of the DC bias detecting element according to the present invention. The iron core 5 of the conversion transformer 1 is formed by laminating steel plates 12, and a DC bias detecting element 6 is attached to the iron core 5. The DC bias detection element 6 is formed by winding a detection coil 8 around a plate-shaped magnetic core 7 formed in, for example, a π shape. Both ends 7 of magnetic core 7
a and 7b are attached in close contact with the surface of the laminated steel plate 12 constituting the iron core 5. The portion 7c (the central part of the π shape) of the magnetic core 7 around which the detection coil 8 is wound is formed so as to be outside the lamination plane of the iron core 5, and is arranged so that the detection coil 8 protrudes outside the iron core 5. doing. Here, the magnetic core 7 of the DC bias detecting element 6 is disposed on the upper or lower yoke or the side leg of the iron core 5 where the winding is not wound, and the detecting coil 8 is opposed to the windings 2 and 3. It is formed so as to be arranged on the surface opposite to the surface.

【0030】このようにすれば、鉄心5が巻線の漏れ磁
束ΦL に対して一種の磁気シールドの役割を果たすた
め、検出コイル8には巻線を流れる負荷電流により発生
する漏れ磁束ΦL は鎖交しないから、検出コイル8には
鋼板12中を通る主磁束Φ1 から分流した磁束Φ2 以外
の磁束による誘起電圧は発生しない。これにより、第1
実施形態で説明したように図3(c)に示した出力電圧
Vが得られるから、変換用変圧器の直流偏磁評価装置ま
たはこれを用いた電力変換システムに適用して、変圧器
の直流偏磁量を精度良く、信頼性を持って評価でき、変
圧器の直流偏磁抑制制御を安定に行うことができる。
In this way, since the iron core 5 plays a role of a kind of magnetic shield for the leakage magnetic flux Φ L of the winding, the detecting coil 8 has the leakage magnetic flux Φ L generated by the load current flowing through the winding. Therefore, no induced voltage is generated in the detection coil 8 by a magnetic flux other than the magnetic flux Φ 2 shunted from the main magnetic flux Φ 1 passing through the steel plate 12. Thereby, the first
Since the output voltage V shown in FIG. 3C is obtained as described in the embodiment, the present invention is applied to a DC bias evaluation device for a conversion transformer or a power conversion system using the same, and the DC voltage of the transformer is reduced. The amount of magnetization can be evaluated accurately and reliably, and the DC bias suppression control of the transformer can be stably performed.

【0031】図11に、本発明に係る直流偏磁量評価装
置の一実施形態の構成図を示す。本例は、直流偏磁検出
素子の出力に基づいて直流偏磁量を評価するようになっ
ている。図示のように、直流偏磁量評価装置は直流偏磁
検出素子6と演算装置9とから構成され、演算装置9は
直流偏磁検出素子6の出力電圧Vを所定のレベルに増幅
する増幅器30と、増幅器30の出力をアナログ/ディ
ジタル変換するA/D変換器31と、A/D変換器31
の出力信号に基づいて変圧器鉄心5の直流偏磁量を計算
する演算部32とからなる。
FIG. 11 shows a configuration diagram of an embodiment of the DC bias amount evaluation apparatus according to the present invention. In this example, the amount of DC bias is evaluated based on the output of the DC bias detecting element. As shown in the figure, the DC bias amount evaluating device includes a DC bias detecting element 6 and an arithmetic unit 9, and the arithmetic unit 9 amplifies an output voltage V of the DC bias detecting element 6 to a predetermined level. An A / D converter 31 for converting the output of the amplifier 30 from analog to digital, and an A / D converter 31
And an operation unit 32 for calculating the amount of DC bias of the transformer core 5 based on the output signal of the transformer core 5.

【0032】演算部32は、ディジタル値に変換された
直流偏磁検出素子6の出力電圧Vから図12に示すΔt
1 ,Δt2 を求め、例えば、次式(2)により直流偏磁
量Φdcを求める。
The calculating section 32 calculates the Δt shown in FIG. 12 from the output voltage V of the DC bias detecting element 6 converted into a digital value.
1 and Δt 2 are obtained, and for example, a DC bias amount Φ dc is obtained by the following equation (2).

【0033】 Φdc=Φmax・sin{(Δt1−Δt2)/(Δt1−Δt2)} …(2) または、図12の最下段に示した波形のように、演算部
32において、ディジタル値に変換された直流偏磁検出
素子6の出力電圧Vを積分し、これにより直流偏磁検出
素子6に鎖交する磁束波形に対応する∫Vdtの波形を求
め、その波形が零レベルと交差する点の間隔としてΔt
1 ,Δt2 を求めれば、(2)式と同様にして直流偏磁
量Φdcを求めることができる。ここで、∫Vdtの波形の
零レベルは磁心7が正負で磁気飽和することから、例え
ば最大値と最小値の中間とする。この方法は、変換用変
圧器の励磁電圧がPWM波形等の非正弦波の場合に有効
である。つまり、PWM波形等の場合、直流偏磁検出素
子の鎖交磁束には主磁束の零点付近以外でも急激な変化
があるため、主磁束の零点付近以外でもパルス状電圧が
発生する可能性があり、出力電圧Vの波形からΔt1
Δt2 を一義的に求めることができなくなるが、このよ
うな場合でもΔt1′,Δt2′は一義的に求まるので、
励磁電圧が歪んでいる場合であっても偏磁量を求めるこ
とができる。
Φ dc = Φ max · sin {(Δt 1 −Δt 2 ) / (Δt 1 −Δt 2 )} (2) Alternatively, as shown in the waveform at the bottom of FIG. Then, the output voltage V of the DC bias detecting element 6 converted into a digital value is integrated, and a ΔV dt waveform corresponding to a magnetic flux linking to the DC bias detecting element 6 is obtained, and the waveform is zero. Δt as the interval between points crossing the level
By obtaining 1 and Δt 2 , it is possible to obtain the DC bias amount Φ dc in the same manner as in equation (2). Here, the zero level of the waveform of ΔV dt is, for example, an intermediate value between the maximum value and the minimum value because the magnetic core 7 is positively or negatively magnetically saturated. This method is effective when the exciting voltage of the conversion transformer is a non-sine wave such as a PWM waveform. In other words, in the case of a PWM waveform or the like, the linkage magnetic flux of the DC bias detecting element has a sudden change even near the zero point of the main magnetic flux, so that a pulse-like voltage may be generated other than near the zero point of the main magnetic flux. From the waveform of the output voltage V, Δt 1 ,
Δt 2 cannot be unambiguously determined. However, even in such a case, Δt 1 ′ and Δt 2 ′ are uniquely determined.
Even when the excitation voltage is distorted, the amount of magnetization can be obtained.

【0034】なお、図12において、直流偏磁検出素子
6の出力電圧Vが十分大きい場合は、増幅器30を省略
して差し支えない。また、演算部32における直流偏磁
量の算出方法についても、上述した方法に限られるもの
ではない。
In FIG. 12, when the output voltage V of the DC bias detecting element 6 is sufficiently large, the amplifier 30 may be omitted. Further, the method of calculating the amount of DC bias in the calculation unit 32 is not limited to the above-described method.

【0035】図13〜図15に、本発明に係る直流偏磁
量評価装置を適用した電力変換システムの応用例をそれ
ぞれ示す。
FIGS. 13 to 15 show application examples of the power conversion system to which the DC bias evaluation apparatus according to the present invention is applied, respectively.

【0036】図14は、直流送電システムに応用した場
合の概念構成図である。図において、交直変換器41,
42は交流を直流に、あるいは直流を交流に変換する電
力変換器であり、直流送電線43を介して相互に接続さ
れるとともに、それぞれ変換用変圧器44,45を介し
て交流系統に接続されている。変換用変圧器44,45
にはそれぞれ直流偏磁評価装置46,47が接続されて
いる。直流偏磁評価装置46,47は前述した実施形態
のいずれかが適用され、それぞれ変換用変圧器44,4
5の直流偏磁量Φdcを求めて制御装置48,49に出力
するようになっている。制御装置48,49では、入力
される直流偏磁量Φdcを打ち消すように交直変換器4
1,42を構成する半導体スイッチ素子の点弧タイミン
グを修正して、交直変換器41,42に指令を送る。こ
れにより、変換用変圧器44,45の直流偏磁が解消さ
れ、直流偏磁に伴う不都合を防止することができる。
FIG. 14 is a conceptual configuration diagram when applied to a DC power transmission system. In the figure, the AC / DC converter 41,
Reference numeral 42 denotes a power converter for converting alternating current to direct current or direct current to alternating current, which are connected to each other via a DC transmission line 43 and connected to an AC system via conversion transformers 44 and 45, respectively. ing. Transformers 44, 45
Are connected to DC bias evaluation devices 46 and 47, respectively. Any of the above-described embodiments is applied to the DC bias evaluation devices 46 and 47, and the conversion transformers 44 and 4 are respectively used.
And outputs to the controller 48, 49 5 of seeking DC polarization磁量[Phi dc. The control device 48, 49, AC-DC to cancel DC polarization磁量[Phi dc input converter 4
The ignition timing of the semiconductor switching elements constituting the first and second switching devices is corrected, and a command is sent to the AC / DC converters 41 and. As a result, the DC bias of the conversion transformers 44 and 45 is eliminated, and the inconvenience associated with the DC bias can be prevented.

【0037】図14は無効電力補償システムに応用した
場合の概念構成図である。電力変換器51は変換用変圧
器52を介して電力系統53に接続されている。また、
電力変換器51には、例えばコンデンサ等の起動用電源
54が接続されている。変換用変圧器52には直流偏磁
評価装置55が接続されている。直流偏磁評価装置55
は前述した実施形態のいずれかが適用され、変換用変圧
器52の直流偏磁量Φdcを求めて制御装置56に出力す
る。制御装置56では、入力される直流偏磁量Φdcを打
ち消すように電力変換器51を構成する半導体スイッチ
素子の点弧タイミングを修正制御する。これにより、変
換用変圧器52の直流偏磁が解消され、直流偏磁に伴う
不都合を防止して、所期の無効電力補償を安定に行うこ
とができる。
FIG. 14 is a conceptual configuration diagram when applied to a reactive power compensation system. The power converter 51 is connected to a power system 53 via a conversion transformer 52. Also,
The power converter 51 is connected to a starting power supply 54 such as a capacitor. A DC bias evaluation device 55 is connected to the conversion transformer 52. DC bias evaluation device 55
Applies any of the above-described embodiments, calculates the DC bias amount Φ dc of the conversion transformer 52, and outputs it to the control device 56. The control device 56 corrects and controls the firing timing of the semiconductor switch elements constituting the power converter 51 so as to cancel the input DC bias amount Φ dc . As a result, the DC bias of the conversion transformer 52 is eliminated, the inconvenience associated with the DC bias is prevented, and the desired reactive power compensation can be stably performed.

【0038】なお、図14の構成において、起動用電源
54の代わりに、電池,SMES等の電力貯蔵装置を用
いれば、電力貯蔵システムとして使用することができ、
負荷平準化に利用できる。
In the configuration shown in FIG. 14, if a power storage device such as a battery or SMES is used in place of the starting power supply 54, it can be used as a power storage system.
Can be used for load leveling.

【0039】図15は位相調整システムに応用した場合
の概念構成図である。図において、電力変換器61は順
変換及び逆変換の機能を有し、調整用変圧器62を介し
て交流系統63に接続されるとともに、交流系統63に
直列接続された直列変圧器64に接続されている。そし
て、直列変圧器64には直流偏磁評価装置65が接続さ
れている。直流偏磁評価装置65は前述した実施形態の
いずれかが適用され、直列変圧器64の直流偏磁量Φdc
を求めて制御装置66に出力する。制御装置66では、
入力される偏磁量Φdcを打ち消すように電力変換器61
を構成する半導体スイッチ素子の点弧タイミングを修正
制御する。
FIG. 15 is a conceptual configuration diagram when applied to a phase adjustment system. In the figure, a power converter 61 has a function of forward conversion and reverse conversion, and is connected to an AC system 63 via an adjustment transformer 62 and to a series transformer 64 connected in series to the AC system 63. Have been. Further, a DC bias evaluation device 65 is connected to the series transformer 64. Any of the above-described embodiments is applied to the DC bias evaluation device 65, and the DC bias amount Φ dc of the series transformer 64 is applied.
And outputs it to the controller 66. In the control device 66,
Power converter 61 so as to cancel the polarization磁量[Phi dc input
And corrects and controls the ignition timing of the semiconductor switch element that constitutes.

【0040】このように構成される位相調整システムに
よれば、電力変換器61により直列変圧器64を介し
て、電力系統63の両端の対地電圧V11,V12に対して
任意の位相差を有する電圧Vs を電力系統63に印加
し、V11とV12の位相差を任意に調整することができ
る。そして、直流偏磁評価装置65と制御装置66の作
用により、直列変圧器64の直流偏磁が解消され、直流
偏磁に伴う不都合を防止して、所期の位相調整を安定に
行うことができる。
According to the phase adjustment system configured as described above, the power converter 61 applies an arbitrary phase difference to the ground voltages V 11 and V 12 at both ends of the power system 63 via the series transformer 64. the voltage V s having applied to the power system 63, it is possible to arbitrarily adjust the phase difference between V 11 and V 12. Then, by the action of the DC bias evaluation device 65 and the control device 66, the DC bias of the series transformer 64 is eliminated, the inconvenience associated with the DC bias is prevented, and the intended phase adjustment can be stably performed. it can.

【0041】[0041]

【発明の効果】本発明によれば、変圧器の直流偏磁量等
を検出する直流偏磁検出素子に、積層鋼板から漏れた主
磁束及び巻線電流により発生した漏れ磁束が鎖交する際
の影響を排除することができる。
According to the present invention, when the main magnetic flux leaking from the laminated steel sheet and the leakage magnetic flux generated by the winding current interlink with the DC bias detecting element for detecting the DC bias amount or the like of the transformer. Can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の直流偏磁評価装置を適用してなる一実
施形態の電力変換システムの全体構成図を示す。
FIG. 1 shows an overall configuration diagram of a power conversion system according to an embodiment to which a DC bias evaluation apparatus of the present invention is applied.

【図2】図1に係る直流偏磁検出素子を拡大して示した
斜視図である。
FIG. 2 is an enlarged perspective view of a DC bias detecting element according to FIG. 1;

【図3】図1の実施形態における各部の動作波形図であ
る。
FIG. 3 is an operation waveform diagram of each unit in the embodiment of FIG. 1;

【図4】図3と対比するために示した従来の各部の動作
波形図である。
FIG. 4 is an operation waveform diagram of each section of the related art shown for comparison with FIG.

【図5】本発明に係る直交方式の直流偏磁検出素子の実
施形態の取り付け図である。
FIG. 5 is an installation diagram of an embodiment of an orthogonal DC bias detecting element according to the present invention.

【図6】図5の直流偏磁検出素子近傍の拡大図である。FIG. 6 is an enlarged view of the vicinity of the DC bias detection element in FIG. 5;

【図7】本発明に係るシールド方式の直流偏磁検出素子
の実施形態の取り付け模式図である。
FIG. 7 is a schematic view of an embodiment of a shield type DC bias detecting element according to the present invention.

【図8】本発明に係る補償方式の直流偏磁検出素子の実
施形態の取り付け模式図である。
FIG. 8 is a schematic view of an embodiment of a compensation type DC bias detection element according to the present invention.

【図9】本発明に係る補償方式の直流偏磁検出素子の他
の実施形態の取り付け模式図である。
FIG. 9 is a schematic diagram of another embodiment of the compensation type DC bias detection element according to the present invention.

【図10】本発明に係る直流偏磁検出素子の取り付け位
置を示した模式図である。
FIG. 10 is a schematic view showing a mounting position of a DC bias detecting element according to the present invention.

【図11】本発明の直流偏磁評価装置の一実施形態の全
体構成図である。
FIG. 11 is an overall configuration diagram of an embodiment of a DC bias evaluation apparatus of the present invention.

【図12】直流偏磁評価装置の動作を説明するための波
形図である。
FIG. 12 is a waveform chart for explaining the operation of the DC bias evaluation apparatus.

【図13】本発明の直流偏磁評価装置を適用してなる直
流送電システムの一実施形態の概念構成図である。
FIG. 13 is a conceptual configuration diagram of an embodiment of a DC power transmission system to which the DC bias evaluation device of the present invention is applied.

【図14】本発明の直流偏磁評価装置を適用してなる無
効電力補償システムの一実施形態の概念構成図である。
FIG. 14 is a conceptual configuration diagram of an embodiment of a reactive power compensation system to which the DC bias evaluation apparatus of the present invention is applied.

【図15】本発明の直流偏磁評価装置を適用してなる位
相調整システムの一実施形態の概念構成図である。
FIG. 15 is a conceptual configuration diagram of an embodiment of a phase adjustment system to which the DC bias evaluation device of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…変換用変圧器、4…電力変換器、5…鉄心、6…直
流偏磁検出素子、7,13,15…磁心、8…検出コイ
ル、9,26…演算装置、10…直流偏磁評価装置、1
1…制御装置、12…積層鋼板、14…シールド部材、
20,23…補償素子、21,24…巻枠、22,25
…補償コイル、30…増幅器、31…A/D変換器、3
2…演算部。
DESCRIPTION OF SYMBOLS 1 ... Transformer for conversion, 4 ... Power converter, 5 ... Iron core, 6 ... DC bias detection element, 7, 13, 15 ... Magnetic core, 8 ... Detection coil, 9, 26 ... Calculation device, 10 ... DC bias Evaluation device, 1
DESCRIPTION OF SYMBOLS 1 ... Control device, 12 ... Laminated steel plate, 14 ... Shield member,
20, 23 ... compensating element, 21, 24 ... winding frame, 22, 25
... Compensation coil, 30 ... Amplifier, 31 ... A / D converter, 3
2. Arithmetic unit.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】磁性材の磁心に検出コイルを巻き回し、変
圧器鉄心に配置して変圧器の直流偏磁を検出する直流偏
磁検出素子において、 前記磁心の両端部を前記変圧器鉄心を形成する積層鋼板
の積層面に接して配置し、かつ前記検出コイルを巻き回
した部分を前記変圧器鉄心の表面から一定寸法離して配
置させてなることを特徴とする変圧器の直流偏磁検出素
子。
1. A DC bias detecting element for detecting a DC bias of a transformer by arranging a detection coil around a magnetic core of a magnetic material and detecting the DC bias of the transformer by arranging the detection coil on both ends of the transformer. DC bias detection of a transformer characterized by being arranged in contact with a lamination surface of a laminated steel sheet to be formed, and a portion where the detection coil is wound is arranged at a fixed distance from a surface of the transformer core. element.
【請求項2】磁性材の磁心に検出コイルを巻き回してな
る直流偏磁検出素子を変圧器鉄心に配置してなる変圧器
において、 前記直流偏磁検出素子の磁心の両端部を、前記変圧器鉄
心を形成する積層鋼板の積層面に接して配置し、かつ前
記検出コイルを巻き回した部分を変圧器鉄心の表面から
一定寸法離して配置させてなることを特徴とする変圧
器。
2. A transformer in which a DC bias detection element formed by winding a detection coil around a magnetic core of a magnetic material is disposed on a transformer core, wherein both ends of the core of the DC bias detection element are connected to the transformer. A transformer characterized by being arranged in contact with a laminated surface of a laminated steel sheet forming a core of a transformer, and wherein a portion where the detection coil is wound is arranged at a fixed distance from a surface of the transformer core.
【請求項3】磁性材の磁心に検出コイルを巻き回してな
る直流偏磁検出素子を変圧器鉄心に配置してなる変圧器
において、 前記直流偏磁検出素子の磁心の両端部を、前記変圧器鉄
心を形成する積層鋼板の積層面に接して配置し、かつ前
記検出コイルを巻き回した部分を変圧器鉄心の表面から
一定寸法離すとともに、前記検出コイルの軸方向が変圧
器巻線の軸方向に対して直交するよう形成してなること
を特徴とする変圧器。
3. A transformer in which a DC bias detection element formed by winding a detection coil around a magnetic core of a magnetic material is disposed on a transformer core, wherein both ends of the core of the DC bias detection element are connected to the transformer. The detection coil is disposed in contact with the lamination surface of the laminated steel sheet forming the device core, and the portion where the detection coil is wound is separated from the surface of the transformer core by a certain distance, and the axis direction of the detection coil is the axis of the transformer winding. A transformer characterized by being formed so as to be orthogonal to a direction.
【請求項4】磁性材の磁心に検出コイルを巻き回してな
る直流偏磁検出素子を変圧器鉄心に配置してなる変圧器
において、 前記直流偏磁検出素子の磁心の両端部を前記変圧器鉄心
を形成する積層鋼板の積層面に接して配置し、かつ前記
検出コイルを巻き回した部分を変圧器鉄心の表面から一
定寸法離すとともに、該直流偏磁検出素子の周囲のうち
前記変圧器鉄心に接する面を除いて磁性材または非磁性
材のシールド部材で覆ってなすことを特徴とする変圧
器。
4. A transformer in which a DC bias detection element formed by winding a detection coil around a magnetic core of a magnetic material is disposed on a transformer core, wherein both ends of the core of the DC bias detection element are connected to the transformer. The transformer core is disposed in contact with the laminated surface of the laminated steel sheet forming the iron core, and a portion where the detection coil is wound is separated from the surface of the transformer core by a predetermined distance. A transformer characterized by being covered with a shield member made of a magnetic material or a non-magnetic material except for a surface in contact with the transformer.
【請求項5】磁性材の磁心に検出コイルを巻き回してな
る直流偏磁検出素子を変圧器鉄心に配置してなる変圧器
において、 空心または非磁性材の巻枠に補償コイルを巻き回してな
る補償素子を前記直流偏磁検出素子の近傍に配置し、前
記検出コイルの誘起電圧から前記補償コイルの誘起電圧
を減ずるように結線されてなることを特徴とする変圧
器。
5. A transformer in which a DC bias detection element formed by winding a detection coil around a magnetic core made of a magnetic material is disposed on a transformer core, wherein a compensation coil is wound around an air core or a winding frame made of a non-magnetic material. A transformer, wherein a compensating element is disposed near the DC bias detecting element and is connected so as to subtract the induced voltage of the compensation coil from the induced voltage of the detection coil.
【請求項6】請求項1記載の直流偏磁検出素子を変圧器
鉄心に配置してなる変圧器において、 前記直流偏磁検出素子の検出コイルを、前記変圧器鉄心
のうち巻線に対向する鉄心面の反対側の面から一定寸法
離して配置してなることを特徴とする変圧器。
6. A transformer in which a DC bias detecting element according to claim 1 is disposed on a transformer core, wherein a detecting coil of the DC bias detecting element faces a winding of the transformer core. A transformer characterized by being arranged at a certain distance from a surface opposite to an iron core surface.
【請求項7】磁性材の磁心に検出コイルを巻き回してな
る直流偏磁検出素子を変圧器鉄心に配置し、前記検出コ
イルに誘起される電圧に基づいて、前記変圧器鉄心内を
通る磁束の直流偏磁量とその極性を算出する直流偏磁評
価装置において、 前記検出コイルに、前記変圧器鉄心を形成する積層鋼板
の積層間及び外部を通る磁束が鎖交しないように当該検
出コイルを配置したことを特徴とする直流偏磁評価装
置。
7. A DC bias detecting element, which is formed by winding a detecting coil around a magnetic core made of a magnetic material, is disposed in a transformer core, and a magnetic flux passing through the transformer core based on a voltage induced in the detecting coil. In the DC bias evaluation device for calculating the amount of DC bias and its polarity, the detection coil, the detection coil so that the magnetic flux passing between and outside of the laminated steel sheet forming the transformer core does not interlink. DC bias evaluation apparatus characterized by being arranged.
【請求項8】請求項7記載の直流偏磁評価装置におい
て、 前記直流偏磁検出素子の磁心の両端部が前記変圧器鉄心
を形成する積層鋼板の積層面に接して配置され、かつ前
記検出コイルを巻き回した部分が前記変圧器鉄心の表面
から一定寸法離して形成されてなることを特徴とする直
流偏磁評価装置。
8. The DC bias evaluation apparatus according to claim 7, wherein both ends of the magnetic core of the DC bias detection element are arranged in contact with a laminated surface of a laminated steel sheet forming the transformer core, and the detection is performed. A DC bias evaluation apparatus characterized in that a portion where a coil is wound is formed at a certain distance from a surface of the transformer core.
【請求項9】請求項7記載の直流偏磁評価装置におい
て、 前記直流偏磁検出素子の磁心の両端部が前記変圧器鉄心
を形成する積層鋼板の積層面に接して配置され、かつ前
記検出コイルを巻き回した部分が変圧器鉄心の表面から
一定寸法離されるとともに前記検出コイルの軸方向が変
圧器巻線の軸方向に対して直交するよう形成されてなる
ことを特徴とする直流偏磁評価装置。
9. The DC bias evaluation apparatus according to claim 7, wherein both ends of the magnetic core of the DC bias detecting element are arranged in contact with a laminated surface of a laminated steel sheet forming the transformer core, and the detection is performed. A part where the coil is wound is separated from the surface of the transformer core by a certain dimension, and an axial direction of the detection coil is formed to be orthogonal to an axial direction of the transformer winding. Evaluation device.
【請求項10】請求項7記載の直流偏磁評価装置におい
て、 前記直流偏磁検出素子の磁心の両端部が前記変圧器鉄心
を形成する積層鋼板の積層面に接して配置され、かつ前
記検出コイルを巻き回した部分が変圧器鉄心の表面から
一定寸法離されるとともに、該直流偏磁検出素子の周囲
のうち前記変圧器鉄心に接する面を除いて磁性材または
非磁性材のシールド部材で覆われてなることを特徴とす
る直流偏磁評価装置。
10. The DC bias evaluation apparatus according to claim 7, wherein both ends of a magnetic core of the DC bias detection element are arranged in contact with a laminated surface of a laminated steel sheet forming the transformer core, and the detection is performed. The wound portion of the coil is separated from the surface of the transformer core by a certain distance, and is covered with a shield member made of a magnetic material or a non-magnetic material except for a portion of the periphery of the DC bias detecting element which is in contact with the transformer core. DC bias evaluation apparatus characterized by the fact that
【請求項11】請求項7記載の直流偏磁評価装置におい
て、 前記直流偏磁検出素子の検出コイルが、前記変圧器鉄心
のうち巻線に対向する鉄心面の反対側の面から一定寸法
離して配置されてなることを特徴とする直流偏磁評価装
置。
11. The DC bias evaluation apparatus according to claim 7, wherein the detection coil of the DC bias detection element is separated from the transformer core by a predetermined distance from a surface of the transformer core opposite to a core surface facing a winding. DC bias evaluation apparatus characterized by being arranged in a position.
【請求項12】磁性材の磁心に検出コイルを巻き回して
なる直流偏磁検出素子を変圧器鉄心に配置し、前記検出
コイルに誘起される電圧に基づいて、前記変圧器鉄心内
を通る磁束の直流偏磁量とその極性を算出する直流偏磁
評価装置において、 空心または非磁性材の巻枠に補償コイルを巻き回してな
る補償素子を前記直流偏磁検出素子の近傍に配置し、前
記検出コイルの誘起電圧から前記補償コイルの誘起電圧
を減ずるように結線されてなることを特徴とする直流偏
磁評価装置。
12. A transformer comprising a DC magnetic field detecting element formed by winding a detecting coil around a magnetic core made of a magnetic material, and a magnetic flux passing through the transformer core based on a voltage induced in the detecting coil. In a DC bias evaluation device that calculates the amount of DC bias and its polarity, a compensating element formed by winding a compensation coil around an air core or a non-magnetic material winding frame is disposed near the DC bias detecting element, A DC bias evaluation apparatus characterized by being connected so that the induced voltage of the compensation coil is subtracted from the induced voltage of the detection coil.
【請求項13】磁性材の磁心に検出コイルを巻き回して
なる直流偏磁検出素子を変圧器鉄心に配置し、前記検出
コイルに誘起される電圧に基づいて、前記変圧器鉄心内
を通る磁束の直流偏磁量とその極性を算出する直流偏磁
評価装置において、 空心または非磁性材の巻枠に補償コイルを巻き回してな
る補償素子を前記直流偏磁検出素子の近傍に配置し、前
記検出コイルと前記補償コイルの出力に基づいて前記変
圧器鉄心の直流偏磁量を評価することを特徴とする直流
偏磁評価装置。
13. A transformer having a DC magnetic field detecting element formed by winding a detection coil around a magnetic core of a magnetic material, and a magnetic flux passing through the transformer core based on a voltage induced in the detection coil. In a DC bias evaluation device that calculates the amount of DC bias and its polarity, a compensating element formed by winding a compensation coil around an air core or a non-magnetic material winding frame is disposed near the DC bias detecting element, A DC bias evaluation device for evaluating a DC bias amount of the transformer core based on outputs of a detection coil and the compensation coil.
【請求項14】請求項7〜13のいずれかに記載の直流
偏磁評価装置において、 前記直流偏磁検出素子の磁心が、鉄・ニッケル合金また
は非晶質磁性材料で形成されたことを特徴とする直流偏
磁評価装置。
14. The DC bias evaluation device according to claim 7, wherein the magnetic core of the DC bias detection element is formed of an iron-nickel alloy or an amorphous magnetic material. DC bias evaluation device.
【請求項15】半導体スイッチ素子を用いてなる電力変
換器と、該電力変換器の交流側に接続される変換用変圧
器と、該変換用変圧器の偏磁を評価する直流偏磁評価装
置と、該直流偏磁評価装置の評価に基づいて前記変換用
変圧器の直流偏磁を打ち消すように前記電力変換器を制
御する直流偏磁抑制制御手段とを備えてなる電力変換シ
ステムにおいて、 前記直流偏磁評価装置が請求項7〜13のいずれかに記
載の直流偏磁評価装置であることを特徴とする電力変換
システム。
15. A power converter using a semiconductor switch element, a conversion transformer connected to the AC side of the power converter, and a DC bias evaluation device for evaluating the bias of the conversion transformer. And a DC bias suppression control unit that controls the power converter so as to cancel the DC bias of the conversion transformer based on the evaluation of the DC bias evaluation device. A power conversion system, wherein the DC bias evaluation device is the DC bias evaluation device according to any one of claims 7 to 13.
JP19359497A 1997-07-18 1997-07-18 Transformer, DC bias detection element of transformer, and DC bias evaluation device Expired - Fee Related JP3518260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19359497A JP3518260B2 (en) 1997-07-18 1997-07-18 Transformer, DC bias detection element of transformer, and DC bias evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19359497A JP3518260B2 (en) 1997-07-18 1997-07-18 Transformer, DC bias detection element of transformer, and DC bias evaluation device

Publications (2)

Publication Number Publication Date
JPH1140429A true JPH1140429A (en) 1999-02-12
JP3518260B2 JP3518260B2 (en) 2004-04-12

Family

ID=16310563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19359497A Expired - Fee Related JP3518260B2 (en) 1997-07-18 1997-07-18 Transformer, DC bias detection element of transformer, and DC bias evaluation device

Country Status (1)

Country Link
JP (1) JP3518260B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125573A3 (en) * 2009-04-29 2011-03-10 Crompton Greaves Limited Load current sensing power distribution transformer
CN103337334A (en) * 2013-06-20 2013-10-02 山东电力设备有限公司 Degaussing balance structure used in double-column shunt transformer
CN103969600A (en) * 2013-02-01 2014-08-06 株式会社电装 Detector of magnetic bias, magnetic saturation, or amount of magnetic flux
JP2015032719A (en) * 2013-08-05 2015-02-16 株式会社日立製作所 Excitation current detection device for transformer for conversion
JP2015038986A (en) * 2013-07-29 2015-02-26 ザ・ボーイング・カンパニーTheBoeing Company Transformer core flux control for power management
CN104614688A (en) * 2015-01-19 2015-05-13 武汉科技大学 C-type sensor for DC magnetic bias dynamic magnetic-flux measurement and detection method thereof
WO2018230044A1 (en) * 2017-06-15 2018-12-20 株式会社日立産機システム Stationary induction machine and stationary induction machine fault monitoring system
EP3982381A1 (en) * 2020-10-06 2022-04-13 Hitachi Energy Switzerland AG Power transformer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125573A3 (en) * 2009-04-29 2011-03-10 Crompton Greaves Limited Load current sensing power distribution transformer
US9753099B2 (en) 2013-02-01 2017-09-05 Denso Corporation Detector of magnetic bias, magnetic saturation, or amount of magnetic flux
CN103969600A (en) * 2013-02-01 2014-08-06 株式会社电装 Detector of magnetic bias, magnetic saturation, or amount of magnetic flux
CN103337334A (en) * 2013-06-20 2013-10-02 山东电力设备有限公司 Degaussing balance structure used in double-column shunt transformer
JP2015038986A (en) * 2013-07-29 2015-02-26 ザ・ボーイング・カンパニーTheBoeing Company Transformer core flux control for power management
JP2015032719A (en) * 2013-08-05 2015-02-16 株式会社日立製作所 Excitation current detection device for transformer for conversion
CN104614688A (en) * 2015-01-19 2015-05-13 武汉科技大学 C-type sensor for DC magnetic bias dynamic magnetic-flux measurement and detection method thereof
WO2018230044A1 (en) * 2017-06-15 2018-12-20 株式会社日立産機システム Stationary induction machine and stationary induction machine fault monitoring system
JP2019004056A (en) * 2017-06-15 2019-01-10 株式会社日立産機システム Stationary induction equipment and failure monitoring system for stationary induction equipment
EP3982381A1 (en) * 2020-10-06 2022-04-13 Hitachi Energy Switzerland AG Power transformer
WO2022073658A1 (en) * 2020-10-06 2022-04-14 Hitachi Energy Switzerland Ag Power transformer
KR20230048174A (en) * 2020-10-06 2023-04-10 히타치 에너지 스위처랜드 아게 power transformer
CN116348976A (en) * 2020-10-06 2023-06-27 日立能源瑞士股份公司 Power transformer

Also Published As

Publication number Publication date
JP3518260B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US10126332B2 (en) Current transducer with fluxgate detector
EP0579462B1 (en) DC current sensor
JP3286431B2 (en) DC current sensor
JP2017521675A5 (en)
JP4842275B2 (en) Detection circuit for current measurement
Ortiz et al. " Magnetic Ear"-based balancing of magnetic flux in high power medium frequency dual active bridge converter transformer cores
JPH0627151A (en) Amperometric converter operated on basis of compensation primciple
US11300591B2 (en) Contactless current measurement
JP6642230B2 (en) DC bias detection method for transformer core and DC bias detection system for transformer core
JP3518260B2 (en) Transformer, DC bias detection element of transformer, and DC bias evaluation device
JP2001033494A (en) Alternating current detector
JP6414780B2 (en) Current detector
JP5449222B2 (en) DC leakage detection device
JP6298581B2 (en) Current detection device and substation equipment provided with the same
JP2003075475A (en) Ac current sensor
JPH0728534A (en) Controller for power converter
JPH10233316A (en) Biased magnetization detecting device and its evaluating device for transformer
US5621633A (en) Apparatus for controlling converter having self-arc-extinction elements
JPH11162769A (en) Apparatus and method for evaluating dc polarization of transformer
Roman et al. Low consumption flux-gate transducer for AC and DC high-current measurement
CN114114105B (en) Magnetic flux density measuring device in high-frequency transformer and high-frequency transformer
FI90143C (en) According to the principle of compensation, measuring current converters work for current
JPH0737729A (en) Suppressing device for dc biased magnetization of transformer core
JP7208830B2 (en) Current sensor element
JPH02229410A (en) Detection of direct-current deflecting magnetism in iron core of transformer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees