JPH1139716A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH1139716A
JPH1139716A JP10136689A JP13668998A JPH1139716A JP H1139716 A JPH1139716 A JP H1139716A JP 10136689 A JP10136689 A JP 10136689A JP 13668998 A JP13668998 A JP 13668998A JP H1139716 A JPH1139716 A JP H1139716A
Authority
JP
Japan
Prior art keywords
layer
refractive index
recording
extinction coefficient
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10136689A
Other languages
Japanese (ja)
Inventor
Masami Yashiro
雅美 家城
Toshinaka Nonaka
敏央 野中
Gentaro Obayashi
元太郎 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10136689A priority Critical patent/JPH1139716A/en
Publication of JPH1139716A publication Critical patent/JPH1139716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve recording characteristics such as a high recording sensitivity, a high ratio of a carrier to noise and a high erase rate by successively laminating a first dielectric layer/a recording layer/a second dielectric layer/a reflection layer and specifying refractive indexes, attenuation coefficients and layer thickness in wavelengths within a specified range of the respective layers. SOLUTION: When recording/erasing is performed by light irradiation of a wavelength 390-450 nm, since high contrast is obtained, the refractive index of a first dielectric layer is made within the range of 2.2-2.3, the layer thickness is made to 30-500 nm, a refractive index and an exhaustion coefficient in the amorphous state of the recording layer are made to 2.58-3.3 and 2.6-2.9, a refractive index and an attenuation coefficient in the crystal state are made to 1.77-2.5 and 3.2-3.8, the recording layer thickness is made to 7-35 nm, a second dielectric layer refractive index and layer thickness are made to 2.25-2.4 and 0-25 nm, a reflection layer refractive index and attenuation coefficient are made to 0.4-0.6 and 3.8-4.25, the irradiation power of light recording/erasing is secured, the recording at a high linear velocity is performed, the peeling of the first dielectric layer and the crack occurrence are prevented and stable contrast is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の照射により、
情報の記録、消去、再生が可能である光情報記録媒体に
関するものである。特に本発明は、緑色〜青色レーザー
光を用いた記録情報の消去、書換機能を有し、情報信号
を高速かつ、高密度に記録可能な光ディスク、光カー
ド、光テープなどの書換可能相変化型光記録媒体に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to an optical information recording medium capable of recording, erasing, and reproducing information. In particular, the present invention has a function of erasing and rewriting recorded information using green to blue laser light, and is capable of recording information signals at high speed and high density. It relates to an optical recording medium.

【0002】[0002]

【従来の技術】相変化の技術を用いた書換可能な相変化
光記録媒体は、Te合金を主成分とする記録層を有して
いるものが知られている。記録時は結晶状態の記録層に
集束したレーザー光パルスを短時間照射し、記録層を部
分的に溶融する。溶融した部分は熱拡散により急冷さ
れ、固化し、アモルファス状態の記録マークが形成され
る。この記録マークの光線反射率は、結晶状態より低
く、光学的に記録信号として再生可能である。
2. Description of the Related Art A rewritable phase change optical recording medium using a phase change technique is known to have a recording layer mainly composed of a Te alloy. During recording, a focused laser light pulse is applied to the crystalline recording layer for a short time to partially melt the recording layer. The melted portion is quenched by thermal diffusion and solidified to form an amorphous recording mark. The light reflectance of this recording mark is lower than that of the crystalline state and can be reproduced optically as a recording signal.

【0003】さらに消去時には、記録マーク部分にレー
ザー光を照射し、記録層の融点以下、結晶化温度以上の
温度に加熱することによってアモルファス状態の記録マ
ークを結晶化し、もとの未記録状態に戻す。
Further, at the time of erasing, the recording mark portion is irradiated with a laser beam and heated to a temperature lower than the melting point of the recording layer and higher than the crystallization temperature to crystallize the amorphous recording mark and return to the original unrecorded state. return.

【0004】これらTe合金を記録層とした光記録媒体
では、結晶化温度が速く、照射パワーを変調するだけ
で、円形のビームによる高速のオーバーライトが可能で
ある(T.Ohta et al, Proc. Int. Symp. on optical Me
mory 1989 p49-50)。これらの書換可能な相変化光記録
媒体として、光ディスクが例にあげられる。光ディスク
はレーザー光を集光して記録再生を行うため、レーザー
光の波長は光ディスクの記録容量を決定する要素の1つ
である。
[0004] In such an optical recording medium having a Te alloy as a recording layer, the crystallization temperature is high, and high-speed overwriting with a circular beam is possible only by modulating the irradiation power (T. Ohta et al, Proc. . Int. Symp. On optical Me
mory 1989 p49-50). An optical disk is an example of such a rewritable phase change optical recording medium. Since the optical disc performs recording and reproduction by condensing the laser light, the wavelength of the laser light is one of the factors that determine the recording capacity of the optical disc.

【0005】このような光ディスクの記録容量を増加さ
せるために、レーザー光の短波長化、レンズの高NA化
の開発が進み、現在では波長680nmの半導体レーザ
ーを用いた記録再生装置が商品化されている。さらに短
波長化の検討が行われており、波長470nm、430
nm、410nmなどのレーザー光の開発も進んでい
る。光ディスクは記録再生消去に用いられる波長に対し
て、良好な記録感度、キャリア対ノイズ比、消去率など
の記録特性を得られるよう設計されており、一般に波長
680nmに対応した光ディスクを、450nm以下の
レーザー光下で使用し、同様の特性を得ることは困難で
ある。また光ディスクを構成する各層の屈折率nや消衰
係数k、厚さの選択によって非晶状態と結晶状態の反射
率差であるコントラストなどの光学特性が変化する。し
たがって、前述のような短波長域で高いコントラストを
得るには、屈折率や消衰係数、層の厚さの選択に大きな
制限を受けてしまう問題があった。
In order to increase the recording capacity of such optical discs, the development of shorter wavelength laser light and a higher NA of the lens has been developed. At present, a recording / reproducing apparatus using a semiconductor laser having a wavelength of 680 nm has been commercialized. ing. Investigation of further shortening of the wavelength has been conducted, and wavelengths of 470 nm and 430 nm have been studied.
Development of laser light of nm, 410 nm, etc. is also progressing. Optical discs are designed to obtain good recording sensitivity, carrier-to-noise ratio, erasure rate, and other recording characteristics with respect to the wavelength used for recording, reproduction, and erasure. It is difficult to obtain similar properties when used under laser light. Further, by selecting the refractive index n, the extinction coefficient k, and the thickness of each layer constituting the optical disk, optical characteristics such as contrast, which is a difference in reflectance between the amorphous state and the crystalline state, change. Therefore, in order to obtain a high contrast in a short wavelength region as described above, there is a problem that selection of a refractive index, an extinction coefficient, and a layer thickness is greatly restricted.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前述
の光記録媒体の問題を解決し、短波長レーザー光を用い
た記録再生において、高いコントラストが得られる光記
録媒体を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the optical recording medium and to provide an optical recording medium which can obtain a high contrast in recording and reproduction using a short-wavelength laser beam. is there.

【0007】本発明の別の目的は、記録感度が高く、か
つキャリア対ノイズ比、消去率などの記録特性に優れた
光記録媒体を提供することである。
Another object of the present invention is to provide an optical recording medium having high recording sensitivity and excellent recording characteristics such as a carrier-to-noise ratio and an erasing ratio.

【0008】本発明のさらに別の目的は、安価で生産性
に優れた光記録媒体を提供することである。
It is still another object of the present invention to provide an optical recording medium which is inexpensive and has excellent productivity.

【0009】[0009]

【課題を解決するための手段】本発明の目的は、光の照
射による非晶相と結晶相の間の相変化により情報の記録
及び消去が行われる光記録媒体において、透明基板上に
少なくとも第1誘電体層/記録層/第2誘電体層/反射
層がこの順に積層されており、各層の波長390nm以
上450nm以下での屈折率、消衰係数、層の厚さが下
記の式で表される関係にあることを特徴とする光記録媒
体によって達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical recording medium in which information is recorded and erased by a phase change between an amorphous phase and a crystalline phase due to irradiation of light, and at least a first layer is formed on a transparent substrate. 1 dielectric layer / recording layer / second dielectric layer / reflection layer are laminated in this order, and the refractive index, extinction coefficient, and layer thickness of each layer at a wavelength of 390 nm to 450 nm are represented by the following formulas. This is achieved by an optical recording medium characterized by the following relationship.

【0010】2.2≦na≦2.3 30≦da≦500 2.58≦nα≦3.3 2.6≦kα≦2.9 1.77≦nc≦2.5 3.2≦kc≦3.8 7≦dr≦35(nm) 2.25≦nb≦2.4 0<db≦25(nm) 0.4≦nβ≦0.6 3.8≦kβ≦4.25 ここで、naは第1誘電体層の屈折率、daは第1誘電体
層の厚さ(nm)、nαは記録層の非晶状態の屈折率、
kαは記録層の非晶状態の消衰係数、ncは記録層の結
晶状態の屈折率、kcは記録層の結晶状態の消衰係数、
rは記録層の厚さ(nm)、nbは第2誘電体層の屈折
率、dbは第2誘電体層の厚さ(nm)、nβは反射層
の屈折率、kβは反射層の消衰係数を表す。
2.2 ≦ n a ≦ 2.3 30 ≦ d a ≦ 500 2.58 ≦ n α ≦ 3.3 2.6 ≦ k α ≦ 2.9 1.77 ≦ n c ≦ 2.5 3.2 ≦ k c ≦ 3.8 7 ≦ d r ≦ 35 (nm) 2.25 ≦ n b ≦ 2.4 0 <d b ≦ 25 (nm) 0.4 ≦ nβ ≦ 0.6 3.8 ≦ kβ ≦ 4.25 where, n a is the refractive index of the first dielectric layer, d a is the thickness of the first dielectric layer (nm), n [alpha is the refractive index of the amorphous state of the recording layer,
kα is the extinction coefficient of the amorphous state of the recording layer, n c is the refractive index of the crystalline state of the recording layer, k c is the extinction coefficient of the crystalline state of the recording layer,
d r is the thickness of the recording layer (nm), n b is the refractive index of the second dielectric layer, d b is the thickness of the second dielectric layer (nm), nβ is the refractive index of the reflective layer, Keibeta reflection Indicates the extinction coefficient of the layer.

【0011】[0011]

【発明の実施の形態】本発明の光記録媒体では、波長3
90nm以上450nm以下の光の照射による記録消去
が行われる場合においても、高いコントラストが得られ
る点から、上記の式にある屈折率及び消衰係数、層の厚
さになるように構成することが重要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical recording medium of the present invention has a wavelength of 3
Even in the case where recording and erasing is performed by irradiating light having a wavelength of 90 nm or more and 450 nm or less, it is preferable that the refractive index, the extinction coefficient, and the layer thickness in the above-described formulas be set to obtain high contrast. is important.

【0012】本発明における第1誘電体層の屈折率が
2.2より小さい場合には、反射率が高くなり、記録感
度が低くなる、あるいは記録、消去を行う光の照射パワ
ーが不足し、高線速下での記録が困難になる、などの問
題点を生じる。また屈折率が2.3より大きい場合に
は、第1誘電体層の厚さに対して記録マークの非晶部と
結晶部の反射率差の変動が大きくなり、再生時の信号コ
ントラストを悪化させてしまう。
When the refractive index of the first dielectric layer in the present invention is smaller than 2.2, the reflectivity increases and the recording sensitivity decreases, or the irradiation power of light for recording and erasing becomes insufficient. Problems such as difficulty in recording at high linear velocity occur. If the refractive index is greater than 2.3, the change in the reflectance difference between the amorphous portion and the crystalline portion of the recording mark relative to the thickness of the first dielectric layer becomes large, deteriorating the signal contrast during reproduction. Let me do it.

【0013】第1誘電体層の厚さとしては、層の厚さに
よる反射率やコントラストの変動が非常に小さいため、
およそ30〜500nmである。第1誘電体層は、基板
や記録層から剥離し難く、クラックなどの欠陥が生じ難
いことから、50〜400nmがより好ましい。
As for the thickness of the first dielectric layer, the fluctuation of the reflectance and contrast due to the thickness of the layer is very small.
It is approximately 30 to 500 nm. The first dielectric layer is more preferably 50 to 400 nm because it is difficult to peel off from the substrate or the recording layer and hardly causes defects such as cracks.

【0014】本発明において誘電体層は、記録時に基
板、記録層などが熱によって変形し記録特性が劣化する
ことを防止するなど、基板、記録層を熱から保護する効
果、光学的な干渉効果により、再生時の信号コントラス
トを改善する効果がある。
In the present invention, the dielectric layer has an effect of protecting the substrate and the recording layer from heat, such as preventing the substrate and the recording layer from being deformed by heat and deteriorating the recording characteristics during recording, and an optical interference effect. This has the effect of improving the signal contrast during reproduction.

【0015】本発明の波長450nm以下における第2
誘電体層の屈折率nは2.25≦nb≦2.4の範囲と
なるように第2誘電体層を構成することが、良好なC/
N、消去率などの記録特性、光学特性が得られることか
ら好ましい。
In the present invention, the second wavelength of 450 nm or less is used.
It is preferable to configure the second dielectric layer so that the refractive index n of the dielectric layer is in the range of 2.25 ≦ n b ≦ 2.4.
It is preferable because recording characteristics and optical characteristics such as N and erasure ratio can be obtained.

【0016】第2誘電体層の厚さは、およそ0より大き
く250nm程度である。25nm以下とすることが、
良好な消去率の得られる消去パワーの範囲が広いことか
ら好ましい。さらに好ましくは10〜20nmとするこ
とが、安定したコントラストが得られることからより好
ましい。
The thickness of the second dielectric layer is greater than about 0 and about 250 nm. To be 25 nm or less,
This is preferable because the range of erasing power at which a good erasing rate can be obtained is wide. More preferably, the thickness is set to 10 to 20 nm because a stable contrast can be obtained.

【0017】この誘電体層としては、ZnS、Si
2、窒化シリコン、酸化アルミニウムなどの無機薄膜
があげられる。特にZnSの薄膜、Si、Ge、Al、
Ti、Zr、Taなどの金属の酸化物の薄膜、Si、A
l、などの窒化物の薄膜、Ti、Zr、Hfなどの炭化
物の薄膜及びこれらの混合物の膜が、耐熱性が高いこと
から好ましい。また、これらに炭素や、MgF2などの
フッ化物を混合したものも、膜の残留応力が小さいこと
から好ましく使用される。特に下地誘電体層及び第2誘
電体層にはZnSとSiO2の混合膜、あるいはZnS
とSiO2と炭素の混合膜を用いることが、記録、消去
の繰り返しによっても、記録感度、キャリア対ノイズ比
(C/N)および消去率(記録後と消去後の再生キャリ
ア信号強度の差)などの劣化が起きにくいことから好ま
しく、内部応力の低減効果の大きい点からはSiO2
5〜35モル%、炭素1〜15モル%であることが、さ
らに好ましい。また第2誘電体層はZnSとSiO2
混合膜の層とSiO2層とを積層するなど、複数の層で
構成してもよい。
As the dielectric layer, ZnS, Si
Inorganic thin films such as O 2 , silicon nitride, and aluminum oxide can be used. In particular, ZnS thin film, Si, Ge, Al,
Thin films of oxides of metals such as Ti, Zr, Ta, etc., Si, A
For example, a thin film of a nitride such as 1, a thin film of a carbide such as Ti, Zr, and Hf and a film of a mixture thereof are preferable because of high heat resistance. Further, those obtained by mixing carbon or a fluoride such as MgF 2 with these are also preferably used because the residual stress of the film is small. In particular, a mixed film of ZnS and SiO 2 or ZnS is used for the base dielectric layer and the second dielectric layer.
And is possible to use SiO 2 and mixed film of carbon, recording, by the repetition of erasing, recording sensitivity, (the difference between the reproduced carrier signal intensity after erasure and after recording) carrier to noise ratio (C / N) and erasure rate It is preferable since deterioration such as deterioration does not easily occur, and SiO 2 1
More preferably, it is 5 to 35 mol% and 1 to 15 mol% of carbon. Further, the second dielectric layer may be composed of a plurality of layers such as a laminate of a layer of a mixed film of ZnS and SiO 2 and an SiO 2 layer.

【0018】本発明の記録層の材料は、結晶状態と非晶
状態の少なくとも2つの状態をとり得るTeを主成分と
するカルコゲン化合物である。本発明の記録層として、
特に限定するものでないが、Pd−Ge−Sb−Te、
Nb−Ge−Sb−Te、Pd−Nb−Ge−Sb−T
e、Ni−Ge−Sb−Te、Ge−Sb−Te、Co
−Ge−Sb−Te、In−Se、In−Sb−Te、
Ag−In−Sb−Te、Ag−V−In−Sb−Te
などがある。多数回の記録の書換が可能であることか
ら、Pd−Ge−Sb−Te、Nb−Ge−Sb−T
e、Pd−Nb−Ge−Sb−Te、Ni−Ge−Sb
−Te、Ge−Sb−Te、Co−Ge−Sb−Teが
好ましい。特にPd−Ge−Sb−Te合金、Pd−N
b−Ge−Sb−Teは、消去時間が短く、かつ多数回
の記録、消去の繰り返しが可能であり、C/N、消去率
などの記録特性に優れることから好ましく、とりわけ、
Pd−Nb−Ge−Sb−Te合金が、前述の特性に優
れることからより好ましい。
The material of the recording layer of the present invention is a chalcogen compound containing Te as a main component, which can take at least two states, a crystalline state and an amorphous state. As the recording layer of the present invention,
Although not particularly limited, Pd-Ge-Sb-Te,
Nb-Ge-Sb-Te, Pd-Nb-Ge-Sb-T
e, Ni-Ge-Sb-Te, Ge-Sb-Te, Co
-Ge-Sb-Te, In-Se, In-Sb-Te,
Ag-In-Sb-Te, Ag-V-In-Sb-Te
and so on. Pd-Ge-Sb-Te, Nb-Ge-Sb-T
e, Pd-Nb-Ge-Sb-Te, Ni-Ge-Sb
-Te, Ge-Sb-Te, and Co-Ge-Sb-Te are preferred. Especially Pd-Ge-Sb-Te alloy, Pd-N
b-Ge-Sb-Te is preferable because it has a short erasing time, is capable of repeating recording and erasing many times, and has excellent recording characteristics such as C / N and erasing rate.
A Pd-Nb-Ge-Sb-Te alloy is more preferred because of its excellent properties.

【0019】また、本発明の波長450nm以下におけ
る記録層の光学定数n、消衰係数kは、結晶状態では
1.77≦nC≦2.5、3.2≦kC≦3.8であり、
非晶状態では2.58≦nα≦3.3、2.6≦kα≦
2.9の範囲となるように記録層の組成を構成すること
が、良好なC/N、消去率などの記録特性が得られるこ
とから好ましい。上記の具体的な合金として、Pd−G
e−Sb−Te、Nb−Ge−Sb−Te、Pd−Nb
−Ge−Sb−Teなどがある。
In the present invention, the optical constant n and the extinction coefficient k of the recording layer at a wavelength of 450 nm or less are 1.77 ≦ n C ≦ 2.5 and 3.2 ≦ k C ≦ 3.8 in a crystalline state. Yes,
In the amorphous state, 2.58 ≦ nα ≦ 3.3, 2.6 ≦ kα ≦
It is preferable to configure the composition of the recording layer so as to fall within the range of 2.9 because good recording characteristics such as C / N and erasure ratio can be obtained. As the above specific alloy, Pd-G
e-Sb-Te, Nb-Ge-Sb-Te, Pd-Nb
-Ge-Sb-Te.

【0020】記録層の厚さとしては5〜150nmであ
る。特に記録、消去感度が高く、多数回の記録消去が可
能であり、かつ、コントラストの変動が少ないことか
ら、7〜35nmとすることが好ましい。
The recording layer has a thickness of 5 to 150 nm. In particular, the recording and erasing sensitivity is high, the recording and erasing can be performed many times, and the fluctuation of contrast is small.

【0021】本発明の波長450nm以下における反射
層の屈折率n、消衰係数kは、0.4≦nβ≦0.6、
3.8≦kβ≦4.25の範囲となるように反射層を構
成することが、優れた熱安定性を有するため、記録特性
の劣化を少なくすることができることから好ましい。
In the present invention, the refractive index n and the extinction coefficient k of the reflective layer at a wavelength of 450 nm or less are 0.4 ≦ nβ ≦ 0.6,
It is preferable to form the reflective layer so as to satisfy the range of 3.8 ≦ kβ ≦ 4.25, since it has excellent thermal stability and can reduce deterioration of recording characteristics.

【0022】反射層の材質としては、光反射性を有する
Al、Auなどの金属、これらを主成分とし、Ti、C
r、Hfなどの添加元素を含む合金及びAl、Auなど
の金属にAl、Si、などの金属窒化物、金属酸化物、
金属カルコゲン化物などの金属化合物混合したものがあ
げられる。Al、Auなどの金属、及びこれらを主成分
とする合金は、光反射性が高く、かつ熱伝導率を高くで
きることから好ましい。前述の合金を例としては、Al
にSi、Mg、Cu、Pd、Ti、Cr、Hf、Ta、
Nb、Mnなどの少なくとも1種の元素を合計で5原子
%以下、1原子%以上加えたもの、あるいは、AuにC
r、Ag、Cu、Pd、Pt、Niなどの少なくとも1
種の元素を合計で1原子%以上20原子%以下加えたも
のなどがあげられる。特に、材料の価格が安いことか
ら、AlもしくはAlを主成分とする合金が好ましく、
とりわけ、耐腐食性が良好なことから、AlにTi、C
r、Ta、Hf、Zr、Mn、Pdから選ばれる少なく
とも1種以上の金属を合計で0.5原子%以上5原子%
以下添加した合金が好ましい。さらに、耐腐食性が良好
でかつヒロックなどの発生が起こりにくいことから、添
加元素を合計で0.5原子%以上原子%未満含む、Al
−Hf−Pd合金、Al−Hf合金、Al−Ti合金、
AlTi−Hf合金、Al−Cr合金、Al−Ta合
金、Al−Ti−Cr合金、Al−Si−Mn合金のい
ずれかのAlを主成分とする合金で構成することが好ま
しい。これらAl合金のうちでも、次式で表される組成
を有するAl−Hf−Pd合金は、特に優れた熱安定性
を有するため、多数回の記録、消去の繰り返しにおい
て、記録特性の劣化を少なくすることができる。
As a material of the reflection layer, a metal such as Al or Au having light reflectivity, containing these as a main component, Ti, C
alloys containing additional elements such as r and Hf, and metals such as Al and Au, metal nitrides such as Al and Si, metal oxides,
A mixture of a metal compound such as a metal chalcogenide can be used. Metals such as Al and Au and alloys containing these as main components are preferable because of their high light reflectivity and high thermal conductivity. As an example of the above alloy, Al
To Si, Mg, Cu, Pd, Ti, Cr, Hf, Ta,
At least one element such as Nb or Mn is added in a total of 5 atomic% or less and 1 atomic% or more, or Au is added to C
at least one of r, Ag, Cu, Pd, Pt, Ni, etc.
Examples include those in which a total of 1 atomic% or more and 20 atomic% or less of various elements are added. In particular, Al or an alloy containing Al as a main component is preferable because the price of the material is low.
In particular, because of good corrosion resistance, Al and Ti, C
at least one metal selected from the group consisting of r, Ta, Hf, Zr, Mn, and Pd in a total amount of 0.5 atomic% to 5 atomic%
The alloys added below are preferred. Furthermore, since the corrosion resistance is good and hillocks and the like hardly occur, the Al
-Hf-Pd alloy, Al-Hf alloy, Al-Ti alloy,
It is preferable to use an Al-based alloy of any of AlTi-Hf alloy, Al-Cr alloy, Al-Ta alloy, Al-Ti-Cr alloy and Al-Si-Mn alloy. Among these Al alloys, an Al-Hf-Pd alloy having a composition represented by the following formula has particularly excellent thermal stability, so that the recording characteristics are less deteriorated by repeating recording and erasing many times. can do.

【0023】PdjHfkAl1-j-k 0.001<j<0.01 0.005<k<0.10 ここで、j、kは各元素の原子の数(各元素のモル数)
を表す。
Pd j Hf k Al 1-jk 0.001 <j <0.01 0.005 <k <0.10 where j and k are the number of atoms of each element (the number of moles of each element).
Represents

【0024】上述した反射層の厚さとしては、いずれの
合金からなる場合にもおおむね10nm以上200nm
以下、さらに好ましくは50〜200nmとするのが好
ましい。
The thickness of the above-mentioned reflective layer is approximately 10 nm or more and 200 nm in any case of any alloy.
Hereinafter, the thickness is more preferably set to 50 to 200 nm.

【0025】また、波長390nm以上450nm以下
で、高いコントラストを得るためには、各層の屈折率、
消衰係数、層の厚さが下記の式で表されるいずれかの関
係にあることが好ましい。
Further, in order to obtain a high contrast at a wavelength of 390 nm to 450 nm, the refractive index of each layer,
It is preferable that the extinction coefficient and the thickness of the layer have any relationship represented by the following formula.

【0026】波長が390nm以上425nm以下の場
合は、 2.2≦na≦2.3 80a+100≦da≦80a+150(nm)(aは
0を含む整数) 2.58≦nα≦3.3 2.64≦kα≦2.9 1.77≦nc≦2.2 3.2≦kc≦3.7 10≦dr≦35(nm) 2.3≦nb≦2.4 0<db≦15(nm) 0.4≦nβ≦0.52 3.8≦kβ≦4.1 あるいは、 2.2≦na≦2.3 100a+30≦da≦100a+80(nm)(aは
0を含む整数) 2.58≦nα≦3.3 2.64≦kα≦2.9 1.77≦nc≦2.2 3.2≦kc≦3.7 10≦dr≦35(nm) 2.3≦nb≦2.4 15<db≦25(nm) 0.4≦nβ≦0.52 3.8≦kβ≦4.1 また、波長が425nmを越えて450nm以下の場合
は、 2.2≦na≦2.25 100a+30≦da≦100a+70(nm)(aは
0を含む整数) 2.8≦nα≦3.3 2.64≦kα≦2.9 1.85≦nc≦2.2 3.2≦kc≦3.7 10≦dr≦35(nm) 2.25≦nb≦2.3 0<db≦15(nm) 0.5≦nβ≦0.6 4.0≦kβ≦4.25 あるいは、 2.2≦na≦2.25 100a+50≦da≦100a+110(nm)(a
は0を含む整数) 2.8≦nα≦3.3 2.64≦kα≦2.9 1.85≦nc≦2.2 3.2≦kc≦3.7 10≦dr≦35(nm) 2.25≦nb≦2.3 15<db≦25(nm) 0.5≦nβ≦0.6 4.0≦kβ≦4.25 (ここで、naは第1誘電体層の屈折率、daは第1誘電
体層の厚さ(nm)、nαは記録層の非晶状態の屈折
率、kαは記録層の非晶状態の消衰係数、ncは記録層
の結晶状態の屈折率、kcは記録層の結晶状態の消衰係
数、drは記録層の厚さ(nm)、nbは第2誘電体層の
屈折率、dbは第2誘電体層の厚さ(nm)、nβは反
射層の屈折率、kβは反射層の消衰係数を表す) 本発明の基板の材料としては、透明な各種の合成樹脂、
透明ガラスなどが使用できる。ほこり、基板の傷などの
影響をさけるために、透明基板を用い、集束した光ビー
ムで基板側から記録を行うことが好ましく、このような
透明基板材料としては、ガラス、ポリカーボネート、ポ
リメチル・メタクリレート、ポリオレフィン樹脂、エポ
キシ樹脂、ポリイミド樹脂などがあげられる。特に、光
学的複屈折率が小さく、吸湿性が小さく、成形が容易で
あることからポリカーボネート樹脂、アモルファス・ポ
リオレフィン樹脂が好ましい。
[0026] If the wavelength is less 425nm or 390 nm, (integer including a is 0) 2.2 ≦ n a ≦ 2.3 80a + 100 ≦ d a ≦ 80a + 150 (nm) 2.58 ≦ nα ≦ 3.3 2 .64 ≦ kα ≦ 2.9 1.77 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 10 ≦ d r ≦ 35 (nm) 2.3 ≦ n b ≦ 2.4 0 <d b ≦ 15 (nm) 0.4 ≦ nβ ≦ 0.52 3.8 ≦ kβ ≦ 4.1 or a 2.2 ≦ n a ≦ 2.3 100a + 30 ≦ d a ≦ 100a + 80 (nm) (a is 0 including integer) 2.58 ≦ nα ≦ 3.3 2.64 ≦ kα ≦ 2.9 1.77 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 10 ≦ d r ≦ 35 (nm) 2.3 ≦ n b ≦ 2.4 15 <d b ≦ 25 (nm) 0.4 ≦ nβ ≦ 0.52 3.8 ≦ kβ ≦ 4.1 Further, when the wavelength exceeds 425 nm, 4 For 50nm or less, 2.2 ≦ n a ≦ 2.25 100a + 30 ≦ d a ≦ 100a + 70 (nm) (a is an integer including 0) 2.8 ≦ nα ≦ 3.3 2.64 ≦ kα ≦ 2. 9 1.85 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 10 ≦ d r ≦ 35 (nm) 2.25 ≦ n b ≦ 2.3 0 <d b ≦ 15 (nm) 0 .5 ≦ nβ ≦ 0.6 4.0 ≦ kβ ≦ 4.25 or, 2.2 ≦ n a ≦ 2.25 100a + 50 ≦ d a ≦ 100a + 110 (nm) (a
Integer) 2.8 ≦ nα ≦ 3.3 2.64 ≦ kα ≦ 2.9 1.85 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 10 ≦ d r ≦ 35 comprising 0 (nm) 2.25 ≦ n b ≦ 2.3 15 <d b ≦ 25 (nm) 0.5 ≦ nβ ≦ 0.6 4.0 ≦ kβ ≦ 4.25 ( where, n a first dielectric refractive index of the material layer, d a is the thickness of the first dielectric layer (nm), n [alpha is the refractive index of the amorphous state of the recording layer, ka is the extinction coefficient of the amorphous state of the recording layer, n c is recorded refractive index of the crystal state of the layer, k c is the extinction coefficient of the crystalline state of the recording layer, the thickness of d r is the recording layer (nm), n b is the refractive index of the second dielectric layer, d b is the second The thickness (nm) of the dielectric layer, nβ represents the refractive index of the reflective layer, and kβ represents the extinction coefficient of the reflective layer.) As the material of the substrate of the present invention, various transparent synthetic resins,
Transparent glass or the like can be used. In order to avoid the influence of dust and scratches on the substrate, it is preferable to use a transparent substrate and perform recording from the substrate side with a focused light beam.As such a transparent substrate material, glass, polycarbonate, polymethyl methacrylate, Polyolefin resin, epoxy resin, polyimide resin and the like can be mentioned. In particular, polycarbonate resins and amorphous polyolefin resins are preferred because of their low optical birefringence, low hygroscopicity, and easy molding.

【0027】基板の厚さとしては、特に限定されるもの
ではないが、0.01mm〜5mmが実用的である。
0.01mm未満では、基板側から集束した光ビームで
記録する場合でも、ごみの影響を受け易くなり、5mm
をこえる場合は、対物レンズの開口数を大きくすること
が困難になり、照射光ビームスポットサイズが大きくな
るため、記録密度を上げることが困難になる。
The thickness of the substrate is not particularly limited, but is practically 0.01 mm to 5 mm.
If it is less than 0.01 mm, even when recording with a light beam focused from the substrate side, it is easily affected by dust and becomes 5 mm
In the case of exceeding, it becomes difficult to increase the numerical aperture of the objective lens, and the spot size of the irradiation light beam becomes large, so that it becomes difficult to increase the recording density.

【0028】基板はフレキシブルなものであってもよい
し、リジットなものであっても良い。フレキシブルな基
板は、テープ状、シート状、カード状で使用する。リジ
ットな基板は、カード状、あるいはディスク状で使用す
る。また、これらの基板は、記録層などを形成した後、
2枚の基板を用いて、エアーサンドイッチ構造、エアー
インシデント構造、密着貼合せ構造としてもよい。
The substrate may be flexible or rigid. The flexible substrate is used in the form of a tape, a sheet, or a card. The rigid substrate is used in the form of a card or a disk. In addition, these substrates, after forming the recording layer and the like,
An air sandwich structure, an air incident structure, and a close bonding structure may be used by using two substrates.

【0029】本発明の光記録媒体の記録に用いる光源と
しては、レーザー光、ストロボ光のごとき高強度の光源
があげられ、特に半導体レーザー光は、光源が小型化で
きること、消費電力が小さいこと、変調が容易であるこ
とから好ましい。
As a light source used for recording on the optical recording medium of the present invention, a high-intensity light source such as a laser beam or a strobe light can be mentioned. In particular, a semiconductor laser beam can be reduced in size and power consumption. This is preferable because the modulation is easy.

【0030】記録は結晶状態の記録層にレーザー光パル
スなどを照射してアモルファスの記録マークを形成して
行う。あるいは、反対に非晶状態の記録層に結晶状態の
記録マークを形成しても良い。消去はレーザー光照射に
よって、アモルファスの記録マークを結晶化するか、も
しくは、結晶状態の記録マークをアモルファス化して行
うことができる。記録速度を高速化でき、かつ記録層の
変形が発生しにくいことから記録時はアモルファスの記
録マークを形成し、消去時は結晶化を行う方法が好まし
い。また、記録マーク形成時は光強度を高く、消去時は
やや弱くし、1回の光ビームの照射により書換を行う1
ビーム・オーバーライトは、書換の所用時間が短くなる
ことから好ましい。
The recording is performed by irradiating a laser beam pulse or the like to the crystalline recording layer to form an amorphous recording mark. Alternatively, a recording mark in a crystalline state may be formed on a recording layer in an amorphous state. Erasing can be performed by irradiating a laser beam to crystallize an amorphous recording mark or to make a crystalline recording mark amorphous. Since the recording speed can be increased and the recording layer is hardly deformed, it is preferable to form an amorphous recording mark during recording and crystallize during erasing. In addition, the light intensity is high at the time of forming a recording mark and slightly weakened at the time of erasing, and rewriting is performed by one light beam irradiation.
Beam overwriting is preferable because the time required for rewriting is reduced.

【0031】次に、本発明の光記録媒体の製造方法につ
いて述べる。
Next, a method for manufacturing the optical recording medium of the present invention will be described.

【0032】反射層、誘電体層、記録層を基板上に形成
する方法としては、真空中での薄膜形成法、例えば真空
蒸着法、イオンプレーティング法、スパッタリング法な
どがあげられる。特に組成、膜厚のコントロールが容易
であることから、スパッタリング法が好ましい。
The method for forming the reflective layer, the dielectric layer, and the recording layer on the substrate includes a method of forming a thin film in a vacuum, such as a vacuum deposition method, an ion plating method, and a sputtering method. In particular, the sputtering method is preferable because the composition and the film thickness can be easily controlled.

【0033】形成する記録層などの厚さの制御は、水晶
振動子膜厚計などで、堆積状態をモニタリングすること
で、容易に行える。
The thickness of the recording layer or the like to be formed can be easily controlled by monitoring the deposition state with a quartz crystal film thickness meter or the like.

【0034】記録層などの形成は、基板を固定したまま
の状態、あるいは、移動、回転した状態のどちらでも行
っても良い。膜厚の面内の均一性に優れることから、基
板を自転させても良く、さらに公転を組み合わせても良
い。
The formation of the recording layer and the like may be performed while the substrate is fixed, or moved or rotated. Since the in-plane uniformity of the film thickness is excellent, the substrate may be rotated on its own or combined with revolution.

【0035】本発明の光記録媒体の好ましい層構成とし
て、透明基板/第1誘電体層/記録層/第2誘電体層/
反射層をこの順に積層してなるものがあげられる。但し
これに限定されるものでなく、本発明の効果を著しく損
なわない範囲において、反射層などを形成した後、傷、
変形の防止などのため、ZnS、SiO2などの誘電体
層あるいは紫外線硬化樹脂などの樹脂保護層などを必要
に応じて設けることができる。光は透明基板側から入射
するものとする。また、反射層などを形成した後、ある
いはさらに前述の樹脂保護層を形成した後、2枚の基板
を対向して、接着剤で張り合わせても良い。
As a preferred layer constitution of the optical recording medium of the present invention, a transparent substrate / first dielectric layer / recording layer / second dielectric layer /
One obtained by laminating reflective layers in this order is exemplified. However, the present invention is not limited to this. As long as the effects of the present invention are not significantly impaired, scratches,
In order to prevent deformation, a dielectric layer such as ZnS or SiO2 or a resin protective layer such as an ultraviolet curable resin may be provided as necessary. Light is incident from the transparent substrate side. After the formation of the reflective layer or the like, or after the formation of the above-mentioned resin protective layer, the two substrates may be opposed to each other and bonded with an adhesive.

【0036】記録層は、実際に記録を行う前に、予めレ
ーザー光、キセノンフラッシュランプなどの光を照射し
結晶化させておくことが好ましい。
Before the actual recording, the recording layer is preferably irradiated with a laser beam, a xenon flash lamp, or the like to be crystallized in advance.

【0037】[0037]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0038】(分析、測定方法)反射層、記録層の組成
は、ICP発光分析(セイコー電子工業(株)製SPS400
0)により確認した。また、反射率は分光測色計(ミノ
ルタ(株)製CM2002)により測定した。
(Analysis and Measurement Methods) The composition of the reflective layer and the recording layer was determined by ICP emission spectrometry (SPS400 manufactured by Seiko Denshi Kogyo KK).
0). The reflectance was measured by a spectrophotometer (CM2002 manufactured by Minolta Co., Ltd.).

【0039】記録層、誘電体層、反射層の形成中の膜厚
は、水晶振動子膜厚計によりモニターした。また各層の
厚さは、走査型あるいは透過型電子顕微鏡で断面を観察
することにより測定した。
The film thickness during the formation of the recording layer, the dielectric layer, and the reflection layer was monitored by a quartz oscillator film thickness meter. The thickness of each layer was measured by observing the cross section with a scanning or transmission electron microscope.

【0040】(実施例1)厚さ1.2mm、直径12c
mのポリカーボネート製基板を毎分40回転で回転させ
ながら、スパッタリング法により、記録層、誘電体層、
反射層を形成した。まず、真空容器内を1×10-4Pa
まで排気した後、2×10-1PaのArガス雰囲気中で
SiO2を20mol%添加したZnSターゲットZn
Sをスパッタし、基板上に膜厚120nmの第1誘電体
層を形成した。続いて、Pd、Nb、Ge、Sb、Te
からなるターゲットをスパッタして、組成Nb0.006
0.0 01Ge0.173Sb0.26Te0.56の膜厚10nmの記
録層を形成した。さらに前述の第2誘電体層を10nm
形成し、この上に、Al98.1Hf1.7Pd0.2合金をスパ
ッタして膜厚80nmの反射率を形成し、本発明の光記
録媒体を得た。
(Example 1) Thickness 1.2 mm, diameter 12c
m while rotating the polycarbonate substrate at 40 revolutions per minute, the recording layer, the dielectric layer,
A reflective layer was formed. First, the inside of the vacuum vessel is 1 × 10 −4 Pa
, And a ZnS target Zn added with 20 mol% of SiO 2 in an Ar gas atmosphere of 2 × 10 -1 Pa.
S was sputtered to form a first dielectric layer having a thickness of 120 nm on the substrate. Then, Pd, Nb, Ge, Sb, Te
Sputtering target consisting of Nb 0.006 P
thereby forming a d 0.0 01 Ge 0.173 recording layer having a thickness of 10nm of Sb 0.26 Te 0.56. Further, the second dielectric layer is formed to a thickness of
Then, an Al 98.1 Hf 1.7 Pd 0.2 alloy was sputtered thereon to form a reflectance of 80 nm in thickness, thereby obtaining an optical recording medium of the present invention.

【0041】さらに、反射層形成後に紫外線硬化樹脂
(大日本インキ(株)製SD-101をスピンコートし、紫外
線照射により硬化させて膜厚10μmの樹脂層を形成し
た。
Further, after the reflection layer was formed, an ultraviolet-curable resin (SD-101 manufactured by Dainippon Ink and Chemicals, Inc.) was spin-coated and cured by irradiation with ultraviolet light to form a resin layer having a thickness of 10 μm.

【0042】この光記録媒体に波長810nmの半導体
レーザーのビームでディスク全面の記録層を結晶化し初
期化した。
The recording layer on the entire surface of the optical disk was crystallized with a beam of a semiconductor laser having a wavelength of 810 nm and initialized.

【0043】次に得られた光記録媒体の波長410nm
における反射率を測定したところ、非晶部9.5%、結
晶部22.4%が得られ、コントラストは約13%であ
った。
Next, the wavelength of the obtained optical recording medium is 410 nm.
As a result of measurement of the reflectivity at, the amorphous part and the crystal part were obtained at 9.5% and 22.4%, respectively, and the contrast was about 13%.

【0044】またこの光記録媒体と同様にして基板上に
作製した各層の屈折率、消衰係数をエリプソメトリー
(ニコン(株)製NPDM-1000)で測定したところ、第1
誘電体層の屈折率は2.28、記録層の非晶部の屈折率
は2.91、消衰係数は2.67、記録層の結晶部の屈
折率は1.98、消衰係数は3.30、第2誘電体層の
屈折率は2.33、反射層の屈折率は0.48、消衰係
数は3.90であった。
The refractive index and extinction coefficient of each layer formed on the substrate in the same manner as in this optical recording medium were measured by ellipsometry (NPDM-1000, manufactured by Nikon Corporation).
The refractive index of the dielectric layer is 2.28, the refractive index of the amorphous portion of the recording layer is 2.91, the extinction coefficient is 2.67, the refractive index of the crystalline portion of the recording layer is 1.98, and the extinction coefficient is 3.30, the refractive index of the second dielectric layer was 2.33, the refractive index of the reflective layer was 0.48, and the extinction coefficient was 3.90.

【0045】(実施例2)実施例1の光記録媒体の第1
誘電体層の厚さを160nm、第2誘電体層の厚さを2
0nmにしたほかは、実施例1と同様の構成の光記録媒
体を作製し、実施例1と同様の測定を行った。波長41
0nmにおける反射率は、非晶部15.3%、結晶部3
2.5%、コントラストは約17%であった。
(Embodiment 2) The first example of the optical recording medium of Embodiment 1
The thickness of the dielectric layer is 160 nm, and the thickness of the second dielectric layer is 2
An optical recording medium having the same configuration as in Example 1 was prepared except that the thickness was set to 0 nm, and the same measurement as in Example 1 was performed. Wavelength 41
The reflectance at 0 nm is as follows: amorphous portion 15.3%, crystalline portion 3
2.5% and contrast was about 17%.

【0046】また実施例1と同様にして、屈折率、消衰
係数の値を測定したところ、第1誘電体層の屈折率は
2.28、記録層の非晶部の屈折率は2.91、消衰係
数は2.67、記録層の結晶部の屈折率は1.98、消
衰係数は3.30、第2誘電体層の屈折率は2.33、
反射層の屈折率は0.48、消衰係数は3.90であっ
た。
When the values of the refractive index and the extinction coefficient were measured in the same manner as in Example 1, the refractive index of the first dielectric layer was 2.28, and the refractive index of the amorphous portion of the recording layer was 2.28. 91, the extinction coefficient is 2.67, the refractive index of the crystal part of the recording layer is 1.98, the extinction coefficient is 3.30, the refractive index of the second dielectric layer is 2.33,
The reflective layer had a refractive index of 0.48 and an extinction coefficient of 3.90.

【0047】(実施例3)実施例1と同様の構成の光記
録媒体を作製し、波長430nmにおける反射率を実施
例1と同様に、測定を行った。波長430nmにおける
反射率は、非晶部8.5%、結晶部21.3%、コント
ラストは約13%であった。
(Example 3) An optical recording medium having the same configuration as in Example 1 was manufactured, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. The reflectance at a wavelength of 430 nm was 8.5% in the amorphous part, 21.3% in the crystal part, and the contrast was about 13%.

【0048】また実施例1と同様にして、屈折率、消衰
係数の値を測定したところ、第1誘電体層の屈折率は
2.26、記録層の非晶部の屈折率は3.07、消衰係
数は2.67、記録層の結晶部の屈折率は2.14、消
衰係数は3.40、第2誘電体層の屈折率は2.30、
反射層の屈折率は0.53、消衰係数は4.06であっ
た。
When the values of the refractive index and the extinction coefficient were measured in the same manner as in Example 1, the refractive index of the first dielectric layer was 2.26, and the refractive index of the amorphous portion of the recording layer was 3.26. 07, the extinction coefficient is 2.67, the crystal part of the recording layer has a refractive index of 2.14, the extinction coefficient is 3.40, the refractive index of the second dielectric layer is 2.30,
The reflective layer had a refractive index of 0.53 and an extinction coefficient of 4.06.

【0049】(実施例4)実施例2と同様の構成の光記
録媒体を作製し、波長430nmにおける反射率を実施
例1と同様に、測定を行った。波長430nmにおける
反射率は、非晶部14.6%、結晶部31.6%、コン
トラストは約17%であった。
Example 4 An optical recording medium having the same structure as in Example 2 was manufactured, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. The reflectance at a wavelength of 430 nm was 14.6% for the amorphous part, 31.6% for the crystal part, and the contrast was about 17%.

【0050】また実施例1と同様にして、屈折率、消衰
係数の値を測定したところ、第1誘電体層の屈折率は
2.26、記録層の非晶部の屈折率は3.07、消衰係
数は2.67、記録層の結晶部の屈折率は2.14、消
衰係数は3.40、第2誘電体層の屈折率は2.30、
反射層の屈折率は0.53、消衰係数は4.06であっ
た。
When the values of the refractive index and the extinction coefficient were measured in the same manner as in Example 1, the refractive index of the first dielectric layer was 2.26, and the refractive index of the amorphous portion of the recording layer was 3.26. 07, the extinction coefficient is 2.67, the crystal part of the recording layer has a refractive index of 2.14, the extinction coefficient is 3.40, the refractive index of the second dielectric layer is 2.30,
The reflective layer had a refractive index of 0.53 and an extinction coefficient of 4.06.

【0051】(実施例5)記録層の組成をGe17.1Sb
26.4Te56.6としただけでそれ以外は実施例1と同様の
構成の光記録媒体を作製し、波長410nmにおける反
射率を実施例1と同様に、測定を行った。波長410n
mにおける反射率は、非晶部11.2%、結晶部25.
7%、コントラストは14.5%であった。
Example 5 The composition of the recording layer was Ge 17.1 Sb
An optical recording medium having the same configuration as in Example 1 was prepared except for using only 26.4 Te 56.6, and the reflectance at a wavelength of 410 nm was measured in the same manner as in Example 1. 410n wavelength
m has a reflectance of 11.2% for the amorphous part and 25.
7% and contrast was 14.5%.

【0052】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.73、消衰係数は2.71、結晶部の屈折率は1.
80、消衰係数は3.33であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.73, the extinction coefficient was 2.71, and the value of the crystalline portion was 2.71. The refractive index is 1.
80 and the extinction coefficient was 3.33.

【0053】(実施例6)記録層の組成をGe17.1Sb
26.4Te56.6としただけでそれ以外は実施例2と同様の
構成の光記録媒体を作製し、波長410nmにおける反
射率を実施例1と同様に、測定を行った。波長410n
mにおける反射率は、非晶部17.3%、結晶部35.
8%、コントラストは18.5%であった。
Example 6 The composition of the recording layer was Ge 17.1 Sb
An optical recording medium having the same configuration as in Example 2 was prepared except for using only 26.4 Te 56.6, and the reflectance at a wavelength of 410 nm was measured in the same manner as in Example 1. 410n wavelength
m has a reflectance of 17.3% for the amorphous part and 35.
8% and the contrast was 18.5%.

【0054】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.73、消衰係数は2.71、結晶部の屈折率は1.
80、消衰係数は3.33であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.73, the extinction coefficient was 2.71, and the value of the crystalline portion was 2.71. The refractive index is 1.
80 and the extinction coefficient was 3.33.

【0055】(実施例7)記録層の組成をGe17.1Sb
26.4Te56.6としただけでそれ以外は実施例1と同様の
構成の光記録媒体を作製し、波長430nmにおける反
射率を実施例1と同様に、測定を行った。波長430n
mにおける反射率は、非晶部9.1%、結晶部22.9
%、コントラストは13.8%であった。
Example 7 The composition of the recording layer was Ge 17.1 Sb
An optical recording medium having the same configuration as in Example 1 was prepared except for using only 26.4 Te 56.6, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430n
The reflectance at m is 9.1% for the amorphous part and 22.9 for the crystalline part.
% And contrast were 13.8%.

【0056】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.95、消衰係数は2.73、結晶部の屈折率は2.
02、消衰係数は3.46であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous part was 2.95, the extinction coefficient was 2.73, and the value of the crystalline part was 2.73. The refractive index is 2.
02, the extinction coefficient was 3.46.

【0057】(実施例8)記録層の組成をGe17.1Sb
26.4Te56.6としただけでそれ以外は実施例2と同様の
構成の光記録媒体を作製し、波長430nmにおける反
射率を実施例1と同様に、測定を行った。波長430n
mにおける反射率は、非晶部15.7%、結晶部33.
5%、コントラストは17.8%であった。
Example 8 The composition of the recording layer was Ge 17.1 Sb
An optical recording medium having the same configuration as in Example 2 was prepared except for using only 26.4 Te 56.6, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430n
m has a reflectance of 15.7% for the amorphous part and 33.
The contrast was 57.8% and the contrast was 17.8%.

【0058】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.95、消衰係数は2.73、結晶部の屈折率は2.
02、消衰係数は3.46であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.95, the extinction coefficient was 2.73, and the value of the crystalline portion was 2.73. The refractive index is 2.
02, the extinction coefficient was 3.46.

【0059】(実施例9)記録層の組成をGe18.8Sb
25.7Te55.7としただけでそれ以外は実施例1と同様の
構成の光記録媒体を作製し、波長410nmにおける反
射率を実施例1と同様に、測定を行った。波長410n
mにおける反射率は、非晶部11.6%、結晶部25.
0%、コントラストは13.4%であった。
Example 9 The composition of the recording layer was Ge 18.8 Sb
An optical recording medium having the same configuration as in Example 1 was produced except for using only 25.7 Te 55.7, and the reflectance at a wavelength of 410 nm was measured in the same manner as in Example 1. 410n wavelength
m, the reflectance of the amorphous part is 11.6%, and that of the crystal part 25.m.
The contrast was 0% and the contrast was 13.4%.

【0060】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.70、消衰係数は2.77、結晶部の屈折率は1.
86、消衰係数は3.44であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.70, the extinction coefficient was 2.77, and the value of the crystal portion was 2.77. The refractive index is 1.
86 and the extinction coefficient was 3.44.

【0061】(実施例10)記録層の組成をGe18.8
25.7Te55.7としただけでそれ以外は実施例2と同様
の構成の光記録媒体を作製し、波長410nmにおける
反射率を実施例1と同様に、測定を行った。波長410
nmにおける反射率は、非晶部18.1%、結晶部3
5.8%、コントラストは17.7%であった。
Example 10 The composition of the recording layer was Ge 18.8 S
An optical recording medium having the same configuration as in Example 2 was prepared except for b 25.7 Te 55.7, and the reflectance at a wavelength of 410 nm was measured in the same manner as in Example 1. Wavelength 410
The reflectance at nm is 18.1% for the amorphous part and 3 for the crystalline part.
5.8% and contrast were 17.7%.

【0062】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.70、消衰係数は2.77、結晶部の屈折率は1.
86、消衰係数は3.44であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.70, the extinction coefficient was 2.77, and the value of the crystalline portion was 2.77. The refractive index is 1.
86 and the extinction coefficient was 3.44.

【0063】(実施例11)記録層の組成をGe18.8
25.7Te55.7としただけでそれ以外は実施例1と同様
の構成の光記録媒体を作製し、波長430nmにおける
反射率を実施例1と同様に、測定を行った。波長430
nmにおける反射率は、非晶部9.5%、結晶部22.
9%、コントラストは13.4%であった。
Example 11 The composition of the recording layer was Ge 18.8 S
An optical recording medium having the same configuration as in Example 1 was prepared except for b 25.7 Te 55.7, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430
The reflectivity in nm is 9.5% for the amorphous part and 22.
The contrast was 9% and the contrast was 13.4%.

【0064】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.93、消衰係数は2.79、結晶部の屈折率は2.
07、消衰係数は3.58であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.93, the extinction coefficient was 2.79, and the value of the crystalline portion was 2.79. The refractive index is 2.
07 and the extinction coefficient were 3.58.

【0065】(実施例12)記録層の組成をGe18.8
25.7Te55.7としただけでそれ以外は実施例2と同様
の構成の光記録媒体を作製し、波長430nmにおける
反射率を実施例1と同様に、測定を行った。波長430
nmにおける反射率は、非晶部16.4%、結晶部3
3.6%、コントラストは17.2%であった。
Example 12 The composition of the recording layer was Ge 18.8 S
An optical recording medium having the same configuration as in Example 2 was produced except for b 25.7 Te 55.7 except that the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430
The reflectivity at nm is 16.4% for the amorphous part and 3 for the crystalline part.
The contrast was 3.6% and the contrast was 17.2%.

【0066】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.93、消衰係数は2.79、結晶部の屈折率は2.
07、消衰係数は3.58であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.93, the extinction coefficient was 2.79, and the value of the crystalline portion was 2.79. The refractive index is 2.
07 and the extinction coefficient were 3.58.

【0067】(実施例13)記録層の組成をGe18.3
27.3Te54.4としただけでそれ以外は実施例1と同様
の構成の光記録媒体を作製し、波長410nmにおける
反射率を実施例1と同様に、測定を行った。波長410
nmにおける反射率は、非晶部12.9%、結晶部2
6.3%、コントラストは13.4%であった。
(Example 13) The composition of the recording layer was Ge 18.3 S
An optical recording medium having the same configuration as in Example 1 was prepared except for b 27.3 Te 54.4, and the reflectance at a wavelength of 410 nm was measured in the same manner as in Example 1. Wavelength 410
The reflectance at nm is 12.9% for the amorphous part and 2 for the crystalline part.
The contrast was 6.3% and the contrast was 13.4%.

【0068】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.59、消衰係数は2.86、結晶部の屈折率は1.
78、消衰係数は3.43であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.59, the extinction coefficient was 2.86, and the value of the crystalline portion was 2.86. The refractive index is 1.
78 and the extinction coefficient were 3.43.

【0069】(実施例14)記録層の組成をGe18.3
27.3Te54.4としただけでそれ以外は実施例2と同様
の構成の光記録媒体を作製し、波長410nmにおける
反射率を実施例1と同様に、測定を行った。波長410
nmにおける反射率は、非晶部20.2%、結晶部3
7.0%、コントラストは16.8%であった。
Example 14 The composition of the recording layer was Ge 18.3 S
An optical recording medium having the same configuration as that of Example 2 was prepared except for b 27.3 Te 54.4 except for that, and the reflectance at a wavelength of 410 nm was measured as in Example 1. Wavelength 410
The reflectance in nm is 20.2% for the amorphous part and 3% for the crystalline part.
The contrast was 7.0% and the contrast was 16.8%.

【0070】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.59、消衰係数は2.86、結晶部の屈折率は1.
78、消衰係数は3.43であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.59, the extinction coefficient was 2.86, and the value of the crystalline portion was 2.86. The refractive index is 1.
78 and the extinction coefficient were 3.43.

【0071】(実施例15)記録層の組成をGe18.3
27.3Te54.4としただけでそれ以外は実施例1と同様
の構成の光記録媒体を作製し、波長430nmにおける
反射率を実施例1と同様に、測定を行った。波長430
nmにおける反射率は、非晶部10.8%、結晶部2
3.8%、コントラストは13%であった。
(Example 15) The composition of the recording layer was Ge 18.3 S
An optical recording medium having the same configuration as in Example 1 was prepared except for b 27.3 Te 54.4 except that the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430
The reflectance at nm is 10.8% for the amorphous part and 2% for the crystalline part.
3.8% and contrast were 13%.

【0072】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.81、消衰係数は2.90、結晶部の屈折率は2.
01、消衰係数は3.43であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.81, the extinction coefficient was 2.90, and the value of the crystalline portion was 2.90. The refractive index is 2.
01, the extinction coefficient was 3.43.

【0073】(実施例16)記録層の組成をGe18.3
27.3Te54.4としただけでそれ以外は実施例2と同様
の構成の光記録媒体を作製し、波長430nmにおける
反射率を実施例1と同様に、測定を行った。波長430
nmにおける反射率は、非晶部18.4%、結晶部3
4.5%、コントラストは16.1%であった。
Example 16 The composition of the recording layer was Ge 18.3 S
An optical recording medium having the same configuration as in Example 2 was produced except for b 27.3 Te 54.4 except that the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430
The reflectance at nm is 18.4% for the amorphous part and 3 for the crystalline part.
The contrast was 4.5% and the contrast was 16.1%.

【0074】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.81、消衰係数は2.90、結晶部の屈折率は2.
01、消衰係数は3.43であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.81, the extinction coefficient was 2.90, and the value of the crystalline portion was 2.90. The refractive index is 2.
01, the extinction coefficient was 3.43.

【0075】(実施例17)記録層の組成をGe22.0
22.3Te55.7としただけでそれ以外は実施例1と同様
の構成の光記録媒体を作製し、波長410nmにおける
反射率を実施例1と同様に、測定を行った。波長410
nmにおける反射率は、非晶部10.7%、結晶部2
5.0%、コントラストは14.3%であった。
Example 17 The composition of the recording layer was Ge 22.0 S
An optical recording medium having the same configuration as in Example 1 was prepared except for b 22.3 Te 55.7, and the reflectance at a wavelength of 410 nm was measured in the same manner as in Example 1. Wavelength 410
The reflectance at nm is 10.7% for the amorphous part and 2% for the crystalline part.
The contrast was 5.0% and the contrast was 14.3%.

【0076】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.81、消衰係数は2.84、結晶部の屈折率は1.
85、消衰係数は3.41であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.81, the extinction coefficient was 2.84, and the value of the crystalline portion was 2.84. The refractive index is 1.
85 and the extinction coefficient was 3.41.

【0077】(実施例18)記録層の組成をGe22.0
22.3Te55.7としただけでそれ以外は実施例2と同様
の構成の光記録媒体を作製し、波長410nmにおける
反射率を実施例1と同様に、測定を行った。波長410
nmにおける反射率は、非晶部20.2%、結晶部3
7.0%、コントラストは16.8%であった。
Example 18 The composition of the recording layer was Ge 22.0 S
An optical recording medium having the same configuration as in Example 2 was prepared except for b 22.3 Te 55.7, and the reflectance at a wavelength of 410 nm was measured in the same manner as in Example 1. Wavelength 410
The reflectance in nm is 20.2% for the amorphous part and 3% for the crystalline part.
The contrast was 7.0% and the contrast was 16.8%.

【0078】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
2.81、消衰係数は2.84、結晶部の屈折率は1.
85、消衰係数は3.41であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 2.81, the extinction coefficient was 2.84, and the value of the crystalline portion was 2.84. The refractive index is 1.
85 and the extinction coefficient was 3.41.

【0079】(実施例19)記録層の組成をGe22.0
22.3Te55.7としただけでそれ以外は実施例1と同様
の構成の光記録媒体を作製し、波長430nmにおける
反射率を実施例1と同様に、測定を行った。波長430
nmにおける反射率は、非晶部8.9%、結晶部22.
9%、コントラストは14%であった。
(Example 19) The composition of the recording layer was Ge 22.0 S
An optical recording medium having the same configuration as in Example 1 was produced except for b 22.3 Te 55.7, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430
The reflectance at nm is 8.9% for the amorphous part and 22.
The contrast was 9% and the contrast was 14%.

【0080】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
3.07、消衰係数は2.84、結晶部の屈折率は2.
06、消衰係数は3.54であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous portion was 3.07, the extinction coefficient was 2.84, and the value of the crystalline portion was 2.84. The refractive index is 2.
06, and the extinction coefficient was 3.54.

【0081】(実施例20)記録層の組成をGe22.0
22.3Te55.7としただけでそれ以外は実施例2と同様
の構成の光記録媒体を作製し、波長430nmにおける
反射率を実施例1と同様に、測定を行った。波長430
nmにおける反射率は、非晶部15.3%、結晶部3
3.5%、コントラストは18.2%であった。
(Example 20) The composition of the recording layer was Ge 22.0 S
An optical recording medium having the same configuration as in Example 2 was prepared except for b 22.3 Te 55.7, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. Wavelength 430
The reflectivity at nm is 15.3% for the amorphous part and 3 for the crystalline part.
The contrast was 3.5% and the contrast was 18.2%.

【0082】また実施例1と同様にして、記録層の屈折
率、消衰係数の値を測定したところ、非晶部の屈折率は
3.07、消衰係数は2.84、結晶部の屈折率は2.
06、消衰係数は3.54であった。
When the values of the refractive index and the extinction coefficient of the recording layer were measured in the same manner as in Example 1, the refractive index of the amorphous part was 3.07, the extinction coefficient was 2.84, and the value of the crystal part was 2.8. The refractive index is 2.
06, and the extinction coefficient was 3.54.

【0083】(比較例1)第1誘電体層の厚さを160
nm、記録層の厚さを5nm、第2誘電体層の厚さを3
5nmとした他は、実施例1と同様の構成の光記録媒体
を作製し、実施例1と同様の測定を行った。波長410
nmにおける反射率は、非晶部7.5%、結晶部12.
6%、コントラスト約5%であり、非晶部及び結晶部の
反射率が低くなり、コントラストも非常に小さくなって
しまった。
(Comparative Example 1) The thickness of the first dielectric layer was 160
nm, the thickness of the recording layer is 5 nm, and the thickness of the second dielectric layer is 3
An optical recording medium having the same configuration as in Example 1 was produced except that the thickness was set to 5 nm, and the same measurement as in Example 1 was performed. Wavelength 410
The reflectance at nm is 7.5% for the amorphous portion and 12.1 for the crystalline portion.
The reflectance was 6% and the contrast was about 5%. The reflectance of the amorphous portion and the crystalline portion was low, and the contrast was very low.

【0084】(比較例2)第1誘電体層の厚さを100
nm、記録層の厚さを5nm、第2誘電体層の厚さを3
5nmとした他は、実施例1と同様の構成の光記録媒体
を作製し、実施例1と同様の測定を行った。波長410
nmにおける反射率は、非晶部15.6%、結晶部1
3.9%であり、非晶部と結晶部の反射率が逆転してし
まい、コントラストが全く得られなかった。
(Comparative Example 2) The thickness of the first dielectric layer was set to 100
nm, the thickness of the recording layer is 5 nm, and the thickness of the second dielectric layer is 3
An optical recording medium having the same configuration as in Example 1 was produced except that the thickness was set to 5 nm, and the same measurement as in Example 1 was performed. Wavelength 410
The reflectance at nm is 15.6% for the amorphous part and 1 for the crystalline part.
3.9%, and the reflectances of the amorphous part and the crystal part were reversed, and no contrast was obtained.

【0085】(比較例3)比較例1と同様の構成の光記
録媒体を作製し、波長430nmにおける反射率を実施
例1と同様に、測定を行った。波長430nmにおける
反射率は、非晶部12.2%、結晶部18.3%、コン
トラスト約6.2%であり、コントラストが非常に小さ
くなってしまった。
Comparative Example 3 An optical recording medium having the same configuration as that of Comparative Example 1 was manufactured, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. The reflectance at a wavelength of 430 nm was 12.2% for the amorphous part, 18.3% for the crystal part, and about 6.2% for the contrast, and the contrast was extremely small.

【0086】(比較例4)比較例2と同様の構成の光記
録媒体を作製し、波長430nmにおける反射率を実施
例1と同様に、測定を行った。波長430nmにおける
反射率は、非晶部11.7%、結晶部8.4%であり、
非晶部と結晶部の反射率が逆転してしまい、コントラス
トが全く得られなかった。
Comparative Example 4 An optical recording medium having the same structure as in Comparative Example 2 was manufactured, and the reflectance at a wavelength of 430 nm was measured in the same manner as in Example 1. The reflectance at a wavelength of 430 nm is 11.7% for an amorphous part and 8.4% for a crystal part.
The reflectances of the amorphous part and the crystalline part were reversed, and no contrast was obtained.

【0087】[0087]

【発明の効果】本発明の光記録媒体によれば、以下の効
果が得られた。 (1)450nm以下の短波長領域で結晶と非晶質の間
の大きな反射率差が得られる。 (2)誘電体層の厚さの幅広い選択が可能である。 (3)スパッタリング法により容易に製作できる。
According to the optical recording medium of the present invention, the following effects can be obtained. (1) A large difference in reflectance between crystal and amorphous is obtained in a short wavelength region of 450 nm or less. (2) A wide selection of the thickness of the dielectric layer is possible. (3) It can be easily manufactured by a sputtering method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G11B 7/24 538 G11B 7/24 538C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G11B 7/24 538 G11B 7/24 538C

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光の照射による非晶相と結晶相の間の相
変化により情報の記録及び消去が行われる光記録媒体に
おいて、透明基板上に少なくとも第1誘電体層/記録層
/第2誘電体層/反射層がこの順に積層されており、各
層の波長390nm以上450nm以下での屈折率、消
衰係数、層の厚さが下記の式で表される関係にあること
を特徴とする光記録媒体。 2.2≦na≦2.3 30≦da≦500 2.58≦nα≦3.3 2.6≦kα≦2.9 1.77≦nc≦2.5 3.2≦kc≦3.8 7≦dr≦35(nm) 2.25≦nb≦2.4 0<db≦25(nm) 0.4≦nβ≦0.6 3.8≦kβ≦4.25 ここで、naは第1誘電体層の屈折率、daは第1誘電体
層の厚さ(nm)、nαは記録層の非晶状態の屈折率、
kαは記録層の非晶状態の消衰係数、ncは記録層の結
晶状態の屈折率、kcは記録層の結晶状態の消衰係数、
rは記録層の厚さ(nm)、nbは第2誘電体層の屈折
率、dbは第2誘電体層の厚さ(nm)、nβは反射層
の屈折率、kβは反射層の消衰係数を表す。
1. An optical recording medium in which information is recorded and erased by a phase change between an amorphous phase and a crystalline phase due to light irradiation, wherein at least a first dielectric layer / recording layer / second A dielectric layer / reflection layer is stacked in this order, and the refractive index, extinction coefficient, and layer thickness of each layer at a wavelength of 390 nm to 450 nm are represented by the following formula. Optical recording medium. 2.2 ≦ n a ≦ 2.3 30 ≦ d a ≦ 500 2.58 ≦ nα ≦ 3.3 2.6 ≦ kα ≦ 2.9 1.77 ≦ n c ≦ 2.5 3.2 ≦ k c ≦ 3.8 7 ≦ d r ≦ 35 (nm) 2.25 ≦ n b ≦ 2.4 0 <d b ≦ 25 (nm) 0.4 ≦ nβ ≦ 0.6 3.8 ≦ kβ ≦ 4.25 here, n a is the refractive index of the first dielectric layer, d a is the thickness of the first dielectric layer (nm), n [alpha is the refractive index of the amorphous state of the recording layer,
kα is the extinction coefficient of the amorphous state of the recording layer, n c is the refractive index of the crystalline state of the recording layer, k c is the extinction coefficient of the crystalline state of the recording layer,
d r is the thickness of the recording layer (nm), n b is the refractive index of the second dielectric layer, d b is the thickness of the second dielectric layer (nm), nβ is the refractive index of the reflective layer, Keibeta reflection Indicates the extinction coefficient of the layer.
【請求項2】 各層の波長390nm以上425nm以
下での屈折率、消衰係数、層の厚さが下記の式で表され
る関係にあることを特徴とする請求項1記載の光記録媒
体。 2.2≦na≦2.3 80a+100≦da≦80a+150(nm)(aは
0を含む整数) 2.58≦nα≦3.3 2.64≦kα≦2.9 1.77≦nc≦2.2 3.2≦kc≦3.7 7≦dr≦35(nm) 2.3≦nb≦2.4 0<db≦15(nm) 0.4≦nβ≦0.52 3.8≦kβ≦4.1 ここで、naは第1誘電体層の屈折率、daは第1誘電体
層の厚さ(nm)、nαは記録層の非晶状態の屈折率、
kαは記録層の非晶状態の消衰係数、ncは記録層の結
晶状態の屈折率、kcは記録層の結晶状態の消衰係数、
rは記録層の厚さ(nm)、nbは第2誘電体層の屈折
率、dbは第2誘電体層の厚さ(nm)、nβは反射層
の屈折率、kβは反射層の消衰係数を表す。
2. The optical recording medium according to claim 1, wherein the refractive index, extinction coefficient, and layer thickness of each layer at a wavelength of 390 nm to 425 nm are represented by the following equations. 2.2 ≦ n a ≦ 2.3 80a + 100 ≦ d a ≦ 80a + 150 (nm) ( a represents an integer including 0) 2.58 ≦ nα ≦ 3.3 2.64 ≦ kα ≦ 2.9 1.77 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 7 ≦ d r ≦ 35 (nm) 2.3 ≦ n b ≦ 2.4 0 <d b ≦ 15 (nm) 0.4 ≦ nβ ≦ 0 here .52 3.8 ≦ kβ ≦ 4.1, n a is the refractive index of the first dielectric layer, d a is the thickness of the first dielectric layer (nm), n [alpha is the amorphous state of the recording layer Refractive index,
kα is the extinction coefficient of the amorphous state of the recording layer, n c is the refractive index of the crystalline state of the recording layer, k c is the extinction coefficient of the crystalline state of the recording layer,
d r is the thickness of the recording layer (nm), n b is the refractive index of the second dielectric layer, d b is the thickness of the second dielectric layer (nm), nβ is the refractive index of the reflective layer, Keibeta reflection Indicates the extinction coefficient of the layer.
【請求項3】 各層の波長390nm以上425nm以
下での屈折率、消衰係数、層の厚さが下記の式で表され
る関係にあることを特徴とする請求項1記載の光記録媒
体。 2.2≦na≦2.3 100a+30≦da≦100a+80(nm)(aは
0を含む整数) 2.58≦nα≦3.3 2.64≦kα≦2.9 1.77≦nc≦2.2 3.2≦kc≦3.7 7≦dr≦35(nm) 2.3≦nb≦2.4 15<db≦25(nm) 0.4≦nβ≦0.52 3.8≦kβ≦4.1 ここで、naは第1誘電体層の屈折率、daは第1誘電体
層の厚さ(nm)、nαは記録層の非晶状態の屈折率、
kαは記録層の非晶状態の消衰係数、ncは記録層の結
晶状態の屈折率、kcは記録層の結晶状態の消衰係数、
rは記録層の厚さ(nm)、nbは第2誘電体層の屈折
率、dbは第2誘電体層の厚さ(nm)、nβは反射層
の屈折率、kβは反射層の消衰係数を表す。
3. The optical recording medium according to claim 1, wherein the refractive index, extinction coefficient, and layer thickness of each layer at a wavelength of 390 nm to 425 nm are represented by the following equations. 2.2 ≦ n a ≦ 2.3 100a + 30 ≦ d a ≦ 100a + 80 (nm) ( a represents an integer including 0) 2.58 ≦ nα ≦ 3.3 2.64 ≦ kα ≦ 2.9 1.77 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 7 ≦ d r ≦ 35 (nm) 2.3 ≦ n b ≦ 2.4 15 <d b ≦ 25 (nm) 0.4 ≦ nβ ≦ 0 here .52 3.8 ≦ kβ ≦ 4.1, n a is the refractive index of the first dielectric layer, d a is the thickness of the first dielectric layer (nm), n [alpha is the amorphous state of the recording layer Refractive index,
kα is the extinction coefficient of the amorphous state of the recording layer, n c is the refractive index of the crystalline state of the recording layer, k c is the extinction coefficient of the crystalline state of the recording layer,
d r is the thickness of the recording layer (nm), n b is the refractive index of the second dielectric layer, d b is the thickness of the second dielectric layer (nm), nβ is the refractive index of the reflective layer, Keibeta reflection Indicates the extinction coefficient of the layer.
【請求項4】 各層の波長425nmを越えて450n
m以下での屈折率、消衰係数、層の厚さが下記の式で表
される関係にあることを特徴とする請求項1記載の光記
録媒体。 2.2≦na≦2.25 80a+30≦da≦80a+70(nm)(aは0を
含む整数) 2.8≦nα≦3.3 2.64≦kα≦2.9 1.85≦nc≦2.2 3.2≦kc≦3.7 7≦dr≦35(nm) 2.25≦nb≦2.3 0<db≦15(nm) 0.5≦nβ≦0.6 4.0≦kβ≦4.25 ここで、naは第1誘電体層の屈折率、daは第1誘電体
層の厚さ(nm)、nαは記録層の非晶状態の屈折率、
kαは記録層の非晶状態の消衰係数、ncは記録層の結
晶状態の屈折率、kcは記録層の結晶状態の消衰係数、
rは記録層の厚さ(nm)、nbは第2誘電体層の屈折
率、dbは第2誘電体層の厚さ(nm)、nβは反射層
の屈折率、kβは反射層の消衰係数を表す。
4. Each layer has a wavelength of 450 n exceeding 425 nm.
2. The optical recording medium according to claim 1, wherein the refractive index, the extinction coefficient, and the layer thickness at m or less have a relationship represented by the following equation. 2.2 ≦ n a ≦ 2.25 80a + 30 ≦ d a ≦ 80a + 70 (nm) ( a represents an integer including 0) 2.8 ≦ nα ≦ 3.3 2.64 ≦ kα ≦ 2.9 1.85 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 7 ≦ d r ≦ 35 (nm) 2.25 ≦ n b ≦ 2.3 0 <d b ≦ 15 (nm) 0.5 ≦ nβ ≦ 0 here .6 4.0 ≦ kβ ≦ 4.25, n a is the refractive index of the first dielectric layer, d a is the thickness of the first dielectric layer (nm), n [alpha is the amorphous state of the recording layer Refractive index,
kα is the extinction coefficient of the amorphous state of the recording layer, n c is the refractive index of the crystalline state of the recording layer, k c is the extinction coefficient of the crystalline state of the recording layer,
d r is the thickness of the recording layer (nm), n b is the refractive index of the second dielectric layer, d b is the thickness of the second dielectric layer (nm), nβ is the refractive index of the reflective layer, Keibeta reflection Indicates the extinction coefficient of the layer.
【請求項5】 各層の波長425nmより大きく450
nm以下での屈折率、消衰係数、層の厚さが下記の式で
表される関係にあることを特徴とする請求項1記載の光
記録媒体。 2.2≦na≦2.25 100a+50≦da≦100a+110(nm)(a
は0を含む整数) 2.8≦nα≦3.3 2.64≦kα≦2.9 1.85≦nc≦2.2 3.2≦kc≦3.7 7≦dr≦35(nm) 2.25≦nb≦2.3 15<db≦25(nm) 0.5≦nβ≦0.6 4.0≦kβ≦4.25 ここで、naは第1誘電体層の屈折率、daは第1誘電体
層の厚さ(nm)、nαは記録層の非晶状態の屈折率、
kαは記録層の非晶状態の消衰係数、ncは記録層の結
晶状態の屈折率、kcは記録層の結晶状態の消衰係数、
rは記録層の厚さ(nm)、nbは第2誘電体層の屈折
率、dbは第2誘電体層の厚さ(nm)、nβは反射層
の屈折率、kβは反射層の消衰係数を表す。
5. The wavelength of each layer is larger than 425 nm and 450
2. The optical recording medium according to claim 1, wherein the refractive index, the extinction coefficient, and the thickness of the layer at nm or less have a relationship represented by the following equation. 2.2 ≦ n a ≦ 2.25 100a + 50 ≦ d a ≦ 100a + 110 (nm) (a
Integer) 2.8 ≦ nα ≦ 3.3 2.64 ≦ kα ≦ 2.9 1.85 ≦ n c ≦ 2.2 3.2 ≦ k c ≦ 3.7 7 ≦ d r ≦ 35 comprising 0 (nm) 2.25 ≦ n b ≦ 2.3 15 <d b ≦ 25 (nm) 0.5 ≦ nβ ≦ 0.6 4.0 ≦ kβ ≦ 4.25 where, n a first dielectric refractive index of the layer, d a is the thickness of the first dielectric layer (nm), n [alpha is the refractive index of the amorphous state of the recording layer,
kα is the extinction coefficient of the amorphous state of the recording layer, n c is the refractive index of the crystalline state of the recording layer, k c is the extinction coefficient of the crystalline state of the recording layer,
d r is the thickness of the recording layer (nm), n b is the refractive index of the second dielectric layer, d b is the thickness of the second dielectric layer (nm), nβ is the refractive index of the reflective layer, Keibeta reflection Indicates the extinction coefficient of the layer.
【請求項6】 第1誘電体層及び第2誘電体層が少なく
ともZnS、SiO2を含んでいることを特徴とする請
求項1〜5のいずれかに記載の光記録媒体。
6. The optical recording medium according to claim 1, wherein the first dielectric layer and the second dielectric layer contain at least ZnS and SiO 2 .
【請求項7】 記録層の組成がGe、Sb、Teの3元
素もしくはGe、Sb、Teの3元素とPd、Nb、P
t、Au、Ag、Niから選ばれる少なくとも1種から
なることを特徴とする請求項1〜5のいずれかに記載の
光記録媒体。
7. The recording layer has a composition of three elements of Ge, Sb and Te or three elements of Ge, Sb and Te and Pd, Nb and P
The optical recording medium according to any one of claims 1 to 5, comprising at least one selected from t, Au, Ag, and Ni.
【請求項8】 反射層がAlもしくはAl合金であるこ
とを特徴とする請求項1〜5のいずれかに記載の光記録
媒体。
8. The optical recording medium according to claim 1, wherein the reflection layer is made of Al or an Al alloy.
JP10136689A 1997-05-22 1998-05-19 Optical recording medium Pending JPH1139716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136689A JPH1139716A (en) 1997-05-22 1998-05-19 Optical recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13218097 1997-05-22
JP9-132180 1997-05-22
JP10136689A JPH1139716A (en) 1997-05-22 1998-05-19 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH1139716A true JPH1139716A (en) 1999-02-12

Family

ID=26466816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136689A Pending JPH1139716A (en) 1997-05-22 1998-05-19 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH1139716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652948B2 (en) 2000-12-21 2003-11-25 Ricoh Company, Ltd. Phase-change optical information recording medium and information recording and reading method using the recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652948B2 (en) 2000-12-21 2003-11-25 Ricoh Company, Ltd. Phase-change optical information recording medium and information recording and reading method using the recording medium
US6790504B2 (en) 2000-12-21 2004-09-14 Ricoh Company, Limited Phase-change optical information recording medium and information recording and reading method using the recording medium
US7048983B2 (en) 2000-12-21 2006-05-23 Ricoh Company, Ltd. Phase-change optical information recording medium and information recording and reading method using the recording medium

Similar Documents

Publication Publication Date Title
WO1995026549A1 (en) Optical recording medium and method of manufacturing the same
JPH08190734A (en) Optical recording medium
JPH1139709A (en) Optical recording medium
JP3163943B2 (en) Optical recording medium
JPH07161071A (en) Optical recording medium
JP3087598B2 (en) Optical recording medium
JPH1139716A (en) Optical recording medium
JP3211537B2 (en) Optical recording medium
JPH07262607A (en) Optical recording medium
JPH07262613A (en) Optical recording medium
JPH10172180A (en) Optical recording medium
JPH10124925A (en) Optical recording medium
JPH08115536A (en) Optical recording medium
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JPH1064128A (en) Optical recording medium and its production
JPH08124213A (en) Optical recording medium
JPH09223332A (en) Optical recording medium
JPH1139713A (en) Optical recording medium
JPH10269625A (en) Optical recording medium
JPH06127135A (en) Optical record medium
JPH08115535A (en) Optical recording medium
JPH1097734A (en) Optical recording medium
JPH08190733A (en) Optical recording medium
JPH09286176A (en) Optical recording medium
JPH11339332A (en) Manufacture of optical recording medium