JPH1064128A - Optical recording medium and its production - Google Patents

Optical recording medium and its production

Info

Publication number
JPH1064128A
JPH1064128A JP9109381A JP10938197A JPH1064128A JP H1064128 A JPH1064128 A JP H1064128A JP 9109381 A JP9109381 A JP 9109381A JP 10938197 A JP10938197 A JP 10938197A JP H1064128 A JPH1064128 A JP H1064128A
Authority
JP
Japan
Prior art keywords
recording
recording medium
recording layer
substrate
erasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9109381A
Other languages
Japanese (ja)
Inventor
Takao Amioka
孝夫 網岡
Toshinaka Nonaka
敏央 野中
Gentaro Obayashi
元太郎 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9109381A priority Critical patent/JPH1064128A/en
Publication of JPH1064128A publication Critical patent/JPH1064128A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical recording medium at a low cost. SOLUTION: This optical recording medium is an optical recording medium to which the recording, erasing and reproducing of information are made possible by irradiating the recording layer formed on a substrate with light and the recording and erasing of the information are executed by a phase change between an amorphous phase and a crystalline phase. The recording layer is formed as the crystalline phase. The process for producing such optical recording medium is executed by keeping the substrate temp. at >=70 deg.C and forming the recording layer by sputtering at the time of producing the optical recording medium with which the recording, erasing and reproducing of the information are made possible by irradiating the recording layer formed on the substrate with the light and the recording and erasing of the information are executed by the phase change between the amorphous phase and the crystalline phase. As a result, the stage for heating and crystallizing the recording layer by a laser, etc., after the film forming stage is eliminated and the production of the phase change recording medium is executed at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の照射により、
情報の記録、消去、再生が可能である光情報記録媒体に
関するものである。特に、本発明は、記録情報の消去、
書換機能を有し、情報信号を高速かつ、高密度に記録可
能な光ディスクなどの書換可能相変化型光記録媒体に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to an optical information recording medium capable of recording, erasing, and reproducing information. In particular, the present invention provides a method for erasing recorded information,
The present invention relates to a rewritable phase-change optical recording medium such as an optical disk having a rewritable function and capable of recording an information signal at high speed and at high density.

【0002】[0002]

【従来の技術】従来の書換可能相変化型光記録媒体の技
術は、以下のごときものである。記録膜を形成した後
に、Arレーザー、半導体レーザー、ハロゲンランプ等
で加熱し、結晶化させるという方法が知られている(特
開平2−5246号公報)。
2. Description of the Related Art The technology of a conventional rewritable phase-change optical recording medium is as follows. A method is known in which after a recording film is formed, it is heated by an Ar laser, a semiconductor laser, a halogen lamp, or the like to be crystallized (JP-A-2-5246).

【0003】[0003]

【発明が解決しようとする課題】前述の従来の急冷構造
の書換可能相変化型光記録媒体における課題は、記録膜
形成後に加熱し、結晶化させるために、製造コストが高
いものとなる。そこで、記録膜を結晶状態で形成すれ
ば、形成後の加熱結晶化のプロセスが不要となり、コス
トを低下させることができる。
An object of the above-mentioned conventional rewritable phase-change optical recording medium having a quenching structure is that the recording film is heated and crystallized after its formation, so that the production cost is high. Therefore, if the recording film is formed in a crystalline state, a heating crystallization process after the formation becomes unnecessary, and the cost can be reduced.

【0004】本発明は、かかる従来の光記録媒体の課題
を解決し、低コストの光記録媒体およびその製造方法を
提供せんとするものである。
An object of the present invention is to solve the problems of the conventional optical recording medium and to provide a low-cost optical recording medium and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、つぎのような手段を採用するものであ
る。すなわち、本発明の光記録媒体は、基板上に形成さ
れた記録層に光を照射することによって情報の記録、消
去、再生が可能であり、情報の記録および消去が、非晶
相と結晶相の間の相変化により行われる光記録媒体であ
って、記録層が結晶相として成膜されていることを特徴
とするものである。かかる光記録媒体の製造方法は、基
板上に形成された記録層に光を照射することによって情
報の記録、消去、再生が可能であり、情報の記録および
消去が、非晶相と結晶相の間の相変化により行われる光
記録媒体を製造するに際し、該基板温度を70℃以上で
記録層をスパッタリングにより成膜することを特徴とす
るものである。
The present invention employs the following means to solve the above-mentioned problems. That is, the optical recording medium of the present invention can record, erase, and reproduce information by irradiating a recording layer formed on a substrate with light, and can record and erase information in an amorphous phase and a crystalline phase. Wherein the recording layer is formed as a crystalline phase. In the method for manufacturing such an optical recording medium, information can be recorded, erased, and reproduced by irradiating a recording layer formed on a substrate with light, and information recording and erasing can be performed in an amorphous phase and a crystalline phase. When manufacturing an optical recording medium performed by a phase change between the recording layers, the recording layer is formed by sputtering at a substrate temperature of 70 ° C. or higher.

【0006】[0006]

【発明の実施の形態】本発明の光記録媒体においては、
基板上に、少なくとも第1誘電体層、記録層、第二誘電
体層、反射層をこの順で積層することが、記録時に基
板、記録層などが熱によって変形し記録特性が劣化する
ことを防止するなど、基板、記録層を熱から保護する効
果、光学的な干渉効果により、再生時の信号コントラス
トを改善する効果があることから好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the optical recording medium of the present invention,
Laminating at least a first dielectric layer, a recording layer, a second dielectric layer, and a reflective layer on a substrate in this order ensures that the substrate, the recording layer, etc. are deformed by heat during recording and the recording characteristics are degraded. This is preferable because it has an effect of protecting the substrate and the recording layer from heat, such as prevention, and an effect of improving the signal contrast at the time of reproduction by an optical interference effect.

【0007】本発明の第1誘電体層および第2誘電体層
としては、ZnS、SiO2 、窒化シリコン、酸化アル
ミニウムなどの無機薄膜がある。特にZnSの薄膜、S
i、Ge、Al、Ti、Zr、Ta、Ceなどの金属の
酸化物の薄膜、Si、Alなどの窒化物の薄膜、Ti、
Zr、Hfなどの炭化物の薄膜およびこれらの化合物の
混合物の膜が、耐熱性が高いことから好ましい。また、
これらに炭素や、MgF2 などのフッ化物を混合したも
のも、膜の残留応力が小さいことから好ましい。特にZ
nSとSiO2 の混合膜あるいは、ZnSとSiO2
炭素の混合膜は、記録、消去の繰り返しによっても、記
録感度、C/N、消去率などの劣化が起きにくいことか
ら好ましく特にZnSとSiO2 と炭素の混合膜が好ま
しい。ZnSとSiO2 の混合膜においては、SiO2
の混合比が15〜35モル%が好ましく、ZnSとSi
2 と炭素を構成材料とする混合膜でにおいては、Si
2 の混合比が15〜35モル%であり、炭素の混合比
が1〜15モル%であることが好ましい。
As the first dielectric layer and the second dielectric layer of the present invention, there are inorganic thin films such as ZnS, SiO 2 , silicon nitride, and aluminum oxide. In particular, a thin film of ZnS, S
a thin film of a metal oxide such as i, Ge, Al, Ti, Zr, Ta, or Ce; a thin film of a nitride such as Si or Al;
A thin film of a carbide such as Zr and Hf and a film of a mixture of these compounds are preferable because of high heat resistance. Also,
A mixture of these and a fluoride such as MgF 2 is also preferable because the residual stress of the film is small. Especially Z
A mixed film of nS and SiO 2 or a mixed film of ZnS, SiO 2 and carbon is preferable because ZnS and SiO 2 hardly deteriorate even when recording and erasing are repeated, especially ZnS and SiO 2. A mixed film of 2 and carbon is preferred. In a mixed film of ZnS and SiO 2 , SiO 2
Is preferably 15 to 35 mol%, and ZnS and Si
In a mixed film containing O 2 and carbon as constituent materials, Si
The mixing ratio of O 2 is preferably 15 to 35 mol%, and the mixing ratio of carbon is preferably 1 to 15 mol%.

【0008】本発明の反射層の材質としては、光反射性
を有するAl、Auなどの金属、およびこれらを主成分
とし、Ti、Cr、Hfなどの添加元素を含む合金およ
びAl、Auなどの金属にAl、Siなどの金属窒化
物、金属酸化物、金属カルコゲン化物などの金属化合物
を混合したものなどがあげられる。Al、Auなどの金
属、およびこれらを主成分とする合金は、光反射性が高
く、かつ熱伝導率を高くできることから好ましい。前述
の合金の例として、AlにSi、Mg、Cu、Pd、T
i、Cr、Hf、Ta、Nb、Mnなどの少なくとも1
種の元素を合計で5原子%以下、1原子%以上加えたも
の、あるいは、AuにCr、Ag、Cu、Pd、Pt、
Niなどの少なくとも1種の元素を合計で20原子%以
下1原子%以上加えたものなどがある。特に、材料の価
格が安くできることから、Alを主成分とする合金が好
ましく、とりわけ、耐腐食性が良好なことから、Alに
Ti、Cr、Ta、Hf、Zr、Mn、Pdから選ばれ
る少なくとも1種以上の金属を合計で5原子%以下0.
5原子%以上添加した合金が好ましい。とりわけ、耐腐
食性が良好でかつヒロックなどの発生が起こりにくいこ
とから、反射層を添加元素を合計で0.5原子%以上3
原子%未満含む、Al−Hf−Pd合金、Al−Hf合
金、Al−Ti合金、Al−Ti−Hf合金、Al−C
r合金、Al−Ta合金、Al−Ti−Cr合金、Al
−Si−Mn合金のいずれかのAlを主成分とする合金
で構成することが好ましい。
The material of the reflection layer of the present invention includes metals such as Al and Au having light reflectivity, alloys containing these as a main component and containing additional elements such as Ti, Cr and Hf, and metals such as Al and Au. Examples thereof include a mixture of a metal with a metal compound such as a metal nitride such as Al and Si, a metal oxide, and a metal chalcogenide. Metals such as Al and Au and alloys containing these as main components are preferable because of high light reflectivity and high heat conductivity. As an example of the above alloy, Al, Si, Mg, Cu, Pd, T
at least one of i, Cr, Hf, Ta, Nb, Mn, etc.
A total of 5 atomic% or less and 1 atomic% or more of various kinds of elements, or Au, Cr, Ag, Cu, Pd, Pt,
There is a material in which at least one element such as Ni is added in a total amount of 20 atomic% or less and 1 atomic% or more. In particular, an alloy containing Al as a main component is preferable because the price of the material can be reduced, and in particular, Al has at least one selected from Ti, Cr, Ta, Hf, Zr, Mn, and Pd because of good corrosion resistance. 5 atomic% or less in total of one or more metals.
An alloy containing 5 atomic% or more is preferable. In particular, since the corrosion resistance is good and hillocks and the like are unlikely to occur, the reflective layer is made up of a total of 0.5 atomic% or more of the additive element.
Al-Hf-Pd alloy, Al-Hf alloy, Al-Ti alloy, Al-Ti-Hf alloy, Al-C containing less than atomic%
r alloy, Al-Ta alloy, Al-Ti-Cr alloy, Al
It is preferable to be composed of an alloy containing any of Al as a main component of a -Si-Mn alloy.

【0009】本発明の記録層としては、特に限定するも
のではないが、Pd−Ge−Sb−Te合金、Nb−G
e−Sb−Te合金、Pd−Nb−Ge−Sb−Te合
金、Pt−Ge−Sb−Te合金、Ge−Sb−Te合
金、Co−Ge−Sb−Te合金、In−Sb−Te合
金、Ag−In−Sb−Te合金、In−Se合金など
がある。多数回の記録の書換が可能であることから、G
e−Sb−Te合金、Pd−Ge−Sb−Te合金、N
b−Ge−Sb−Te合金、Pd−Nb−Ge−Sb−
Te合金、Pt−Ge−Sb−Te合金が好ましい。特
に、Pd−Ge−Sb−Te合金、Nb−Ge−Sb−
Te合金、Pd−Nb−Ge−Sb−Te合金、Pt−
Ge−Sb−Te合金は、消去時間が短く、かつ多数回
の記録、消去の繰り返しが可能であり、C/N、消去率
などの記録特性に優れることから好ましい。さらには、
その組成は次式で表される範囲にあることが熱安定性と
繰返し安定性に優れている点からより好ましい。
The recording layer of the present invention is not particularly limited, but may be a Pd-Ge-Sb-Te alloy, Nb-G
e-Sb-Te alloy, Pd-Nb-Ge-Sb-Te alloy, Pt-Ge-Sb-Te alloy, Ge-Sb-Te alloy, Co-Ge-Sb-Te alloy, In-Sb-Te alloy, Ag-In-Sb-Te alloy, In-Se alloy and the like are available. Because the record can be rewritten many times,
e-Sb-Te alloy, Pd-Ge-Sb-Te alloy, N
b-Ge-Sb-Te alloy, Pd-Nb-Ge-Sb-
Te alloys and Pt-Ge-Sb-Te alloys are preferred. In particular, Pd-Ge-Sb-Te alloy, Nb-Ge-Sb-
Te alloy, Pd-Nb-Ge-Sb-Te alloy, Pt-
Ge-Sb-Te alloys are preferable because they have a short erasing time, can be repeatedly recorded and erased many times, and have excellent recording characteristics such as C / N and erasing rate. Moreover,
The composition is more preferably in the range represented by the following formula, from the viewpoint of excellent thermal stability and repetition stability.

【0010】 Mz (Sbx Te1-x1-y-z (Ge0.5 Te0.5y 0.35≦x≦0.5 0.2≦y≦0.5 0.0005≦z≦0.01 ここで、Mはパラジウム、ニオブ、白金、から選ばれる
少なくとも一種の金属を表す。また、x、y、z、およ
び数字は、各元素の原子の数(各元素のモル数)を表
す。
M z (Sb x Te 1-x ) 1-yz (Ge 0.5 Te 0.5 ) y 0.35 ≦ x ≦ 0.5 0.2 ≦ y ≦ 0.5 0.0005 ≦ z ≦ 0.01 Here, M represents at least one metal selected from palladium, niobium, and platinum. In addition, x, y, z, and numbers represent the number of atoms of each element (the number of moles of each element).

【0011】本発明の基板の材料としては、透明な各種
の合成樹脂、透明ガラスなどが使用できる。ほこり、基
板の傷などの影響をさけるために、透明基板を用い、集
束した光ビームで基板側から記録を行なうことが好まし
く、この様な透明基板材料としては、ガラス、ポリカー
ボネート、ポリメチル・メタクリレート、ポリオレフィ
ン樹脂、エポキシ樹脂、ポリイミド樹脂などがあげられ
る。特に、光学的複屈折が小さく、吸湿性が小さく、成
形が容易であることからポリカーボネート樹脂、アモル
ファス・ポリオレフィン樹脂が好ましい。
As the material of the substrate of the present invention, various transparent synthetic resins, transparent glass and the like can be used. In order to avoid the effects of dust and scratches on the substrate, it is preferable to use a transparent substrate and perform recording from the substrate side with a focused light beam, and such transparent substrate materials include glass, polycarbonate, polymethyl methacrylate, Polyolefin resin, epoxy resin, polyimide resin and the like can be mentioned. In particular, a polycarbonate resin and an amorphous polyolefin resin are preferable because they have low optical birefringence, low hygroscopicity, and are easy to mold.

【0012】基板の厚さは特に限定するものではない
が、0.01mm〜5mmが実用的である。0.01m
m未満では、基板側から集束した光ビームで記録する場
合でも、ごみの影響を受け易くなり、5mm以上では、
対物レンズの開口数を大きくすることが困難になり、照
射光ビームスポットサイズが大きくなるため、記録密度
をあげることが困難になる。基板はフレキシブルなもの
であっても良いし、リジッドなものであっても良い。フ
レキシブルな基板は、テープ状、シート状、カード状で
使用する。リジッドな基板は、カード状、あるいはディ
スク状で使用する。また、これらの基板は、記録層など
を形成した後、2枚の基板を用いて、エアーサンドイッ
チ構造、エアーインシデント構造、密着張合せ構造とし
てもよい。本発明の光記録媒体の記録に用いる光源とし
ては、レーザー光、ストロボ光のごとき高強度の光源で
あり、特に半導体レーザー光は、光源が小型化できるこ
と、消費電力が小さいこと、変調が容易であることから
好ましい。
Although the thickness of the substrate is not particularly limited, it is practically 0.01 mm to 5 mm. 0.01m
If it is less than m, even when recording with a light beam focused from the substrate side, it is easily affected by dust, and if it is 5 mm or more,
It becomes difficult to increase the numerical aperture of the objective lens, and the spot size of the irradiation light beam becomes large, so that it becomes difficult to increase the recording density. The substrate may be flexible or rigid. The flexible substrate is used in the form of a tape, a sheet, or a card. The rigid substrate is used in the form of a card or a disk. In addition, these substrates may be formed into an air sandwich structure, an air incident structure, or a close bonding structure by using two substrates after forming a recording layer or the like. The light source used for recording on the optical recording medium of the present invention is a high-intensity light source such as a laser beam or a strobe light. In particular, a semiconductor laser beam has a small light source, low power consumption, and easy modulation. It is preferable because of its existence.

【0013】記録は結晶状態の記録層にレーザー光パル
スなどを照射してアモルファスの記録マークを形成して
行う。また、反対に非晶状態の記録層に結晶状態の記録
マークを形成してもよい。消去はレーザー光照射によっ
て、アモルファスの記録マークを結晶化するか、もしく
は、結晶状態の記録マークをアモルファス化して行うこ
とができる。記録速度を高速化でき、かつ記録層の変形
が発生しにくいことから記録時はアモルファスの記録マ
ークを形成し、消去時は結晶化を行う方法が好ましい。
Recording is performed by irradiating a laser beam pulse or the like to the crystalline recording layer to form an amorphous recording mark. Alternatively, a recording mark in a crystalline state may be formed on a recording layer in an amorphous state. Erasing can be performed by irradiating a laser beam to crystallize an amorphous recording mark or to make a crystalline recording mark amorphous. Since the recording speed can be increased and the recording layer is hardly deformed, it is preferable to form an amorphous recording mark during recording and crystallize during erasing.

【0014】また、記録マーク形成時は光強度を高く、
消去時はやや弱くし、1回の光ビームの照射により書換
を行う1ビーム・オーバーライトは、書換の所要時間が
短くなることから好ましい。
Further, at the time of forming a recording mark, the light intensity is high,
One-beam overwriting, in which erasing is slightly weakened and rewriting is performed by one light beam irradiation, is preferable because the time required for rewriting is reduced.

【0015】記録層の結晶相は、菱面対称系または面心
立方晶系であることが好ましい。菱面対称系だと反射率
が高く、コントラストが大きくとれ、信号強度の大きな
光記録媒体が作製できることから好ましい。また、面心
立方晶系の結晶相は、低い基板加熱温度で作製できるこ
とから好ましい。
The crystal phase of the recording layer is preferably a rhombohedral system or a face-centered cubic system. It is preferable to use a rhomboid symmetrical system because the reflectance is high, the contrast is large, and an optical recording medium having a large signal intensity can be manufactured. A face-centered cubic crystal phase is preferable because it can be produced at a low substrate heating temperature.

【0016】次に、本発明の光記録媒体の製造方法につ
いて述べる。すなわち、基板上に形成された記録層に光
を照射することによって情報の記録消去再生が可能であ
り、情報の記録及び消去が、非晶相と結晶相の間の相変
化により行われる光記録媒体を製造するに際し、反射
層、記録層、誘電体層などを基板上に形成する方法とし
ては、真空中での薄膜形成法、例えば真空蒸着法、イオ
ンプレーティング法、スパッタリング法などがあげられ
る。記録層については、成膜時に組成、膜厚のコントロ
ールが容易であることから、スパッタリング法が好まし
い。記録層をスパッタリングで成膜する際は、結晶性薄
膜を堆積させることができることから、該基板温度を7
0℃以上で成膜するのがよい。好ましくは、結晶性薄膜
の成膜速度を速くすることができるため、かかる基板温
度を90℃以上として記録層をスパッタリングにより成
膜するのがよい。より好ましくは、さらに成膜速度が速
くでき、その他のスパッタリング条件を広く取ることが
できることから、かかる基板温度を110℃以上とする
のがよい。
Next, a method for manufacturing the optical recording medium of the present invention will be described. That is, by irradiating a recording layer formed on a substrate with light, information can be recorded / erased / reproduced, and information recording / erasing can be performed by a phase change between an amorphous phase and a crystalline phase. In producing a medium, as a method of forming a reflective layer, a recording layer, a dielectric layer, and the like on a substrate, a method of forming a thin film in a vacuum, for example, a vacuum deposition method, an ion plating method, a sputtering method, etc. . For the recording layer, the sputtering method is preferable because the composition and the film thickness can be easily controlled at the time of film formation. When the recording layer is formed by sputtering, a crystalline thin film can be deposited.
The film is preferably formed at 0 ° C. or higher. Preferably, since the deposition rate of the crystalline thin film can be increased, the recording layer is preferably formed by sputtering at a substrate temperature of 90 ° C. or higher. More preferably, the substrate temperature is preferably set to 110 ° C. or higher because the film formation rate can be further increased and other sputtering conditions can be widened.

【0017】形成する記録層などの厚さの制御は、水晶
振動子膜厚計などで、堆積状態をモニタリングすること
で、容易に行える。
The thickness of the recording layer and the like to be formed can be easily controlled by monitoring the deposition state using a quartz crystal film thickness meter or the like.

【0018】記録層などの形成は、基板を固定したま
ま、あるいは移動、回転した状態のどちらでもよい。膜
厚の面内の均一性に優れることから、基板を自転させる
ことが好ましく、さらに公転を組合わせることが、より
好ましい。
The formation of the recording layer and the like may be performed while the substrate is fixed, or moved or rotated. The substrate is preferably rotated on its own because of excellent in-plane uniformity of the film thickness, and more preferably combined with revolution.

【0019】また、本発明の効果を著しく損なわない範
囲において、反射層などを形成した後、傷、変形の防止
などのため、ZnS、SiO2 などの誘電体層あるいは
紫外線硬化樹脂などの樹脂保護層などを必要に応じて設
けてもよい。また、反射層などを形成した後、あるいは
さらに前述の樹脂保護層を形成した後、2枚の基板を対
向して、接着材で張り合わせてもよい。
Further, after forming a reflective layer and the like within a range that does not significantly impair the effects of the present invention, a dielectric layer such as ZnS or SiO 2 or a resin protection such as an ultraviolet curable resin is used to prevent scratches and deformation. Layers and the like may be provided as necessary. After the formation of the reflection layer or the like, or after the formation of the above-mentioned resin protective layer, the two substrates may be opposed to each other and bonded with an adhesive.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0021】(分析、測定方法)反射層、記録層の組成
は、ICP発光分析(セイコー電子工業(株)製SPS
4000)により確認した。またキャリア対ノイズ比お
よび消去率(記録後と消去後の再生キャリア信号強度の
差)は、スペクトラムアナライザにより測定した。
(Analysis and Measurement Method) The composition of the reflective layer and the recording layer was determined by ICP emission spectrometry (SPS manufactured by Seiko Denshi Kogyo KK).
4000). The carrier-to-noise ratio and the erasing rate (difference in the reproduced carrier signal strength after recording and after erasing) were measured by a spectrum analyzer.

【0022】記録層のX線回析測定は、理学電気社製R
U−200R、2155T、RINT型を用いて行なっ
た。
The X-ray diffraction measurement of the recording layer was performed using Rigaku Denki's R
This was performed using a U-200R, 2155T, RINT type.

【0023】記録層、誘電体層、反射層の形成中の膜厚
は、水晶振動子膜厚計によりモニターした。また各層の
厚さは、走査型あるいは透過型電子顕微鏡で断面を観察
することにより測定した。
The film thickness during the formation of the recording layer, the dielectric layer, and the reflection layer was monitored by a quartz oscillator film thickness meter. The thickness of each layer was measured by observing the cross section with a scanning or transmission electron microscope.

【0024】実施例1 厚さ1.2mm、直径12cm、1.2μmピッチのス
パイラルグルーブ付きポリカーボネート製基板上に、マ
グネトロンスパッタ法により、記録層、誘電体層、反射
層を形成した。
Example 1 A recording layer, a dielectric layer, and a reflection layer were formed by magnetron sputtering on a polycarbonate substrate having a spiral groove having a thickness of 1.2 mm, a diameter of 12 cm, and a pitch of 1.2 μm.

【0025】まず、真空容器内を1×10-5Paまで排
気した後、2×10-1PaのArガス雰囲気中で、Si
2 を20mol%添加したZnSをスパッタし、基板
上に膜厚150nmの第1誘電体層を形成した。次に、
基板温度を100℃に加熱しながら、Pd、Nb、G
e、Sb、Teからなるターゲットを10分間スパッタ
して、Nb0.006 Pd0.001 Ge0.173 Sb0.26Te
0.56の膜厚23nmの記録層を形成した。さらに次に、
SiO2 を20mol%添加したZnSとCの同時スパ
ッタで、ZnSとCのモル混合比が、8:1となるよう
に膜厚37nmの第二誘電体層形成し、次にPd0.001
Hf0.02Al0.979 合金の膜厚70nmの反射層を形成
した。
First, the inside of the vacuum vessel is evacuated to 1 × 10 -5 Pa, and then, the Si is evacuated in an Ar gas atmosphere of 2 × 10 -1 Pa.
A first dielectric layer having a thickness of 150 nm was formed on the substrate by sputtering ZnS to which 20 mol% of O 2 was added. next,
Pd, Nb, G while heating the substrate temperature to 100 ° C.
A target made of e, Sb, and Te is sputtered for 10 minutes, and Nb 0.006 Pd 0.001 Ge 0.173 Sb 0.26 Te
A recording layer having a thickness of 23 nm and a thickness of 0.56 was formed. Next,
Simultaneous sputtering of ZnS and C where the SiO 2 was added 20 mol%, the molar mixing ratio of ZnS and C, 8: 1 so as to form the second dielectric layer having a film thickness of 37 nm, then Pd 0.001
A 70 nm-thick reflective layer of an Hf 0.02 Al 0.979 alloy was formed.

【0026】このディスクを真空容器より取り出した
後、この反射層上にアクリル系紫外線硬化樹脂(大日本
インキ(株)製SD-101)をスピンコートし、紫外線照射
により硬化させて膜厚4μmの樹脂層を形成し本発明の
光記録媒体を得た。
After the disk was taken out of the vacuum container, an acrylic UV-curable resin (SD-101, manufactured by Dainippon Ink Co., Ltd.) was spin-coated on the reflective layer and cured by UV irradiation to form a 4 μm thick film. A resin layer was formed to obtain an optical recording medium of the present invention.

【0027】このようにして作製したディスクのうち一
枚に対し、記録特性の測定を行い、また別の一枚に対
し、記録層のX線回折測定を行った。また、これらいず
れのサンプルに対しても、レーザーの照射などの加熱処
理は一切行わないままで、測定用試料とした。
The recording characteristics were measured on one of the discs thus manufactured, and the X-ray diffraction measurement of the recording layer was performed on another disc. In addition, any of these samples was used as a measurement sample without performing any heat treatment such as laser irradiation.

【0028】記録特性の測定は、線速度12m/秒の条
件で、対物レンズの開口数0.47、半導体レーザーの
波長790nmの光学ヘッドを使用して、周波数8.8
7MHz(デュティ29%)、ピークパワー8〜16m
W、ボトムパワー4〜9mWの各条件に変調した半導体
レーザー光で1回記録した後、再生パワー1.0mWの
半導体レーザ光を照射してバンド幅30kHzの条件で
C/Nを測定した。さらにこの部分を3.33MHz
(デュティ21%)で、先と同様に変調した半導体レー
ザ光を照射し、ワンビーム・オーバーライトし、この時
の8.87MHzの前記録信号の消去率と記録マークの
再生信号の終端部のエッジのジッタを測定した。ピーク
パワー10mWで実用上十分な50dBのC/Nが得ら
れ、かつボトムパワー4〜7mWで実用上十分な20d
Bの消去率が得られた。
The recording characteristics were measured at a linear velocity of 12 m / s using an optical head having a numerical aperture of an objective lens of 0.47 and a wavelength of 790 nm of a semiconductor laser at a frequency of 8.8.
7MHz (duty 29%), peak power 8-16m
After recording once with a semiconductor laser beam modulated under the conditions of W and a bottom power of 4 to 9 mW, the semiconductor laser beam having a reproduction power of 1.0 mW was irradiated, and the C / N was measured under the condition of a bandwidth of 30 kHz. Furthermore, this part is 3.33MHz
(Duty 21%), irradiate a semiconductor laser beam modulated in the same manner as above, and perform one-beam overwriting. At this time, the erasure rate of the prerecorded signal of 8.87 MHz and the edge of the end of the reproduced signal of the recording mark are obtained. Was measured. A practically sufficient C / N of 50 dB is obtained with a peak power of 10 mW, and a practically sufficient 20 d with a bottom power of 4 to 7 mW.
The erasure rate of B was obtained.

【0029】さらにピーク・パワー12mW、ボトムパ
ワー6mW、周波数8.87MHzの条件で、ワンビー
ム・オーバーライトの繰り返しを1万回行った後、同様
の測定を行ったが、C/N、消去率の変化は、いずれも
2dB以内でほとんど劣化が認められず、ジッタの増加
もほとんどみられなかった。また、この光記録媒体を8
0℃、相対湿度80%の環境に1000時間置いた後、
その後記録部分を再生したが、C/Nの変化は2dB未
満でほとんど変化がなかった。さらに再度、記録、消去
を行いC/N、消去率を測定したところ、同様にほとん
ど変化が見られなかった。
Further, under the conditions of a peak power of 12 mW, a bottom power of 6 mW, and a frequency of 8.87 MHz, one-beam overwriting was repeated 10,000 times, and the same measurement was performed. In each case, almost no deterioration was observed within 2 dB, and almost no increase in jitter was observed. Also, this optical recording medium is
After 1000 hours in an environment of 0 ° C. and 80% relative humidity,
Thereafter, when the recorded portion was reproduced, the change in C / N was less than 2 dB and hardly changed. Further, recording and erasing were performed again, and the C / N and the erasing rate were measured.

【0030】記録層のX線回折測定は以下のようにして
行った。第二誘電体層と記録層の界面で剥離し、X線回
折パターンを測定したところ、最も強度の強いピーク
は、面間隔3.01オングストロームに対応する2q=
29.6゜にあり、二番目に強いピークは面間隔2.1
2オングストロームに対応する2q=42.6゜にあ
り、三番目に強いピークは面間隔3.46オングストロ
ームに対応する2q=25.7゜にあった。このことか
ら、記録層が面心立方晶の結晶相をもつことがわかる。
The X-ray diffraction measurement of the recording layer was performed as follows. When peeled off at the interface between the second dielectric layer and the recording layer and the X-ray diffraction pattern was measured, the strongest peak was 2q = 2q = 3.01 Å, which corresponds to the interplanar spacing.
29.6 °, and the second strongest peak was the interplanar spacing of 2.1.
At 2q = 42.6 ° corresponding to 2 Å, the third strongest peak was at 2q = 25.7 ° corresponding to the interplanar spacing of 3.46 Å. This indicates that the recording layer has a face-centered cubic crystal phase.

【0031】実施例2 実施例1の第2誘電体層をSiO2 を20mol%添加
したZnSとCの同時スパッタで、ZnSとSiO2
Cのモル混合比が、8:2:1.2となるように作製し
た他は、実施例1と同様にディスクを作製した。実施例
1と同様に記録特性を測定した結果、ピークパワー10
mWで実用上十分な50dBのC/Nが得られ、かつボ
トムパワー4〜7mWで実用上十分な20dBの消去率
が得られた。
Example 2 The second dielectric layer of Example 1 was simultaneously sputtered with ZnS and C to which 20 mol% of SiO 2 was added, and the molar mixture ratio of ZnS, SiO 2 and C was 8: 2: 1.2. A disk was manufactured in the same manner as in Example 1, except that the disk was manufactured as follows. As a result of measuring the recording characteristics in the same manner as in Example 1, the peak power was 10
At mW, a practically sufficient C / N of 50 dB was obtained, and at a bottom power of 4 to 7 mW, a practically sufficient erasing rate of 20 dB was obtained.

【0032】さらにピーク・パワー12mW、ボトムパ
ワー6mW、周波数8.65MHzの条件で、ワンビー
ム・オーバーライトの繰り返しを1万回行った後、同様
の測定を行ったが、C/N、消去率の変化は、いずれも
2dB以内でほとんど劣化が認められず、ジッタの増加
もほとんどみられなかった。
Further, under the conditions of a peak power of 12 mW, a bottom power of 6 mW, and a frequency of 8.65 MHz, one-beam overwriting was repeated 10,000 times, and the same measurement was performed. In each case, almost no deterioration was observed within 2 dB, and almost no increase in jitter was observed.

【0033】また、この光記録媒体を80℃、相対湿度
80%の環境に1000時間置いた後、その後記録部分
を再生したが、C/Nの変化は2dB未満でほとんど変
化がなかった。さらに再度、記録、消去を行いC/N、
消去率を測定したところ、同様にほとんど変化が見られ
なかった。殆ど同じ良好な記録、消去特性が得られた。
After the optical recording medium was placed in an environment of 80 ° C. and a relative humidity of 80% for 1000 hours, the recorded portion was reproduced thereafter, but the change in C / N was less than 2 dB and hardly changed. Further, recording and erasing are performed again, and C / N,
When the erasure rate was measured, almost no change was observed. Almost the same good recording and erasing characteristics were obtained.

【0034】実施例3 厚さ0.6mm、直径12cm、1.48μmピッチ
(ランド幅0.74μm、グルーブ幅0.74μm)の
スパイラルグルーブ付きポリカーボネート製基板上に、
マグネトロンスパッタ法により、記録層、誘電体層、反
射層を形成した。
Example 3 A polycarbonate substrate with a spiral groove having a thickness of 0.6 mm, a diameter of 12 cm, and a pitch of 1.48 μm (land width 0.74 μm, groove width 0.74 μm) was placed on a substrate.
A recording layer, a dielectric layer, and a reflection layer were formed by magnetron sputtering.

【0035】まず、真空容器内を6.5×10-4Paま
で排気した後、2×10-1PaのArガス雰囲気中でS
iO2を20mol%添加したZnSをスパッタし、基
板上に膜厚85nmの第1誘電体層を形成した。次に、
基板温度を115℃に加熱しながら、Ge、Sb、Te
からなるターゲットを3分間スパッタリングして、Ge
0.17Sb0.264Te0.566の膜厚20nmの記録層を形成
した。さらに次に、SiO2を20mol%添加したZ
nSをスパッタし、膜厚10nmの第2誘電体層を形成
し、次にPd0.001Hf0.02Al0.979合金の膜厚100
nmの反射層をスパッタで形成した。
First, the inside of the vacuum vessel was evacuated to 6.5 × 10 -4 Pa, and then the pressure was reduced in an Ar gas atmosphere of 2 × 10 -1 Pa.
ZnS to which 20 mol% of iO 2 was added was sputtered to form a first dielectric layer having a thickness of 85 nm on the substrate. next,
Ge, Sb, Te while heating the substrate temperature to 115 ° C.
Sputtering a target consisting of
A recording layer of 0.17 Sb 0.264 Te 0.566 having a thickness of 20 nm was formed. Next, Z containing 20 mol% of SiO 2 was added.
nS is sputtered to form a second dielectric layer having a thickness of 10 nm, and then a Pd 0.001 Hf 0.02 Al 0.979 alloy having a thickness of 100 nm is formed.
A reflective layer having a thickness of nm was formed by sputtering.

【0036】このディスクを真空容器より取りだした
後、この反射層上にアクリル系紫外線硬化樹脂(大日本
インキ(株)製SD-101)をスピンコートし、紫外線照射
により硬化させて膜厚4μmの樹脂層を形成し、本発明
の光記録媒体を得た。
After the disk was taken out of the vacuum container, an acrylic UV-curable resin (SD-101, manufactured by Dainippon Ink Co., Ltd.) was spin-coated on the reflective layer and cured by UV irradiation to form a film having a thickness of 4 μm. A resin layer was formed to obtain an optical recording medium of the present invention.

【0037】この光記録媒体の反射率を基板側から測定
したところ、680nmで約23%と、従来のレーザー
による加熱初期化したディスクの反射率と同等の結果を
得た。
When the reflectivity of this optical recording medium was measured from the substrate side, the result was about 23% at 680 nm, which was equivalent to the reflectivity of a disk initialized by heating with a conventional laser.

【0038】このようにして作製したディスクのうち一
枚に対し記録特性の測定を行った。また、これらいずれ
のサンプルに対しても、レーザーの照射などの加熱処理
はいっさい行わないままで測定用試料とした。
The recording characteristics of one of the discs thus manufactured were measured. In addition, any of these samples was used as a measurement sample without performing any heat treatment such as laser irradiation.

【0039】記録特性の測定は、線速度6m/秒の条件
で、対物レンズの開口数0.6、半導体レーザーの波長
680nmの光学ヘッドを使用して、8/16変調の3
Tパターンをマーク長記録によって一回記録した。この
時、記録レーザー波形はマルチパルスを用いた。また、
この時のウィンドウ幅は34nsとした。この後、再生
パワー1.0mWの半導体レーザー光を照射してバンド
幅30kHzの条件でC/Nを測定した。さらにこの部
分を13T信号で、先と同様に変調した半導体レーザー
光を照射し、ワンビーム・オーバーライトし、このとき
の3T信号の消去率と記録マークの再生信号の終端部の
エッジのジッタを測定した。その結果、ピークパワー1
0mWで実用上十分な50dBのC/Nが得られ、かつ
ボトムパワー4〜7mWで実用上十分な20dBの消去
率が得られた。また、ジッタは実用上十分なウィンドウ
幅の10%以下であった。
The recording characteristics were measured at a linear velocity of 6 m / sec by using an optical head having a numerical aperture of an objective lens of 0.6 and a semiconductor laser having a wavelength of 680 nm.
The T pattern was recorded once by mark length recording. At this time, a multi-pulse was used as the recording laser waveform. Also,
The window width at this time was 34 ns. Thereafter, the semiconductor laser light having a reproduction power of 1.0 mW was irradiated, and the C / N was measured under the condition of a bandwidth of 30 kHz. Further, this portion is irradiated with a semiconductor laser beam modulated in the same manner as described above with a 13T signal, and one-beam overwriting is performed. At this time, the erasing rate of the 3T signal and the jitter of the edge at the end of the reproduction signal of the recording mark are measured. did. As a result, the peak power 1
At 0 mW, a practically sufficient C / N of 50 dB was obtained, and at a bottom power of 4 to 7 mW, a practically sufficient erasing rate of 20 dB was obtained. In addition, the jitter was 10% or less of the window width sufficient for practical use.

【0040】さらに、ピークパワー12mW、ボトムパ
ワー6mWの条件で、3T信号のワンビーム・オーバー
ライトの繰り返しを1万回行った後、同様の測定を行っ
たが、C/N、消去率の変化は、いずれも2dB以内で
ほとんど変化が認められず、ジッタの増加もほとんど見
られなかった。また、この光記録媒体を80℃相対湿度
80%の環境に1000時間おいた後、その後記録部分
を再生したが、C/Nの変化は2dB未満でほとんど変
化がなかった。さらに再度、記録、消去を行い、C/N
消去率を測定したところ、同様にほとんど変化が見られ
なかった。
Further, the same measurement was performed after repeating the one-beam overwriting of the 3T signal 10,000 times under the conditions of the peak power of 12 mW and the bottom power of 6 mW, but the same measurement was performed. In each case, almost no change was observed within 2 dB, and almost no increase in jitter was observed. After the optical recording medium was placed in an environment of 80 ° C. and a relative humidity of 80% for 1000 hours, the recorded portion was reproduced thereafter, but the change in C / N was less than 2 dB and hardly changed. Further, recording and erasing are performed again, and C / N
When the erasure rate was measured, almost no change was observed.

【0041】実施例4 実施例1の基板材料にガラス基板を用い、記録膜を作製
する際の基板温度を350℃としたことの他は、実施例
1と同様にディスクを作製した。実施例1と同様に記録
特性を測定した結果、ピークパワー10mWで実用上十
分な50dBのC/Nが得られ、かつボトムパワー4〜
7mWで実用上十分な20dBの消去率が得られた。
Example 4 A disk was produced in the same manner as in Example 1 except that a glass substrate was used as the substrate material in Example 1 and the substrate temperature when producing the recording film was 350 ° C. As a result of measuring recording characteristics in the same manner as in Example 1, a practically sufficient C / N of 50 dB was obtained at a peak power of 10 mW, and a bottom power of 4 to
At 7 mW, a practically sufficient erasure rate of 20 dB was obtained.

【0042】さらに、ピークパワー12mW、ボトムパ
ワー6mW、周波数8.65MHzの条件で、ワンビー
ム・オーバーライトの繰り返しを一万回行った後、同様
の測定を行ったが、C/N、消去率の変化はいずれも2
dBいないでほとんど劣化が認められず、ジッタの増加
もほとんど見られなかった。
Further, under the conditions of a peak power of 12 mW, a bottom power of 6 mW, and a frequency of 8.65 MHz, one-beam overwriting was repeated 10,000 times, and the same measurement was performed. Every change is 2
Degradation was hardly observed without dB, and almost no increase in jitter was observed.

【0043】また、この光記録媒体を80℃、相対湿度
80%の環境に1000時間おいた後、その後記録部分
を再生したが、C/Nの変化は2dB未満でほとんど変
化が無かった。さらに再度記録消去を行い、C/N、消
去率を測定したところ、同様にほとんど変化が見られな
かった。ほとんど同じ良好な記録、消去特性が得られ
た。
After the optical recording medium was placed in an environment of 80 ° C. and a relative humidity of 80% for 1000 hours, the recorded portion was reproduced thereafter, but the change in C / N was less than 2 dB and hardly changed. Further, recording and erasing were performed again, and the C / N and the erasing rate were measured. Almost the same good recording and erasing characteristics were obtained.

【0044】実施例1と同様にして記録層のX線回折パ
ターンを測定したところ、最も強度の強いピークは、面
間隔3.11オングストロームに対応する2q=28.
6゜にあり、二番目に強いピークは面間隔2.12オン
グストロームに対応する2q=42.7゜にあり、三番
目に強いピークは面間隔3.44オングストロームに対
応する2q=25.9゜にあった。このことから、記録
層が菱面対称系の結晶相をもつことがわかる。
When the X-ray diffraction pattern of the recording layer was measured in the same manner as in Example 1, the peak having the highest intensity was 2q = 28.
At 6 °, the second strongest peak is at 2q = 42.7 °, corresponding to a spacing of 2.12 Å, and the third strongest peak is 2q = 25.9 °, corresponding to a spacing of 3.44 Å. Was in This indicates that the recording layer has a rhombohedral crystal phase.

【0045】比較例1 基板加熱を行わないようにした他は、実施例1と同様に
ディスクを作製した。実施例1と同様に記録特性を測定
しようとしたところ、反射率が低く、フォーカッシング
が困難で測定ができなかった。
Comparative Example 1 A disk was manufactured in the same manner as in Example 1 except that the substrate was not heated. When the recording characteristics were measured in the same manner as in Example 1, the reflectivity was low and focusing was difficult, and the measurement could not be performed.

【0046】記録層のX線回折測定を行ったところ、全
く回折ピークが認められなかった。
When the recording layer was subjected to X-ray diffraction measurement, no diffraction peak was observed.

【0047】[0047]

【発明の効果】本発明では、成膜工程の後に、記録層を
レーザー等により加熱し、結晶化するという工程が不要
となり、相変化記録媒体の製造が低コストで行えるとい
う効果が得られた。
According to the present invention, the step of heating the recording layer with a laser or the like after the film formation step to crystallize the recording layer becomes unnecessary, and the effect that the phase change recording medium can be manufactured at low cost is obtained. .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された記録層に光を照射する
ことによって情報の記録、消去、再生が可能であり、情
報の記録および消去が、非晶相と結晶相の間の相変化に
より行われる光記録媒体であって、記録層が結晶相とし
て成膜されていることを特徴とする光記録媒体。
An information recording, erasing and reproducing operation can be performed by irradiating a recording layer formed on a substrate with light, and the information recording and erasing can be performed by a phase change between an amorphous phase and a crystalline phase. An optical recording medium according to claim 1, wherein the recording layer is formed as a crystalline phase.
【請求項2】該記録層が、少なくともSbまたはTeを
含むことを特徴とする請求項1の光記録媒体。
2. The optical recording medium according to claim 1, wherein said recording layer contains at least Sb or Te.
【請求項3】該記録層が、少なくともGeとSbとTe
を含むことを特徴とする請求項1の光記録媒体。
3. The recording layer according to claim 1, wherein said recording layer comprises at least Ge, Sb and Te.
The optical recording medium according to claim 1, comprising:
【請求項4】該記録層の結晶相が、菱面対称系であるこ
とを特徴とする請求項2の光記録媒体。
4. The optical recording medium according to claim 2, wherein the crystal phase of the recording layer is a rhombohedral symmetric system.
【請求項5】該記録層の結晶相が、面心立方晶系である
ことを特徴とするの光記請求項2録媒体。
5. A recording medium according to claim 2, wherein the crystal phase of said recording layer is face-centered cubic.
【請求項6】基板上に形成された記録層に光を照射する
ことによって情報の記録、消去、再生が可能であり、情
報の記録および消去が、非晶相と結晶相の間の相変化に
より行われる光記録媒体を製造するに際し、該基板温度
を70℃以上で記録層をスパッタリングにより成膜する
ことを特徴とする光記録媒体の製造方法。
6. The recording, erasing, and reproducing of information is possible by irradiating a recording layer formed on a substrate with light, and the recording and erasing of information is performed by a phase change between an amorphous phase and a crystalline phase. A method for producing an optical recording medium, comprising: forming a recording layer by sputtering at a substrate temperature of 70 ° C. or higher when producing an optical recording medium.
【請求項7】該基板温度が、90℃以上である請求項6
記載の光記録媒体の製造方法。
7. The substrate according to claim 6, wherein said substrate temperature is 90 ° C. or higher.
The manufacturing method of the optical recording medium according to the above.
【請求項8】該基板温度が、110℃以上である請求項
6記載の光記録媒体の製造方法。
8. The method for manufacturing an optical recording medium according to claim 6, wherein said substrate temperature is 110 ° C. or higher.
JP9109381A 1996-04-25 1997-04-25 Optical recording medium and its production Pending JPH1064128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9109381A JPH1064128A (en) 1996-04-25 1997-04-25 Optical recording medium and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10513096 1996-04-25
JP8-105130 1996-04-25
JP9109381A JPH1064128A (en) 1996-04-25 1997-04-25 Optical recording medium and its production

Publications (1)

Publication Number Publication Date
JPH1064128A true JPH1064128A (en) 1998-03-06

Family

ID=26445472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9109381A Pending JPH1064128A (en) 1996-04-25 1997-04-25 Optical recording medium and its production

Country Status (1)

Country Link
JP (1) JPH1064128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025822A (en) * 2003-06-30 2005-01-27 Sony Corp Recording medium substrate, recording medium, and these manufacturing methods and formation device of recording medium substrate
US7507523B2 (en) * 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507523B2 (en) * 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information
JP2005025822A (en) * 2003-06-30 2005-01-27 Sony Corp Recording medium substrate, recording medium, and these manufacturing methods and formation device of recording medium substrate

Similar Documents

Publication Publication Date Title
WO1995026549A1 (en) Optical recording medium and method of manufacturing the same
JPH08190734A (en) Optical recording medium
JP3211537B2 (en) Optical recording medium
JPH1064128A (en) Optical recording medium and its production
JP3087598B2 (en) Optical recording medium
JP3163943B2 (en) Optical recording medium
JPH07161071A (en) Optical recording medium
JP3216552B2 (en) Optical recording medium and manufacturing method thereof
JPH1079144A (en) Manufacture of optical recording medium
JPH07262607A (en) Optical recording medium
JPH10255338A (en) Production of optical recording medium
JPH1139709A (en) Optical recording medium
JPH07262613A (en) Optical recording medium
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JPH08124213A (en) Optical recording medium
JPH06127135A (en) Optical record medium
JPH08115536A (en) Optical recording medium
JP2000067463A (en) Optical recording medium
JPH10255323A (en) Optical recording medium
JPH06191160A (en) Optical recording medium
JP2000182286A (en) Manufacture of optical recording medium
JPH10124925A (en) Optical recording medium
JPH10172180A (en) Optical recording medium
JPH06191161A (en) Optical recording medium
JPH07153117A (en) Optical recording medium and its manufacture