JPH113948A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH113948A
JPH113948A JP9154064A JP15406497A JPH113948A JP H113948 A JPH113948 A JP H113948A JP 9154064 A JP9154064 A JP 9154064A JP 15406497 A JP15406497 A JP 15406497A JP H113948 A JPH113948 A JP H113948A
Authority
JP
Japan
Prior art keywords
floating gate
gate
insulating film
impurities
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9154064A
Other languages
Japanese (ja)
Inventor
Tsutomu Hagiwara
努 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9154064A priority Critical patent/JPH113948A/en
Publication of JPH113948A publication Critical patent/JPH113948A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent impurities from being diffused from a floating gate to a tunnel oxide film, by a method wherein the tunnel insulating film which is partially formed in the thin film thickness of an insulating film is provided between an insulating diffused layer and the floating gate, and, after the floating gate introduced with impurities is formed, a heat treatment of a specified temperature is performed on the floating gate. SOLUTION: A polysilicon one layer type EEPROM consists of a structure, wherein a tunnel insulating film 3a, which is partially formed in the thin film thickness of an insulating film, is provided between an impurity diffused layer 1 provided in a semiconductor substrate and a floating gate 2 consisting of a polysilicon film, and a control gate is adjacent to the gate 2. A gate electrode material may be formed into a polysilicide structure such as a tungsten structure without limiting to a polysilicon structure. Here, if the temperature of a heat treatment after the gate 2 introduced with impurities is formed is set at 950 deg.C or lower, the amount of the impurities which are diffused from the gate 2 to the tunnel oxide film is inhibited, and the characteristic amount of a charge to pass through the oxide film until the oxide film reaches a level causing dielectric breakdown can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路装
置に関し、半導体中に設けられた不純物拡散層とフロー
ティングゲートの間に一部絶縁膜厚の薄いトンネル絶縁
膜が設けられた構造の半導体記憶装置において、前記ト
ンネル酸化膜を通してファゥラーノルトハイムトンネリ
ングを利用し、前記フローティングゲートに電子を注入
及び放出することによって、データの消去及び書き込み
を電気的に行う不揮発性メモリ(Electorica
lly Erasable Programmable
Read Only Memory;EEPROM)
に適用して有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor memory device having a structure in which a tunnel insulating film having a small insulating film thickness is partially provided between an impurity diffusion layer provided in a semiconductor and a floating gate. In the device, a nonvolatile memory (Electricica) for electrically erasing and writing data by injecting and emitting electrons to the floating gate using Ferrari-Nordheim tunneling through the tunnel oxide film.
lly Erasable Programmable
Read Only Memory; EEPROM)
It is related to technology that is effective when applied to

【0002】[0002]

【従来の技術】半導体中に設けられた不純物拡散層とフ
ローティングゲートの間に一部絶縁膜厚の薄いトンネル
絶縁膜が設けられ、コントロールゲートが前記フローテ
ィングゲートに隣接配置されたゲート一層構造を有する
半導体不揮発性記憶装置において、従来は、フローティ
ングゲートからトンネル酸化膜への不純物拡散を防止す
る為に、フローティングゲートに導入する不純物を低濃
度に設定した場合であっても、フローティングゲートが
形成された後の熱処理温度を950℃より高い温度にて
行うと、フローティングゲートからトンネル酸化膜へ不
純物が拡散してしまい、エンデュランス特性とトンネル
絶縁膜の絶縁破壊特性が悪化するというものである。
2. Description of the Related Art A tunnel insulating film having a thin insulating film is provided partially between an impurity diffusion layer provided in a semiconductor and a floating gate, and has a single-gate structure in which a control gate is arranged adjacent to the floating gate. Conventionally, in a semiconductor nonvolatile memory device, a floating gate is formed even in a case where an impurity to be introduced into a floating gate is set to a low concentration in order to prevent impurity diffusion from a floating gate to a tunnel oxide film. If the subsequent heat treatment is performed at a temperature higher than 950 ° C., impurities diffuse from the floating gate to the tunnel oxide film, and endurance characteristics and dielectric breakdown characteristics of the tunnel insulating film deteriorate.

【0003】[0003]

【発明が解決しようとする課題】請求項1記載の発明に
関しては、半導体中に設けられた不純物拡散層とフロー
ティングゲートの間に一部絶縁膜厚の薄いトンネル絶縁
膜が設けられ、コントロールゲートが前記フローティン
グゲートに隣接配置されたゲート一層構造を有する半導
体不揮発性記憶装置において、不純物が導入されたフロ
ーティングゲートを形成した後の熱処理を950℃より
高い温度にて実施した場合、フローティングゲートから
トンネル酸化膜へ不純物が拡散してしまい、エンデュラ
ンス特性とトンネル絶縁膜の絶縁破壊特性が悪化すると
いう問題を有していた。
According to the first aspect of the present invention, a tunnel insulating film having a small insulating film thickness is partially provided between an impurity diffusion layer provided in a semiconductor and a floating gate, and a control gate is provided. In the case of a semiconductor nonvolatile memory device having a single-layered gate structure disposed adjacent to the floating gate, if the heat treatment after forming the floating gate into which the impurity is introduced is performed at a temperature higher than 950 ° C., the tunnel oxidation is performed from the floating gate. There is a problem that impurities are diffused into the film and endurance characteristics and dielectric breakdown characteristics of the tunnel insulating film are deteriorated.

【0004】そこで、請求項1記載の発明に関しては、
不純物が導入されたフローティングゲートが形成された
後の熱処理温度を950℃以下に限定することによっ
て、トンネル酸化膜への不純物拡散を防止することによ
り、エンデュランス特性とトンネル絶縁膜の絶縁破壊特
性が悪化するとういう問題が解消された半導体記憶装置
の製造方法を提供することを目的とする。
[0004] Therefore, regarding the invention described in claim 1,
By limiting the heat treatment temperature after the formation of the floating gate into which the impurities are introduced to 950 ° C. or less, the diffusion of the impurities into the tunnel oxide film is prevented, thereby deteriorating the endurance characteristics and the dielectric breakdown characteristics of the tunnel insulating film. It is an object of the present invention to provide a method for manufacturing a semiconductor memory device in which such a problem is solved.

【0005】[0005]

【課題を解決するための手段】請求項1記載の半導体装
置の製造方法は、半導体中に設けられた不純物拡散層と
フローティングゲートの間に一部絶縁膜厚の薄いトンネ
ル絶縁膜が設けられ、コントロールゲートが前記フロー
ティングゲートに隣接配置されたゲート一層構造を有す
る半導体不揮発性記憶装置において、不純物が導入され
たフローティングゲートを形成した後の熱処理を950
℃以下に限定することを特徴とする。
According to a first aspect of the present invention, there is provided a method for manufacturing a semiconductor device, wherein a tunnel insulating film having a small insulating film thickness is provided between an impurity diffusion layer provided in a semiconductor and a floating gate, In a semiconductor nonvolatile memory device having a single-gate structure in which a control gate is disposed adjacent to the floating gate, a heat treatment after forming the floating gate into which the impurity is introduced is performed at 950.
It is characterized in that the temperature is limited to not more than ° C.

【0006】上記構成によれば、フローティングゲート
からトンネル酸化膜へ不純物が拡散を防止することによ
り、エンデュランス特性とトンネル絶縁膜の絶縁破壊特
性を向上させるという効果を有する。
According to the above structure, the diffusion of impurities from the floating gate to the tunnel oxide film is prevented, thereby improving the endurance characteristics and the dielectric breakdown characteristics of the tunnel insulating film.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】(実施例1)図1は、請求項1記載の発明
に係わる半導体記憶装置の実施例の要部を示す図であ
る。図1中、1は半導体基板中に設けられた不純物拡散
層、2はポリシリコンからなるフローティングゲート、
3は絶縁膜、3aは絶縁膜の一部薄い領域であるトンネ
ル膜、4は高耐圧トランジスタ、5は半導体基板中に設
けられたウェル領域、6は半導体基板である。その構成
を説明すると、半導体中に設けられた不純物拡散層1と
ポリシリコンからなるフローティングゲート2の間に一
部絶縁膜厚の薄いトンネル絶縁膜3aが設けられ、コン
トロールゲートが前記フローティングゲートに隣接した
構造のポリシリコン一層型のEEPROMの断面図であ
る。なおゲート電極材料はポリシリコンに限らずタング
ステン、チタン、モリブデン等のポリサイド構造でも良
い。
(Embodiment 1) FIG. 1 is a diagram showing a main part of an embodiment of a semiconductor memory device according to the present invention. In FIG. 1, 1 is an impurity diffusion layer provided in a semiconductor substrate, 2 is a floating gate made of polysilicon,
Reference numeral 3 denotes an insulating film, 3a denotes a tunnel film which is a partly thin region of the insulating film, 4 denotes a high breakdown voltage transistor, 5 denotes a well region provided in a semiconductor substrate, and 6 denotes a semiconductor substrate. The structure will be described. A tunnel insulating film 3a having a thin insulating film is provided partially between an impurity diffusion layer 1 provided in a semiconductor and a floating gate 2 made of polysilicon, and a control gate is adjacent to the floating gate. FIG. 3 is a cross-sectional view of a single-layer polysilicon type EEPROM having a structure as described above. The gate electrode material is not limited to polysilicon, and may have a polycide structure of tungsten, titanium, molybdenum, or the like.

【0009】図2は、規格化されたQbd(絶縁破壊に
至るまでに酸化膜を通過する電荷量)のフローティング
ゲート2が形成された後の熱処理の温度の依存性を示す
図である。この図2から明らかなようにフローティング
ゲート2が形成された後の熱処理の温度が950℃以上
の場合、Qbd特性が悪化する傾向がある。これは、不
純物が導入されたフローティングゲート2が形成された
後の熱処理の温度が950℃以下とした場合、フローテ
ィングゲートからトンネル酸化膜へ拡散する不純物の量
を抑制し、Qbd特性を向上させることができる。従っ
て、不純物が導入されたフローティングゲート2が形成
された後、ランプアニール等比較的短時間で終了する熱
処理を除き、炉を使用した熱工程は950℃以下に限定
するのが好ましい。
FIG. 2 is a diagram showing the temperature dependence of the heat treatment after the formation of the floating gate 2 of the standardized Qbd (the amount of charge passing through the oxide film until the dielectric breakdown occurs). As is apparent from FIG. 2, when the temperature of the heat treatment after the formation of the floating gate 2 is 950 ° C. or higher, the Qbd characteristics tend to deteriorate. This is because when the temperature of the heat treatment after the formation of the floating gate 2 into which the impurity is introduced is set to 950 ° C. or lower, the amount of the impurity diffused from the floating gate into the tunnel oxide film is suppressed, and the Qbd characteristic is improved. Can be. Therefore, it is preferable to limit the heating step using a furnace to 950 ° C. or less, except for a heat treatment that is completed in a relatively short time, such as lamp annealing, after the formation of the floating gate 2 into which the impurities are introduced.

【0010】上記のような構成によれば、フローティン
グゲート2からトンネル酸化膜3aへ不純物が拡散を防
止することにより、エンデュランス特性とトンネル絶縁
膜の絶縁破壊特性を向上させることが可能となる。
According to the above-described configuration, by preventing the diffusion of impurities from the floating gate 2 to the tunnel oxide film 3a, it is possible to improve the endurance characteristics and the dielectric breakdown characteristics of the tunnel insulating film.

【0011】[0011]

【発明の効果】請求項1記載の発明によれば、半導体中
に設けられた不純物拡散層とフローティングゲートの間
に一部絶縁膜厚の薄いトンネル絶縁膜が設けられ、コン
トロールゲートが前記フローティングゲートに隣接配置
されたゲート一層構造を有する半導体不揮発性記憶装置
において、不純物が導入されたフローティングゲートが
形成された後の熱処理温度を950℃以下に限定するこ
とにより、このフローティングゲートからトンネル酸化
膜に溶出する不純物の量を低減でき、エンデュランス特
性とトンネル絶縁膜の絶縁特性を向上させることができ
る。
According to the first aspect of the present invention, a tunnel insulating film having a small insulating film thickness is provided partially between an impurity diffusion layer provided in a semiconductor and a floating gate, and the control gate is formed of the floating gate. In the semiconductor non-volatile memory device having a single-layered gate structure, the heat treatment temperature after the formation of the floating gate into which the impurity is introduced is limited to 950 ° C. or lower, so that the floating gate can be removed from the tunnel oxide film. The amount of impurities eluted can be reduced, and the endurance characteristics and the insulating characteristics of the tunnel insulating film can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体中に設けられた不純物拡散層とフローテ
ィングゲートの間に一部絶縁膜厚の薄いトンネル絶縁膜
が設けられ、コントロールゲートが前記フローティング
ゲートに隣接配置されたゲート一層構造を有する半導体
不揮発性記憶装置の要部を示す断面図である。
FIG. 1 shows a semiconductor having a single-gate structure in which a tunnel insulating film having a small insulating film thickness is provided partially between an impurity diffusion layer provided in a semiconductor and a floating gate, and a control gate is arranged adjacent to the floating gate. FIG. 3 is a cross-sectional view illustrating a main part of the nonvolatile memory device.

【図2】規格化されたQbdのフローティングゲートが
形成された後の熱処理の温度依存性を示す図である。
FIG. 2 is a diagram showing the temperature dependence of a heat treatment after a standardized Qbd floating gate is formed.

【符号の説明】[Explanation of symbols]

1・・・半導体基板中に設けられた不純物拡散層 2・・・ポリシリコンからなるフローティングゲート 3・・・絶縁膜 3a・・・絶縁膜の一部薄い領域であるトンネル膜 4・・・高耐圧トランジスタ 5・・・半導体基板中に設けられたウェル領域 6・・・半導体基板 DESCRIPTION OF SYMBOLS 1 ... Impurity diffusion layer provided in the semiconductor substrate 2 ... Floating gate made of polysilicon 3 ... Insulating film 3a ... Tunnel film which is a partially thin region of the insulating film 4 ... High Withstand voltage transistor 5 ... Well region provided in semiconductor substrate 6 ... Semiconductor substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体中に設けられた不純物拡散層とフロ
ーティングゲートの間に一部絶縁膜厚の薄いトンネル絶
縁膜が設けられ、コントロールゲートが前記フローティ
ングゲートに隣接配置されたゲート一層構造を有する半
導体不揮発性記憶装置において、不純物が導入されたフ
ローティングゲートが形成された後の熱処理温度を95
0℃以下に限定したことを特徴とする半導体記憶装置の
製造方法。
1. A tunnel insulating film having a thin insulating film is provided partially between an impurity diffusion layer provided in a semiconductor and a floating gate, and a control gate has a single-layer structure in which the control gate is arranged adjacent to the floating gate. In the semiconductor nonvolatile memory device, the heat treatment temperature after the formation of the floating gate into which the impurity is introduced is set to 95
A method for manufacturing a semiconductor memory device, wherein the temperature is limited to 0 ° C. or lower.
JP9154064A 1997-06-11 1997-06-11 Manufacture of semiconductor device Withdrawn JPH113948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9154064A JPH113948A (en) 1997-06-11 1997-06-11 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9154064A JPH113948A (en) 1997-06-11 1997-06-11 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH113948A true JPH113948A (en) 1999-01-06

Family

ID=15576114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9154064A Withdrawn JPH113948A (en) 1997-06-11 1997-06-11 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH113948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007000364T5 (en) 2006-02-24 2008-11-27 Mitsubishi Cable Industries, Ltd. Ladder assembly and method of making the same
US10263003B2 (en) 2017-03-24 2019-04-16 Ablic Inc. Semiconductor device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007000364T5 (en) 2006-02-24 2008-11-27 Mitsubishi Cable Industries, Ltd. Ladder assembly and method of making the same
US10263003B2 (en) 2017-03-24 2019-04-16 Ablic Inc. Semiconductor device and method of manufacturing the same
US10497706B2 (en) 2017-03-24 2019-12-03 Ablic Inc. Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6445030B1 (en) Flash memory erase speed by fluorine implant or fluorination
US5972751A (en) Methods and arrangements for introducing nitrogen into a tunnel oxide in a non-volatile semiconductor memory device
US6188103B1 (en) Method of forming sharp beak of poly by nitrogen implant to improve erase speed for split-gate flash
US5708285A (en) Non-volatile semiconductor information storage device
US20010045600A1 (en) Semiconductor device containing mos elements and method of fabricating the same
US6001713A (en) Methods for forming nitrogen-rich regions in a floating gate and interpoly dielectric layer in a non-volatile semiconductor memory device
JPH11135654A (en) Split-gate flash memory cell structure
US6180977B1 (en) Self-aligned edge implanted cell to reduce leakage current and improve program speed in split-gate flash
US6103576A (en) Dielectric layer of a memory cell having a stacked oxide sidewall and method of fabricating same
US5610084A (en) Method of manufacturing an antifuse utilizing nitrogen implantation
US5422292A (en) Process for fabricating split gate flash EEPROM memory
US6465841B1 (en) Split gate flash memory device having nitride spacer to prevent inter-poly oxide damage
JPH07240478A (en) Preparation of nonvolatile semiconductor memory device
JP3241316B2 (en) Manufacturing method of flash memory
JP3732649B2 (en) Nonvolatile semiconductor memory device
US6078075A (en) Semiconductor device with a programmable element having a P-type substrate and floating gate with a thin gate dielectric
JP4969748B2 (en) Nonvolatile semiconductor memory device and method of manufacturing nonvolatile memory cell
JPH113948A (en) Manufacture of semiconductor device
US8536634B2 (en) Memory device transistors
US6989319B1 (en) Methods for forming nitrogen-rich regions in non-volatile semiconductor memory devices
JP4651457B2 (en) Manufacturing method of semiconductor device
US8043908B2 (en) Method of fabricating memory
TWI224858B (en) Flash memory cell, manufacturing method of memory cell and operation method thereof
JPH113947A (en) Semiconductor memory and manufacture of semiconductor memory
JPH07297299A (en) Semiconductor memory and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907