JPH1137935A - Method and apparatus for determining a plurality of components in sewage - Google Patents

Method and apparatus for determining a plurality of components in sewage

Info

Publication number
JPH1137935A
JPH1137935A JP19347397A JP19347397A JPH1137935A JP H1137935 A JPH1137935 A JP H1137935A JP 19347397 A JP19347397 A JP 19347397A JP 19347397 A JP19347397 A JP 19347397A JP H1137935 A JPH1137935 A JP H1137935A
Authority
JP
Japan
Prior art keywords
solvent
measured
light
absorbance
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19347397A
Other languages
Japanese (ja)
Other versions
JP3780646B2 (en
Inventor
Kohei Inoue
公平 井上
Mutsuhisa Hiraoka
睦久 平岡
Tokio Oodo
時喜雄 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19347397A priority Critical patent/JP3780646B2/en
Publication of JPH1137935A publication Critical patent/JPH1137935A/en
Application granted granted Critical
Publication of JP3780646B2 publication Critical patent/JP3780646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the concentration of water quality corrupting factors quickly and conveniently by calculating the concentration of water quality corrupting factors from the spectroscopic spectrums of a light transmitted through a solvent to be measured and a light scattered by the solvent using multiple regression analysis. SOLUTION: A solvent 4 to be measured in an optical cell 3 is irradiated with a light 2 from a light source 1 and a transmitted light 5 is passed through a spectrometer to produce a spectrometric spectrum from which the absorbance is operated at an operating section 7 for a plurality of wavelengths. The calculated absorbances are delivered to an operating section 8. The operating section 8 is prestored with the working curves for total organic carbon, total nitrogen, ammonia nitrogen and total phosphorus having the water quality factor concentration and the absorbance as objective variable and explanation variable, respectively, and mixed components are subjected to quantitative analysis by multiple regression analysis. As a second method, quantitative analysis is performed by pattern recognition method employing the neural network of absorbance of a plurality of wavelengths obtained from the spectrometric spectrum. As a third method, quantitative analysis is performed utilizing a transportation equation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水処理において
水質汚濁指標となる有機物量、窒素、リンなどの定量分
析方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for quantitatively analyzing an amount of organic substances, nitrogen, phosphorus and the like which are used as an index of water pollution in sewage treatment.

【0002】[0002]

【従来の技術】下水中の全有機態炭素、全窒素、アンモ
ニア態窒素、全リンなどの水質因子は、下水の性質を示
す数値量として利用されているが、これらの水質因子の
定量分析は、従来、下水試験方法(日本下水道協会発
行)に則って行われており、それぞれの水質因子によっ
て特有の測定法が用いられている。また、いずれの測定
法でも、予め標準物質測定による検量線の作成、およ
び、規定された試薬の添加や加熱、懸濁成分除去等の前
処理を必要としている。
2. Description of the Related Art Water quality factors such as total organic carbon, total nitrogen, ammonia nitrogen, and total phosphorus in sewage are used as numerical values indicating the properties of sewage. Quantitative analysis of these water quality factors is required. Conventionally, the measurement is carried out according to a sewage test method (issued by the Japan Sewerage Association), and a specific measurement method is used for each water quality factor. In addition, any of the measurement methods requires preparation of a calibration curve by measuring a standard substance in advance, and pretreatment such as addition of a prescribed reagent, heating, and removal of suspended components.

【0003】この全有機態炭素、全窒素、アンモニア態
窒素、全リンの4水質因子の一般的な測定方法の概略を
以下に述べる。 (1)全有機態炭素(TOC):まず、前処理として、
サンプリング水中の懸濁成分を超音波破砕器により均一
分散させる。
The general method of measuring the four water quality factors of total organic carbon, total nitrogen, ammonia nitrogen and total phosphorus will be described below. (1) Total organic carbon (TOC): First, as pretreatment,
The suspended components in the sampling water are uniformly dispersed by an ultrasonic crusher.

【0004】次に、この前処理をした少量の試料水を、
キャリアーガスの酸素と共に高温950°Cの全炭素測
定用酸化触媒充填管(TC炉)に送り込み、有機物質中
の炭素及び無機物中の炭素を二酸化炭素ガスとした後
に、除湿・除塵処理し、前記の二酸化炭素ガス濃度を非
分散型赤外線ガス分析計で測定して、TC検量線より全
炭素量(TC)を求める。
Next, a small amount of the sample water subjected to the pretreatment is
Along with the oxygen of the carrier gas, it is sent to an oxidation catalyst filling tube (TC furnace) for measuring all carbon at a high temperature of 950 ° C., and the carbon in the organic substance and the carbon in the inorganic substance are converted into carbon dioxide gas. Is measured with a non-dispersive infrared gas analyzer, and the total carbon content (TC) is determined from a TC calibration curve.

【0005】さらに、もう一つ経路には、試料の有機物
が分解されない温度(150°C)に保った無機性炭素
測定用酸化触媒充填管(IC炉)に試料を送り込み、生
成ガスを除湿・除塵処理し、前記操作により分解生成し
た二酸化炭素ガスを測定し、IC検量線により無機性炭
素量(IC)を求める。最後に、全炭素量(TC)から
無機性炭素量(IC)を差し引いて全有機態炭素量を算
出する。
Further, in another route, the sample is sent to an oxidation catalyst filled tube (IC furnace) for measuring inorganic carbon which is maintained at a temperature (150 ° C.) at which the organic matter of the sample is not decomposed, and the generated gas is dehumidified. After the dust removal treatment, the carbon dioxide gas decomposed and generated by the above operation is measured, and the amount of inorganic carbon (IC) is determined by an IC calibration curve. Finally, the total organic carbon content is calculated by subtracting the inorganic carbon content (IC) from the total carbon content (TC).

【0006】なお、試料測定前に、上記と同様な操作に
より、予めTC・IC標準液を測定し、前記のTC・I
Cの検量線を作成し、測定値の算定に用いる。全有機態
炭素については、TOC分析装置を用いた測定フローの
一例を、下水試験方法より抜粋して第17図に示す。 (2)全窒素(T−N):試料水にデバルダ合金を加
え、水酸化ナトリウムでアルカリ性とした後蒸留して、
試料水中のアンモニア性窒素、亜硝酸性窒素、硝酸性窒
素及び有機態窒素(アルカリ性で還元分解されるもの)
の合計量に相当するアンモニアを留出させる。 次に残
液中の有機態窒素をケルダール窒素法によって加熱分解
した後に、再びアルカリ性で蒸留し、留出したアンモニ
アを、前述のアンモニアと合わせて、イオン電極法によ
って測定して、全窒素を定量する。 (3)アンモニア態窒素(NH4 −N):試料水をアル
カリ性として、加熱蒸留した時に留出するアンモニアを
硫酸に吸収させ、この留出液をpH11〜13として、
アンモニウムイオンをアンモニアに変えて、このアンモ
ニアをイオン電極(アンモニア電極)を用いて測定し、
アンモニア態窒素を定量する。 (4)全リン(T−P):試料水に硝酸と硫酸を加えて
乾固近くまで加熱蒸発して分解を行い、生成したリン酸
イオン態リンを、モリブテン青吸光光度法に基づき吸光
度測定することで、試料水中の全リンを定量する。
Before the sample measurement, the TC / IC standard solution is measured in advance by the same operation as described above, and the TC / I
Create a calibration curve for C and use it for calculating measured values. For total organic carbon, an example of a measurement flow using a TOC analyzer is extracted from the sewage test method and is shown in FIG. (2) Total nitrogen (T-N): a devarda alloy was added to sample water, alkalized with sodium hydroxide, and then distilled.
Ammoniacal nitrogen, nitrite nitrogen, nitrate nitrogen, and organic nitrogen in sample water (reduced and decomposed by alkali)
Of ammonia corresponding to the total amount of Next, after the organic nitrogen in the remaining liquid is thermally decomposed by the Kjeldahl nitrogen method, it is again distilled under alkalinity, and the distilled ammonia is measured by the ion electrode method in combination with the above-mentioned ammonia to determine the total nitrogen. I do. (3) Ammonia nitrogen (NH 4 —N): The sample water was made alkaline, the ammonia distilled off during heating distillation was absorbed by sulfuric acid, and the distillate was adjusted to pH 11 to 13,
The ammonium ion is changed to ammonia, and this ammonia is measured using an ion electrode (ammonia electrode).
Ammonia nitrogen is determined. (4) Total phosphorus (TP): Add nitric acid and sulfuric acid to sample water, heat and evaporate to near dryness to decompose, and measure the phosphoric acid ion-form phosphorus generated based on molybdenum blue absorption spectrophotometry. By doing so, the total phosphorus in the sample water is determined.

【0007】このように、前記の4種の水質因子につい
ての従来の測定法は、化学分析の手法を中心とした処理
と測定法が用いられている。
As described above, the conventional measurement methods for the above-mentioned four water quality factors use processing and measurement methods centering on chemical analysis techniques.

【0008】[0008]

【発明が解決しようとする課題】近年、下水放流水の水
質保全や処理水の再利用の観点から、水質汚濁因子であ
る有機物量、窒素、リンなどを指標とした下水の高度処
理化が必要となってきており、前記の水質汚濁因子の濃
度を、迅速かつ簡便に測定する方法が望まれている。
In recent years, from the viewpoint of preserving the quality of sewage effluent and reusing treated water, it is necessary to enhance the sewage treatment using the amount of organic substances, nitrogen, phosphorus, etc. as water pollution factors as indicators. Therefore, a method for quickly and easily measuring the concentration of the water pollution factor has been desired.

【0009】しかし、前述のように従来の分析方法は、
水質因子毎に測定法が異なる上、前処理が必要であり、
測定結果を得るのに長時間を必要とする。また、機器分
析の発達によりTOC分析装置なども存在するが、測定
原理は前記の方法と同様であるため、測定項目毎に異な
る分析装置が必要で、購入価格とランニングコストが高
くなる。
However, as described above, the conventional analysis method is as follows.
The measurement method differs for each water quality factor, and pretreatment is required.
It takes a long time to obtain a measurement result. In addition, TOC analyzers and the like also exist due to the development of instrumental analysis. However, since the measurement principle is the same as that of the above-described method, a different analyzer is required for each measurement item, and the purchase price and running cost increase.

【0010】以上の問題をまとめると次の通りである。 (1)測定する水質因子別に測定原理が異なり、複合的
な測定が不可能である。 (2)測定に際して、前処理等を含め多くの操作と長時
間が必要である。本発明は、これらの問題点を解決する
ためになされたものであり、その目的は、下水中の水質
汚濁因子である全有機態炭素、全窒素、アンモニア態窒
素、全リンの濃度を、前処理なしで簡便で、かつ、複合
的に定量可能な下水中の複数成分定量方法と装置を提供
することにある。
The above problems are summarized as follows. (1) The measurement principle is different for each water quality factor to be measured, and complex measurement is impossible. (2) When performing the measurement, many operations including a pretreatment and a long time are required. The present invention has been made to solve these problems, and an object of the present invention is to reduce the concentration of total organic carbon, total nitrogen, ammonia nitrogen, and total phosphorus, which are water pollution factors, in sewage. It is an object of the present invention to provide a method and an apparatus for quantifying a plurality of components in sewage which are simple and can be quantitatively determined in a complex manner without treatment.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では、異なる物質を同一原理によって測定す
るために、水質因子によって光の波長吸収特性が異なる
という原理を利用する。すなわち、懸濁成分を含む被測
定溶媒に光を照射し、被測定溶媒を透過、散乱する光を
分光し、この分光スペクトルから複数の波長の吸光度を
演算し、得られた複数の吸光度を用いて、被測定溶媒中
の複数の含有成分を定量することとする。
In order to solve the above problems, the present invention utilizes the principle that the wavelength absorption characteristics of light differ depending on water quality factors in order to measure different substances according to the same principle. That is, the solvent to be measured containing the suspension component is irradiated with light, the light transmitted through and scattered from the solvent to be measured is spectrally analyzed, absorbances at a plurality of wavelengths are calculated from the spectral spectrum, and the obtained absorbances are used. Thus, a plurality of components in the solvent to be measured are determined.

【0012】ここで、得られた複数の吸光度から被測定
溶媒中の複数の含有成分の濃度を算出するにあたって
は、次の3つの方法がある。まず、第1の方法は、分光
スペクトルから得られる複数の波長の吸光度を重回帰分
析によって混合成分の定量分析をするものである。この
方法では、まず水質因子濃度を目的変数、吸光度を説明
変数として、あらかじめ重回帰分析により全有機態炭
素、全窒素、アンモニア態窒素、全リンの各検量線を作
成しておき、この各検量線に複数の吸光度を代入して算
出する。この方法は、分光スペクトルから得られる複数
の波長の吸光度を説明変数として、重回帰分析を行なう
ために、前記スペクトルに含まれる情報を集約し、か
つ、その他の多くの変動要因の干渉を排除して、目的と
する水質因子濃度と分光スペクトルデータとを関連づけ
て混合成分の定量分析ができる。
Here, there are the following three methods for calculating the concentrations of a plurality of contained components in the solvent to be measured from the obtained plurality of absorbances. First, the first method is to perform quantitative analysis of mixed components by multiple regression analysis on absorbances at a plurality of wavelengths obtained from a spectrum. In this method, a calibration curve for total organic carbon, total nitrogen, ammonia nitrogen, and total phosphorus is prepared in advance by multiple regression analysis using the water quality factor concentration as the target variable and the absorbance as the explanatory variable, Calculate by substituting multiple absorbances into the line. This method uses the absorbance at a plurality of wavelengths obtained from the spectral spectrum as an explanatory variable, performs a multiple regression analysis, aggregates information contained in the spectrum, and eliminates interference of many other variables. Thus, quantitative analysis of the mixed component can be performed by associating the target water quality factor concentration with the spectral data.

【0013】次に、第2の方法は、分光スペクトルから
得られる複数の波長の吸光度をニューラルネットワーク
を用いたパターン認識法によって混合成分の定量分析を
するものである。この方法では、まず得られた複数の吸
光度を0〜1に正規化し、この複数の正規化済み吸光度
を、あらかじめバックプロパゲーション法により学習さ
せて重み係数を決定させた入力層、中間層、出力層から
なるニューラルネットワークの入力層に入力し、出力層
からの出力に所定の演算を施して算出する。ここで、ニ
ューラルネットの重み係数の決定にあたっては、定量目
的の全ての水質因子を含有する複数m個の濃度既知の試
料について、複数の波長λ1 〜λn の吸光度を測定し、
得られたn個の波長の吸光度と、これに対応するm組み
の4つの水質因子濃度を、それぞれニューラルネットワ
ークの入力層と出力層として学習させて、重み係数を決
定する。なお、上記の種々の演算は、前記の各検量線、
ニューラルネットワークを格納した演算部を備えた装置
により行なうことができる。
Next, the second method is to quantitatively analyze the absorbance at a plurality of wavelengths obtained from the spectrum by a pattern recognition method using a neural network. In this method, first, a plurality of obtained absorbances are normalized to 0 to 1, and the plurality of normalized absorbances are learned in advance by a back propagation method to determine a weight coefficient, an input layer, an intermediate layer, and an output layer. The input is input to the input layer of the neural network composed of layers, and the output from the output layer is calculated by performing a predetermined operation. Here, in determining the weighting factor of the neural network, the absorbance at a plurality of wavelengths λ 1 to λ n is measured for a plurality of m samples of known concentrations containing all water quality factors for quantitative purposes,
The obtained absorbances of n wavelengths and the corresponding m sets of four water quality factor concentrations are learned as input and output layers of a neural network, respectively, to determine weighting factors. Note that the various calculations described above are performed using the above-described calibration curves,
This can be performed by a device including an arithmetic unit that stores a neural network.

【0014】上記の第1と第2の処理法はいずれも、被
測定溶媒の前処理を必要とせず、簡便かつ複合的に全有
機態炭素、全窒素、アンモニア態窒素、全リンの4つの
水質因子濃度を定量できる。また、前記の重回帰分析や
ニューラルネットワーク解析手法には、市販のニューラ
ルネットワークシステムや多変量解析ソフトとパソコン
を駆使すれば、4つの水質因子の濃度を瞬時に得ること
ができる。
Both the first and second treatment methods do not require a pretreatment of the solvent to be measured, and are simply and complexly composed of four organic carbon, total nitrogen, ammonia nitrogen and total phosphorus. Water quality factor concentration can be determined. For the multiple regression analysis and the neural network analysis method described above, the concentration of the four water quality factors can be instantaneously obtained by using a commercially available neural network system or multivariate analysis software and a personal computer.

【0015】さらに、第3の方法は、被測定溶媒に懸濁
成分が混在する場合に適用でき、被測定溶媒の透過およ
び散乱の光強度からの吸光度を、輸送方程式を利用して
求めた吸収係数と散乱係数とから、変換テーブルによっ
て混合成分の定量分析をするものである。上記の第1と
第2の方法では、吸光度が正確に測定できるという前提
であるが、被測定溶媒に多分の懸濁成分が混在する場合
には、一つの光強度検出器の測定値を用いての吸光度の
演算結果には測定誤差が大きくなる。そこで、この第3
の方法では、透過光強度を測定する第1の光検出器、散
乱光強度を測定する一つ以上の第2の光検出器を備えて
測定した各々の光強度を、被測定溶媒の単位体積当たり
の吸収断面積(吸収係数)と、被測定溶媒の単位体積当
たりの散乱断面積(散乱係数)に変換した値を用いて行
なう。これら変換方法は輸送方程式の解法による光強度
を計算した変換テーブルを格納した演算部を備えた装置
により行なうことができ、信頼性のある吸光度を得るこ
とができる。
Further, the third method can be applied to the case where suspended components are mixed in the solvent to be measured, and the absorbance from the transmission and scattering light intensities of the solvent to be measured is determined by the absorption equation obtained by using the transport equation. From the coefficient and the scattering coefficient, quantitative analysis of the mixed component is performed by a conversion table. The above first and second methods are based on the premise that the absorbance can be accurately measured. However, when the solvent to be measured contains a lot of suspended components, the measured value of one light intensity detector is used. The measurement results of all the absorbances have a large measurement error. Therefore, this third
The method comprises a first light detector for measuring transmitted light intensity, and one or more second light detectors for measuring scattered light intensity. The absorption cross section per unit area (absorption coefficient) and the value converted into the scattering cross section per unit volume of the solvent to be measured (scattering coefficient) are used. These conversion methods can be performed by an apparatus having an operation unit storing a conversion table in which the light intensity is calculated by solving the transport equation, and a reliable absorbance can be obtained.

【0016】[0016]

【発明の実施の形態】以下に、本発明の方法を3つの実
施例に基づき説明する。 〔実施例1〕図1は、本発明の第1の方法が適用される
装置の要部構成を示す模式図であり、以後に示す図2、
図3でも共通部分は同一符号で表わしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the method of the present invention will be described based on three embodiments. [Embodiment 1] FIG. 1 is a schematic diagram showing a main configuration of an apparatus to which a first method of the present invention is applied.
Also in FIG. 3, common parts are represented by the same reference numerals.

【0017】この図において、光源1からの光2をレン
ズ12により収束し、光学セル3内に保持された下水の
被測定溶媒4に照射して、その透過光5を分光器6aで
分光し、得れれた分光スペクトルから複数の波長λ1
λn の吸光度EW1〜EWnを演算部7で演算する。算出し
た吸光度EW1〜EWnは、演算部8に送られるが、演算部
8には、あらかじめ水質因子濃度を目的変数、吸光度を
説明変数とした全有機態炭素、全窒素、アンモニア態窒
素、全リンのそれぞれの検量線を格納してある。この演
算部8では、格納されている各検量線に吸光度EW1〜E
Wnを代入して前述の4つの水質因子濃度を演算し、その
演算結果は、出力部9、表示部10、および記憶装置1
1に送られる。
In FIG. 1, a light 2 from a light source 1 is converged by a lens 12 and is irradiated on a solvent 4 to be measured in sewage held in an optical cell 3, and the transmitted light 5 is separated by a spectroscope 6a. , A plurality of wavelengths λ 1 to
The calculation unit 7 calculates the absorbances E W1 to E Wn of λ n . The calculated absorbances E W1 to E Wn are sent to the calculation unit 8, and the calculation unit 8 preliminarily calculates total organic carbon, total nitrogen, ammonia nitrogen, using water quality factor concentration as an objective variable and absorbance as an explanatory variable. Each calibration curve for all phosphorus is stored. In this calculation unit 8, the absorbances E W1 to E W are added to the stored calibration curves.
The above four water quality factor concentrations are calculated by substituting Wn , and the calculation results are output to the output unit 9, the display unit 10, and the storage device 1
Sent to 1.

【0018】ここで、実際に前記の4つの水質因子の検
量線を作成し、図1の装置により定量分析を行なった一
例を記す。具体的な手順と結果は、次の通りである。は
じめに、検量線の作成は、先の4つの水質因子を含んだ
各々濃度既知の複数サンプルの分光スペクトルを測定
し、図4に示した波長対波長における吸光度の相関係数
を列記した2波長相関マトリクスを作成する。さらに、
この2波長相関マトリクスを参照して、下水の成分を説
明する上で、独立関係にある波長のグループ分けを実施
し、水質指標として意味のある波長を絞り込む。図4の
例では、波長(λ190 ,λ191 )、(λ192 ,λ193
の組が、それぞれ高い相関を示し、かつ二組間の相関が
低いことを示しており、λ190 とλ191 或いはλ192
λ 193 は同一グループと見なすことができ、かつ二組間
は下水成分を説明する上で独立した関係にあることにな
る。そこで、実際の下水の12サンプルの吸光度データ
を基に2波長相関マトリクスを作成し、互いに独立な関
係にある8個の波長λ1 〜λ8 =190、194、20
0、211、224、232、271、353nmを抽
出した。次に、新たに実際の下水の30サンプルを対象
に、サンプルの波長λ1 〜λ8 の吸光度を説明変数、下
水試験方法での4つの水質因子定量値を目的変数として
重回帰分析を行って、最適化した重回帰式を得た。この
重回帰式、つまり検量線は(1)〜(4)式で表され
る。
Here, the above four water quality factors are actually detected.
A quantitative curve was prepared and quantitative analysis was performed using the apparatus of FIG.
Here is an example. Specific procedures and results are as follows. Is
First, the preparation of the calibration curve included the above four water quality factors.
Measure the spectrum of multiple samples with known concentrations
And the correlation coefficient of the absorbance at the wavelength versus the wavelength shown in FIG.
Are created in a two-wavelength correlation matrix. further,
Referring to the two-wavelength correlation matrix, the components of sewage are discussed.
Grouping of independent wavelengths
Then, narrow down the wavelengths that are significant as water quality indicators. In FIG.
In the example, the wavelength (λ190, Λ191), (Λ192, Λ193)
Are highly correlated, and the correlation between the two is
Λ190And λ191Or λ192When
λ 193Can be considered as the same group, and
Are independent in describing sewage components.
You. Therefore, the absorbance data of 12 samples of actual sewage
A two-wavelength correlation matrix is created based on
Eight wavelengths λ1~ Λ8= 190, 194, 20
0, 211, 224, 232, 271, 353 nm
Issued. Next, target 30 new samples of actual sewage
And the wavelength λ of the sample1~ Λ8Absorbance of the explanatory variable, below
Quantitative values of four water quality factors in water test method as objective variables
Multiple regression analysis was performed to obtain an optimized multiple regression equation. this
The multiple regression equation, that is, the calibration curve is expressed by equations (1) to (4).
You.

【0019】[0019]

【数1】 (Equation 1)

【0020】このようにして作成した検量線(1)〜
(4)式を図1の装置の演算部8に格納して、更に、新
たに実下水30サンプルの定量分析を行い、従来の下水
試験方法による定量値と比較して相関関係を示したもの
が図5〜図8である。これらの結果より、いずれの相関
係数も0.9以上となった。この結果からも、複数の吸
光度を重回帰分析により解析する本発明が、従来法とも
合致して十分な精度を持つ定量方法であることがわか
る。また、ここで実施した重回帰分析には、コンピュー
タ上で多変量解析が行なえる市販のソフトを用いること
もできる。以上は、下水の複数成分の定量分析を、サン
プルの複数波長の吸光度と重回帰分析により作成した重
回帰式(検量線)を組み合わせて実現する点に最大の特
徴がある方法と装置について説明した。 〔実施例2〕次に、本発明の第2の方法が適用される装
置の要部構成を示す模式図を図2に示す。
The calibration curves (1) to thus created
The equation (4) is stored in the calculation unit 8 of the apparatus shown in FIG. 1, and a new quantitative analysis of 30 samples of actual sewage is performed. 5 to 8. From these results, all the correlation coefficients were 0.9 or more. From these results, it is understood that the present invention, in which a plurality of absorbances are analyzed by multiple regression analysis, is a quantitative method having sufficient accuracy consistent with the conventional method. For the multiple regression analysis performed here, commercially available software capable of performing multivariate analysis on a computer can also be used. The above is a description of the method and apparatus having the greatest feature in that the quantitative analysis of multiple components of sewage is realized by combining the absorbance at multiple wavelengths of a sample with the multiple regression equation (calibration curve) created by multiple regression analysis. . [Embodiment 2] Next, FIG. 2 is a schematic diagram showing the main configuration of an apparatus to which the second method of the present invention is applied.

【0021】この図において、光源1からの光2をレン
ズ12により収束し、光学セル3内に保持された下水の
被測定溶媒4に照射して、その透過光5を分光器6aで
分光し、得られた分光スペクトルから複数の波長λ1
λn の吸光度EW1〜EWnを演算部7で演算する。この吸
光度EW1〜EWnは、演算部13に送られるが、演算部1
3には、あらかじめバックプロパゲーション法により学
習させ重み係数を決定させた入力層、中間層、出力層か
らなるニューラルネットワークが格納してある。この演
算部13では、複数の吸光度EW1〜EWnを各々0〜1に
正規化し、n個の正規化済み吸光度EW1’〜EWn’をニ
ューラルネットワークの入力層に入力して得られる出力
結果に対し各々所定の演算を行なって、全有機態炭素、
全窒素、アンモニア態窒素、全リンの濃度を算出する。
この最終演算結果は、出力部9、表示部10、記憶装置
11に送られる。
In this figure, a light 2 from a light source 1 is converged by a lens 12 and irradiated on a solvent 4 to be measured in sewage held in an optical cell 3, and the transmitted light 5 is separated by a spectroscope 6a. A plurality of wavelengths λ 1 to
The calculation unit 7 calculates the absorbances E W1 to E Wn of λ n . The absorbances E W1 to E Wn are sent to the operation unit 13,
Reference numeral 3 stores a neural network including an input layer, an intermediate layer, and an output layer, which has been learned in advance by a back propagation method and has determined a weight coefficient. The arithmetic unit 13 normalizes the plurality of absorbances E W1 to E Wn to 0 to 1 , and outputs the n normalized absorbances E W1 ′ to E Wn ′ to the input layer of the neural network. A predetermined calculation is performed on each of the results, and the total organic carbon,
Calculate the concentration of total nitrogen, ammonia nitrogen and total phosphorus.
This final calculation result is sent to the output unit 9, the display unit 10, and the storage device 11.

【0022】ここで、演算部13に格納されるニューラ
ルネットワークの構成を図9に示し、構築手順の一例を
具体的に述べる。図9の構成は、入力部14と変換部ニ
ューラルネット15、出力部16、および変換部ニュー
ラルネット15の学習のための学習部17から成ってい
る。また、入力部14には、先の実施例で述べた方法と
同様にして決定した8個の波長λ1 〜λ8 =190、1
94、200、211、224、232、271、35
3nmのの吸光度結果を、次の(5)式に従って0〜1
の実数信号(EWn’)に変換し、変換部ニューラルネッ
ト15に入力する。
Here, the configuration of the neural network stored in the arithmetic unit 13 is shown in FIG. 9, and an example of the construction procedure will be specifically described. The configuration in FIG. 9 includes an input unit 14, a conversion unit neural network 15, an output unit 16, and a learning unit 17 for learning the conversion unit neural network 15. The input unit 14 has eight wavelengths λ 1 to λ 8 = 190, 1 determined in the same manner as in the method described in the previous embodiment.
94, 200, 211, 224, 232, 271, 35
The result of the absorbance at 3 nm was calculated from 0 to 1 according to the following equation (5).
To the real number signal (E Wn ′), and inputs the converted signal to the conversion unit neural network 15.

【0023】[0023]

【数2】 (Equation 2)

【0024】変換部ニューラルネット15では、入力さ
れた信号を全有機態炭素、全窒素、アンモニア態窒素、
全リンの水質因子毎の濃度信号(0〜1)に変換し、出
力部16へ出力する。ここで、変換部ニューラルネット
15は、図10に示した3層のバックプロパゲーション
法ニューラルネットをもって構成されており、入力層8
個のユニット、中間層は5個のユニット、出力層は下水
の前記水質因子4個(A〜D)のユニットである。そし
て、出力部16は、変換部ニューラルネット15からの
信号A〜Dをそれぞれ次の(6)〜(9)式により各々
真の濃度を演算出力する。これらの式は、後述するパタ
ーン学習における、各水質因子濃度の教師信号0〜1変
換の逆演算式である。
The conversion unit neural network 15 converts the input signal into total organic carbon, total nitrogen, ammonia nitrogen,
It is converted into a concentration signal (0 to 1) for each water quality factor of all phosphorus, and output to the output unit 16. Here, the conversion unit neural net 15 is constituted by the three-layer back propagation neural network shown in FIG.
Units, the middle layer has five units, and the output layer has four water quality factors (A to D). The output unit 16 calculates and outputs true densities of the signals A to D from the conversion unit neural network 15 by the following equations (6) to (9), respectively. These formulas are inverse calculation formulas of conversion of teacher signal 0 to 1 for each water quality factor concentration in pattern learning described later.

【0025】[0025]

【数3】 (Equation 3)

【0026】また、バックプロパゲーション法では、認
識しようとする入力パターンについて学習し、ニューラ
ルネットを構築(ニューラルネットの重み係数を決定)
する。そこで、前述の4水質因子を含有する実下水サン
プル12種を対象に、図9のニューラルネットワークの
入力部14に、前記8波長の吸光度を学習用として入力
し、また、12組みの出力を各々下水試験方法で定量し
た各水質因子濃度を0〜1信号として教師パターンを与
えて、学習部17により初期学習させた。このとき、ほ
ぼ1000回の学習で収束し、最大誤差は0.05以下
であった。また、ここで用いたニューラルネットワーク
は、4個のコプロセッサを用いたリング結合並列アーキ
テクチャを有するエミュレータであり、バックプロパゲ
ーション法をソフトウェアによって実現している。
In the back propagation method, a neural network is constructed by learning an input pattern to be recognized (determining a weight coefficient of the neural network).
I do. Therefore, for the twelve actual sewage samples containing the four water quality factors described above, the eight wavelengths of absorbance are input to the input unit 14 of the neural network of FIG. 9 for learning, and twelve sets of outputs are output. A teacher pattern was given with each water quality factor concentration determined by the sewage test method as 0 to 1 signal, and the learning unit 17 made initial learning. At this time, the convergence was achieved by approximately 1000 learning operations, and the maximum error was 0.05 or less. The neural network used here is an emulator having a ring-coupled parallel architecture using four coprocessors, and implements the back propagation method by software.

【0027】このようにして構築したニューラルネット
ワークを、図2の装置の演算部13に格納して、図2の
装置により実際の下水のサンプル50個を測定して、水
質因子毎に従来法と比較した結果が図11〜図14であ
る。これらの図から、いずれも相関係数0.9以上の良
好な相関があることがわかる。これは、構築したニュー
ラルネットワーク解析法の有効性を示す結果であり、第
一の方法同様に十分な精度の定量方法と言える。以上、
下水の複数成分の定量分析を、下水サンプルの分光スペ
クトルとバックプロパゲーション法ニューラルネットワ
ークを組み合わせて実現する方法と装置について述べ
た。 〔実施例3〕この例は、第3の方法について示したもの
である。上記の図1、図2の装置では、吸光度を正確に
測定できることが前提となるが、被測定溶媒に多分の懸
濁成分が混在する場合には、上記の図1、図2の装置の
光学系において、光強度の検出に測定誤差を含む可能性
がある。そこで、混在する懸濁成分に影響を受けること
なく、吸光度を測定する方法を以下に述べる。はじめ
に、媒体の散乱係数と吸収係数が与えられ、媒体の形状
と光源が与えられると、透過、散乱した出力光量は、参
考文献に記載の下記の(10)式の輸送方程式を解くこ
とにより得られる。 (参考文献: M.S.Patterson, Th
e Propagation of Optical Radiation inTissue I. Mod
els of Radiation Transport and their Application.
Lasers inMedical Science 1991,6:155-168 )。
The neural network thus constructed is stored in the operation unit 13 of the apparatus shown in FIG. 2, and 50 actual sewage samples are measured by the apparatus shown in FIG. FIGS. 11 to 14 show the comparison results. From these figures, it can be seen that there is a good correlation with a correlation coefficient of 0.9 or more. This is a result showing the effectiveness of the constructed neural network analysis method, and can be said to be a quantitative method with sufficient accuracy as in the first method. that's all,
A method and apparatus for realizing quantitative analysis of multiple components of sewage by combining spectral spectra of sewage samples and back propagation neural networks were described. [Embodiment 3] This embodiment shows the third method. In the apparatus of FIGS. 1 and 2 described above, it is premised that the absorbance can be accurately measured. However, when the solvent to be measured contains a large amount of suspended components, the optical system of the apparatus in FIGS. In a system, detection of light intensity can include measurement errors. Thus, a method for measuring the absorbance without being affected by the mixed suspended components will be described below. First, given the scattering coefficient and the absorption coefficient of the medium, and given the shape of the medium and the light source, the amount of transmitted and scattered output light can be obtained by solving the transport equation of the following equation (10) described in the reference. Can be (References: MSPatterson, Th
e Propagation of Optical Radiation inTissue I. Mod
els of Radiation Transport and their Application.
Lasers in Medical Science 1991, 6: 155-168).

【0028】[0028]

【数4】 (Equation 4)

【0029】ここで、 μa :懸濁成分を有す
る被測定溶剤の光吸収係数、 μs :懸濁成分を有する被測定溶剤の光散乱係数、 L(r, Ω) :位置rにおける単位面積、単位時間、単
位立体角dΩ当たりの方向Ωに向かう光のエネルギー dμs (r, Ω’→Ω) :位置rにおけるΩ’からΩに
向かう光の散乱確率 s(r, Ω) :光源 である。
Here, μ a : light absorption coefficient of the solvent to be measured having a suspension component, μ s : light scattering coefficient of the solvent to be measured having a suspension component, L (r, Ω): unit area at position r , Unit time, energy of light going in direction Ω per unit solid angle dΩ dμ s (r, Ω ′ → Ω): scattering probability of light going from Ω ′ to Ω at position r s (r, Ω): light source is there.

【0030】この方程式は、一般にモンテカルロ法を用
いて解くことができる。そこで、図3は、本発明の第3
の方法が適用される装置の要部構成を示す模式図であ
る。また、吸光度から被測定溶媒中の含有成分を求める
過程は前記の図1または図2の装置と同様なので、図示
は省略している。図3において、光源1からの光2をレ
ンズ12により収束し、光学セル3内に保持された下水
の被測定溶媒4に照射して、その透過光5の強度を第1
の光検出器6bで測定し、一方、散乱光18の強度を第
2の光検出器6cで測定する。測定されたこの透過光強
度と散乱光強度のデータは演算部19に送られるが、演
算部19には、実際にモンテカルロ法を用いて(10)
式の輸送方程式を解いた、表1、表2に示す変換テーブ
ルが格納してある。
This equation can be generally solved using the Monte Carlo method. FIG. 3 shows the third embodiment of the present invention.
FIG. 2 is a schematic diagram showing a configuration of a main part of an apparatus to which the method is applied. The process of obtaining the components contained in the solvent to be measured from the absorbance is the same as that in the apparatus shown in FIG. 1 or FIG. In FIG. 3, light 2 from a light source 1 is converged by a lens 12 and is irradiated on a solvent 4 to be measured in sewage held in an optical cell 3 so that the intensity of the transmitted light 5 is first.
, And the intensity of the scattered light 18 is measured by the second photodetector 6c. The measured data of the transmitted light intensity and the scattered light intensity are sent to the arithmetic unit 19, and the arithmetic unit 19 actually uses the Monte Carlo method (10)
The conversion tables shown in Tables 1 and 2 in which the transport equations of the equations are solved are stored.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】ここで、表1は、縦方向に記入した散乱係
数μs と、横方向に記入した吸収係数μa のそれぞれの
係数に対応する透過光強度を表しており、表2は同様に
して散乱光強度を表すものである。ここで、モンテカル
ロ法は、測定系に光(フォトン)を入射して光の散乱、
吸収を確率的に計算する方法であり、入射フォトン1つ
1つについて、その軌跡を乱数と測定系の光学定数値を
用いてシミュレートするものである。よって、光の散
乱、吸収は確率的な現象であるため、乱数を利用するこ
とによって完全な物理現象が再現できる。
Here, Table 1 shows the transmitted light intensity corresponding to the scattering coefficient μ s written in the vertical direction and the absorption coefficient μ a written in the horizontal direction, and Table 2 shows the same. Represents the scattered light intensity. Here, in the Monte Carlo method, light (photons) is incident on a measurement system to scatter light,
This is a method of calculating absorption stochastically, in which the trajectory of each incident photon is simulated using a random number and an optical constant value of a measurement system. Therefore, since light scattering and absorption are stochastic phenomena, complete physical phenomena can be reproduced by using random numbers.

【0034】以上のようにして演算部19に送られた透
過光強度と散乱光強度のデータは、この表1、表2の変
換テーブルを検索することにより、吸収係数つまり吸光
度を精度よく求めることができる。最後に、変換テーブ
ルの具体的な検索の仕方を記述する。図15、図16
は、変換テーブルの模式図であり、それぞれ、透過光強
度、散乱光強度が表わされている。ここで、図3の装置
にて得られた透過光強度が0.5、散乱光強度が0.0
5であったとする。図15において透過光強度0.5の
位置するところ、および、図16において散乱光強度が
0.05の位置するところを確認する。この例では、透
過光強度0.5の群は、右上がりの対角線上に位置して
おり、また、散乱光強度が0.05の群は、右下がりの
対角線上に位置することがわかる(いずれも灰色塗布
部)。そこで、着目するのは、両テーブルを対比したと
き、先に確認した位置関係の重なり合う部分であり、こ
の重なる位置に対応した吸収係数が求めたい吸光度であ
る。よって、この例では、検出した透過、散乱光強度の
2群の位置を対比すると、図の対角線の交差点で重なり
合い、このときの吸収係数、すなわち吸光度が0.00
3が求まる。
The data of the transmitted light intensity and the scattered light intensity transmitted to the arithmetic unit 19 as described above can be obtained by searching the conversion tables of Tables 1 and 2 to obtain the absorption coefficient, that is, the absorbance with high accuracy. Can be. Finally, a specific search method of the conversion table will be described. FIG. 15, FIG.
Is a schematic diagram of a conversion table, in which transmitted light intensity and scattered light intensity are respectively shown. Here, the transmitted light intensity obtained by the apparatus of FIG.
Assume that it was 5. It is confirmed that the transmitted light intensity is 0.5 in FIG. 15 and the scattered light intensity is 0.05 in FIG. In this example, it can be seen that the group with the transmitted light intensity of 0.5 is located on the diagonal line that rises to the right, and the group with the scattered light intensity of 0.05 is located on the diagonal line that declines to the right ( All are gray coated parts). Therefore, when comparing the two tables, attention is focused on the overlapping portion of the previously confirmed positional relationship, and the absorbance for which the absorption coefficient corresponding to the overlapping position is desired to be obtained. Therefore, in this example, when comparing the positions of the two groups of the detected transmitted and scattered light intensities, they overlap at the intersections of the diagonal lines in the figure, and the absorption coefficient at this time, that is, the absorbance is 0.00.
3 is found.

【0035】以上、本発明の方法を実施例に基づいて説
明した。いずれも、全ての処理に要する時間は、分光器
の能力にも依るが、概ね数分程度であり、定常的な水質
分析はもちろんのこと、連続サンプリング装置や光学的
な汚れ対策を付加すれば自動分析装置や下水の高度処理
(制御)用装置に十分に適用できる。また、上記の説明
には、下水の水質因子として、全有機態炭素、全窒素、
アンモニア態窒素、全リンの4種類について説明した
が、本発明の測定原理から判るように、溶媒は水に限定
されるものではなく、また含有成分についても、この4
種類に限定されるものではなく、吸光度の異なる成分で
あれば、波長の選定により広くこの測定法と測定装置が
適用できることは明白である。
The method of the present invention has been described based on the embodiments. In each case, the time required for all treatments depends on the capabilities of the spectrometer, but is generally on the order of several minutes, as well as continuous water quality analysis, as well as the addition of a continuous sampling device and optical contamination countermeasures. Applicable to automatic analyzers and advanced sewage treatment (control) equipment. In the above description, as the water quality factors of sewage, total organic carbon, total nitrogen,
Although four types of ammonia nitrogen and total phosphorus have been described, as can be seen from the measurement principle of the present invention, the solvent is not limited to water.
It is apparent that the measuring method and the measuring device can be widely applied to components having different absorbances by selecting the wavelength, without being limited to the kind.

【0036】[0036]

【発明の効果】以上述べたように、従来は水質因子毎に
測定法が異なると共に、多くの前処理操作が必要かつ複
雑であり、測定結果を得るのに多くの手間を要してい
た。本発明によれば、3つの実施例に述べたように、下
水サンプルの複数波長の吸光度を測定し、これらを分光
スペクトルのパターン認識によって複数の成分濃度を算
出するニューラルネットワーク(非線形モデルによる解
析)、または、複数波長の吸光度の線形結合から成分濃
度を求める重回帰分析(線形モデル解析)の手法を用い
たことにより、下水水質維持指標となり得る有機物、窒
素、リンを、濁質除去等の前処理をすることなく、かつ
複合的に定量できるようになった。また、サンプルに多
くの懸濁成分が存在する場合でも、輸送方程式を解いて
求めた変換テーブルの作成と透過光強度および散乱光強
度の測定から、より正確な吸光度を得ることが可能とな
った。
As described above, conventionally, the measuring method differs for each water quality factor, and many pretreatment operations are required and complicated, and much labor is required to obtain the measurement results. According to the present invention, as described in the three embodiments, a neural network that measures absorbances of a plurality of wavelengths of a sewage sample and calculates a plurality of component concentrations by pattern recognition of a spectral spectrum (analysis by a nonlinear model). Or, by using the method of multiple regression analysis (linear model analysis) to obtain the component concentration from the linear combination of the absorbances of multiple wavelengths, the organic matter, nitrogen, and phosphorus that can serve as sewage water quality maintenance index are removed before turbidity removal, etc. It has become possible to perform complex quantification without any treatment. In addition, even when there are many suspended components in the sample, it became possible to obtain a more accurate absorbance from the creation of the conversion table obtained by solving the transport equation and the measurement of the transmitted light intensity and the scattered light intensity. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の方法が適用される装置の要部構
成を示す模式図
FIG. 1 is a schematic diagram showing a main configuration of an apparatus to which a first method of the present invention is applied.

【図2】本発明の第2の方法が適用される装置の要部構
成を示す模式図
FIG. 2 is a schematic diagram showing a main configuration of an apparatus to which a second method of the present invention is applied.

【図3】:本発明の第3の方法が適用される装置の要部
構成を示す模式図
FIG. 3 is a schematic diagram showing a main configuration of an apparatus to which a third method of the present invention is applied.

【図4】:吸光度の2波長相関マトリクスを説明する模
式図
FIG. 4 is a schematic diagram illustrating a two-wavelength correlation matrix of absorbance.

【図5】:第1の方法を用いたTOC解析値と従来法分
析結果の比較図
FIG. 5: Comparison between TOC analysis values using the first method and analysis results of the conventional method

【図6】:第1の方法を用いたT−N解析値と従来法分
析結果の比較図
FIG. 6: Comparison between TN analysis values using the first method and analysis results of the conventional method

【図7】:第1の方法を用いたNH4 −N解析値と従来
法分析結果の比較図
FIG. 7: Comparison diagram of NH 4 -N analysis values using the first method and analysis results of the conventional method

【図8】:第1の方法を用いたT−P解析値と従来法分
析結果の比較図
FIG. 8: Comparison between TP analysis values using the first method and analysis results of the conventional method.

【図9】:第2の方法で用いたニューラルネットワーク
の模式図
FIG. 9: Schematic diagram of the neural network used in the second method

【図10】:第2の方法で用いた変換部ニューラルネッ
トの基本構造図
FIG. 10: Basic structure diagram of the transforming unit neural network used in the second method

【図11】:第2の方法を用いたTOC解析値と従来法
分析結果の比較図
FIG. 11: Comparison between TOC analysis values using the second method and analysis results of the conventional method

【図12】:第2の方法を用いたT−N解析値と従来法
分析結果の比較図
FIG. 12: Comparison between TN analysis values using the second method and analysis results of the conventional method

【図13】:第2の方法を用いたNH4 −N解析値と従
来法分析結果の比較図
FIG. 13: Comparison of NH 4 —N analysis values using the second method with analysis results of the conventional method

【図14】:第2の方法を用いたT−P解析値と従来法
分析結果の比較図
FIG. 14: Comparison between TP analysis values using the second method and analysis results of the conventional method

【図15】:吸収係数と散乱係数から透過光強度を求め
る変換テーブルの模式図
FIG. 15 is a schematic diagram of a conversion table for obtaining transmitted light intensity from an absorption coefficient and a scattering coefficient.

【図16】:吸収係数と散乱係数から散乱光強度を求め
る変換テーブルの模式図
FIG. 16 is a schematic diagram of a conversion table for obtaining scattered light intensity from an absorption coefficient and a scattering coefficient.

【図17】:従来のTOC分析法一例のフロー図FIG. 17: Flow chart of an example of a conventional TOC analysis method

【符号の説明】[Explanation of symbols]

1: 光源 2: 光 3: 光学セル 4: 被測定溶媒 5: 透過光 6a: 分光器 6b: 光検出器 6c: 光検出器 7: 演算部 8: 演算部 9: 出力部 10: 表示部 11: 記憶装置 12: レンズ 13: 演算部 14: 入力部 15: 変換部ニューラルネット 16: 出力部 17: 学習部 18: 散乱光 19: 演算部 1: Light source 2: Light 3: Optical cell 4: Solvent to be measured 5: Transmitted light 6a: Spectroscope 6b: Photodetector 6c: Photodetector 7: Operation unit 8: Operation unit 9: Output unit 10: Display unit 11 : Storage device 12: Lens 13: Operation unit 14: Input unit 15: Conversion unit neural network 16: Output unit 17: Learning unit 18: Scattered light 19: Operation unit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】懸濁成分を含む被測定溶媒に光ビームを照
射し、被測定溶媒を透過、散乱する光を分光する手段に
より分光し、この分光スペクトルから複数の波長の吸光
度を演算し、該吸光度を用いて被測定溶媒中の含有成分
を定量する方法において、 被測定溶媒の透過光、散乱光の分光スペクトルからn個
の波長λ1 〜λn の吸光度EW1〜EWnを演算し、k種類
の水質因子の濃度を目的変数、吸光度を説明変数として
あらかじめ重回帰分析により作成したk種類の水質因子
の各検量線に該吸光度EW1〜EWnを代入し演算して、該
k種類の水質因子のうち1種以上k種までの水質因子濃
度を、複合的かつ簡便に算出することを特徴とする下水
中の複数成分定量方法。
1. A method for irradiating a solvent to be measured containing a suspended component with a light beam, separating the light transmitted and scattered through the solvent to be measured by a spectral means, calculating absorbances at a plurality of wavelengths from the spectrum, In the method for quantifying a component contained in a solvent to be measured by using the absorbance, absorbances E W1 to E Wn of n wavelengths λ 1 to λ n are calculated from a spectrum of transmitted light and a scattered light of the solvent to be measured. The absorbances E W1 to E Wn are substituted into the respective calibration curves of k kinds of water quality factors prepared in advance by multiple regression analysis using the concentrations of the k kinds of water quality factors as the objective variable and the absorbance as the explanatory variable, and are calculated. A method for quantifying a plurality of components in sewage, wherein the concentration of one or more of up to k kinds of water quality factors among the kinds of water quality factors is calculated in a complex and simple manner.
【請求項2】懸濁成分を含む被測定溶媒に光ビームを照
射し、被測定溶媒を透過、散乱する光を分光する手段に
より分光し、この分光スペクトルから複数の波長の吸光
度を演算し、該吸光度を用いて被測定溶媒中の含有成分
を定量する方法において、 被測定溶媒の透過光、散乱光の分光スペクトルからn個
の波長λ1 〜λn の吸光度EW1〜EWnを演算し、得られ
た該吸光度EW1〜EWnを、演算手段によって各々0〜1
に正規化し、該n個の正規化済み吸光度EW1’〜EWn
を、バックプロパゲーション法により学習させて重み係
数を決定させた入力層、中間層、出力層からなるニュー
ラルネットワークを格納した演算手段の入力層として入
力し、その結果出力である出力層のk種の水質因子を水
質因子毎に所定の演算を行い、該k種のうち1種以上k
種までの水質因子の濃度を、複合的かつ簡便に算出する
ことを特徴とする下水中の複数成分定量方法。
2. A method for irradiating a solvent to be measured containing a suspension component with a light beam, separating the light transmitted and scattered by the solvent to be measured by a spectral means, and calculating absorbances at a plurality of wavelengths from the spectrum. In the method for quantifying a component contained in a solvent to be measured by using the absorbance, absorbances E W1 to E Wn of n wavelengths λ 1 to λ n are calculated from a spectrum of transmitted light and a scattered light of the solvent to be measured. The obtained absorbances E W1 to E Wn are each calculated by an arithmetic means to be 0 to 1
And the n normalized absorbances E W1 ′ to E Wn
Is input as an input layer of an arithmetic means storing a neural network composed of an input layer, an intermediate layer, and an output layer, the weights of which are determined by learning by a back propagation method, and k types of output layers are output as a result. A predetermined operation is performed for each water quality factor for at least one of the k
A method for quantifying a plurality of components in sewage, wherein the concentration of a water quality factor up to a species is calculated in a complex and simple manner.
【請求項3】請求項1または2記載の方法において、k
種類の水質因子を、全有機態炭素、全窒素、アンモニア
態窒素、全リンの4種類とする下水中の複数成分定量方
法。
3. The method according to claim 1, wherein k
A method for quantifying a plurality of components in sewage in which four types of water quality factors are used: total organic carbon, total nitrogen, ammonia nitrogen, and total phosphorus.
【請求項4】請求項2または3記載の方法において、バ
ックプロパゲーション法によるニューラルネットの重み
係数の決定にあたり、前記k種または4種の全ての水質
因子を含有する複数m個の濃度の既知試料について、分
光スペクトルを測定する手段により複数の波長λ1 〜λ
n の吸光度を測定し、得られたn個の波長の吸光度と、
これに対応するm組みのk種または4種の水質因子濃度
を、それぞれ入力層と出力層として学習させて、重み係
数を決定したニューラルネットワークを用いることを特
徴とする下水中の複数成分定量方法。
4. The method according to claim 2, wherein, in determining the weighting factor of the neural network by the back propagation method, a plurality of m concentrations containing the k or all four water quality factors are known. For a sample, a plurality of wavelengths λ 1 to λ
Measure the absorbance of n , the resulting absorbance of n wavelengths,
A method for quantifying a plurality of components in sewage, comprising using a neural network in which m sets of k or four kinds of water quality factor concentrations corresponding thereto are learned as an input layer and an output layer, and weight coefficients are determined. .
【請求項5】請求項1、2または3記載の方法におい
て、吸光度を演算する手段は、透過、散乱する光強度を
被測定溶媒の単位体積当たりの吸収断面積(吸収係数)
と、被測定溶媒の単位体積当たりの散乱断面積(散乱係
数)に変換した値を用いて、該吸光度を演算することを
特徴とする下水中の複数成分定量方法。
5. The method according to claim 1, wherein the means for calculating the absorbance is such that the intensity of the transmitted and scattered light is determined by an absorption cross section (absorption coefficient) per unit volume of the solvent to be measured.
And calculating the absorbance using a value converted into a scattering cross section (scattering coefficient) per unit volume of the solvent to be measured.
【請求項6】請求項5記載の方法において、吸収係数と
散乱係数への変換は、輸送方程式の解法により種々の吸
収係数と散乱係数に対する透過、散乱する光強度を計算
した変換テーブルを参照して行うことを特徴とする下水
中の複数成分定量方法。
6. The method according to claim 5, wherein the conversion into the absorption coefficient and the scattering coefficient refers to a conversion table in which the transmission and scattering light intensities for various absorption and scattering coefficients are calculated by solving the transport equation. And a method for quantifying multiple components in sewage.
【請求項7】懸濁成分を含む被測定溶媒に光ビームを照
射し、被測定溶媒を透過、散乱する光を分光する手段に
より分光し、この分光スペクトルから複数の波長の吸光
度を演算し、該吸光度を用いて被測定溶媒中の含有成分
を定量する装置において、 被測定溶媒を収容する光学セル、被測定溶媒に光を照射
する光源、被測定溶媒を透過、散乱する光を分光する分
光器、得られた分光スペクトルまたは光強度から吸光度
を演算する第1の演算部、水質因子濃度を目的変数、吸
光度を説明変数とした全有機態炭素、全窒素、アンモニ
ア態窒素、全リンそれぞれの検量線を格納して前記4つ
の水質因子濃度を演算する第2の演算部、および出力、
表示、記憶装置を備えることを特徴とする下水中の複数
成分定量装置。
7. A solvent to be measured containing a suspended component is irradiated with a light beam, and light transmitted and scattered through the solvent to be measured is spectrally separated by a means for spectrally separating the light, and absorbances at a plurality of wavelengths are calculated from the spectral spectrum. An apparatus for quantifying a component contained in a solvent to be measured by using the absorbance, an optical cell containing the solvent to be measured, a light source for irradiating the solvent to be measured with light, and a spectroscope for separating light transmitted and scattered through the solvent to be measured. Vessel, a first calculation unit for calculating the absorbance from the obtained spectral spectrum or light intensity, each of the total organic carbon, total nitrogen, ammonia nitrogen, and total phosphorus using the water quality factor concentration as an objective variable and the absorbance as an explanatory variable. A second calculator for storing a calibration curve and calculating the four water quality factor concentrations, and an output;
An apparatus for quantifying a plurality of components in sewage, comprising a display and a storage device.
【請求項8】懸濁成分を含む被測定溶媒に光ビームを照
射し、被測定溶媒を透過、散乱する光を分光する手段に
より分光し、この分光スペクトルから複数の波長の吸光
度を演算し、該吸光度を用いて被測定溶媒中の含有成分
を定量する装置において、 被測定溶媒を収容する光学セル、被測定溶媒に光を照射
する光源、被測定溶媒を透過、散乱する光を分光する分
光器、得られた分光スペクトルまたは光強度から吸光度
を演算する第1の演算部、バックプロパゲーション法に
より学習させ重み係数を決定した、入力層、中間層、出
力層からなるニューラルネットワークを格納し、第1の
演算部より得られた吸光度を0〜1に正規化する変換部
および前記ニューラルネットワークの出力層からの出力
に対し所定の演算を行い全有機態炭素、全窒素、アンモ
ニア態窒素、全リンの濃度を演算する第2の演算部、お
よび出力、表示、記憶装置を備えることを特徴とする下
水中の複数成分定量装置。
8. A solvent to be measured containing a suspension component is irradiated with a light beam, and light transmitted and scattered through the solvent to be measured is spectrally separated by a means for spectrally separating the light, and absorbances at a plurality of wavelengths are calculated from the spectral spectrum. An apparatus for quantifying a component contained in a solvent to be measured by using the absorbance, an optical cell containing the solvent to be measured, a light source for irradiating the solvent to be measured with light, and a spectroscope for separating light transmitted and scattered through the solvent to be measured. A neural network consisting of an input layer, an intermediate layer, and an output layer, in which a vessel, a first computing unit that computes absorbance from the obtained spectral spectrum or light intensity, and a weight coefficient determined by learning by a back propagation method are stored; A predetermined operation is performed on the output from the output layer of the neural network and the conversion unit for normalizing the absorbance obtained from the first arithmetic unit to 0 to 1 and all organic carbon and total nitrogen An apparatus for calculating concentrations of ammonia nitrogen and total phosphorus, and an output, display, and storage device.
【請求項9】請求項7または8記載の装置において、被
測定溶媒を透過、散乱する光を分光する手段に、被測定
溶媒を透過する光強度を測定する第1の光検出器、被測
定溶媒から散乱する光強度を測定する少なくとも一つの
第2の光検出器を備え、かつ、光強度から吸光度を演算
する第1の演算部に、得られた光強度を被測定溶媒の単
位体積当たりの吸収断面積(吸収係数)と被測定媒体の
単位体積当たりの散乱断面積(散乱係数)に変換する第
3の演算部を備えることを特徴とする下水中の複数成分
定量装置。
9. An apparatus according to claim 7, wherein said means for dispersing light transmitted and scattered through the solvent to be measured includes a first photodetector for measuring the intensity of light transmitted through the solvent to be measured. The apparatus further comprises at least one second photodetector for measuring the intensity of light scattered from the solvent, and calculates a light absorbance from the light intensity. An apparatus for quantifying a plurality of components in sewage, comprising: a third calculation unit that converts the absorption cross section (absorption coefficient) of the sample into a scattering cross section (scattering coefficient) per unit volume of the medium to be measured.
【請求項10】請求項9記載の装置において、第3の演
算部に、輸送方程式の解法により種々の吸収係数と散乱
係数に対する透過、散乱する光強度を計算した変換テー
ブルを備えることを特徴とする下水中の複数成分定量装
置。
10. The apparatus according to claim 9, wherein the third arithmetic unit is provided with a conversion table for calculating the transmitted and scattered light intensities for various absorption and scattering coefficients by solving a transport equation. Equipment for multiple components in sewage.
JP19347397A 1997-07-18 1997-07-18 Multiple component determination method and apparatus for sewage Expired - Fee Related JP3780646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19347397A JP3780646B2 (en) 1997-07-18 1997-07-18 Multiple component determination method and apparatus for sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19347397A JP3780646B2 (en) 1997-07-18 1997-07-18 Multiple component determination method and apparatus for sewage

Publications (2)

Publication Number Publication Date
JPH1137935A true JPH1137935A (en) 1999-02-12
JP3780646B2 JP3780646B2 (en) 2006-05-31

Family

ID=16308608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19347397A Expired - Fee Related JP3780646B2 (en) 1997-07-18 1997-07-18 Multiple component determination method and apparatus for sewage

Country Status (1)

Country Link
JP (1) JP3780646B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096468A2 (en) 1999-11-01 2001-05-02 Konami Corporation Music playing game apparatus
WO2003016881A3 (en) * 2001-08-13 2004-01-22 Particle Measuring Syst Spectroscopic measurement of the chemical constituents of a cmp slurry
JP2010091307A (en) * 2008-10-03 2010-04-22 National Institute Of Advanced Industrial Science & Technology Method and device for measuring volume of trace amount of droplet
CN103499676A (en) * 2013-10-11 2014-01-08 中国水产科学研究院黄海水产研究所 Method for estimating excretion amount of nitrogen, phosphorus and organic carbon in marine shellfish aquaculture
JP2016095282A (en) * 2014-11-17 2016-05-26 株式会社堀場製作所 Absorption spectrometry apparatus and analytical curve creating method
CN105823734A (en) * 2016-04-18 2016-08-03 苏州镭旭光电科技有限公司 Portable soil quality and water quality detecting equipment
WO2019031331A1 (en) * 2017-08-07 2019-02-14 株式会社堀場製作所 Analyzer, analysis method, analyzer program, and analysis learning device
CN112816430A (en) * 2021-01-28 2021-05-18 深圳安志生态环境有限公司 Water body environment monitoring method and device
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method
KR102359468B1 (en) * 2020-09-17 2022-02-07 서울과학기술대학교 산학협력단 Improve Total Organic Carbon Analysis Method with pretreatment and homogeneity evaluation of Sample
CN114235726A (en) * 2021-12-06 2022-03-25 武汉新烽光电股份有限公司 Data processing method, system, equipment and medium for microfluidic total nitrogen concentration detection
WO2023053585A1 (en) * 2021-09-30 2023-04-06 富士フイルム株式会社 Training data acquisition method, training data acquisition system, soft sensor construction method, soft sensor, and training data
WO2023090111A1 (en) * 2021-11-22 2023-05-25 株式会社堀場アドバンスドテクノ Component concentration measuring device, component concentration measuring program, and component concentration measuring method
CN116297251A (en) * 2023-05-17 2023-06-23 安徽新宇环保科技股份有限公司 Multi-sensor combined water quality detection system and detection probe thereof
WO2023126996A1 (en) * 2021-12-27 2023-07-06 日本たばこ産業株式会社 Method, system, and program for predicting amount of prescribed component contained in plant

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096468A2 (en) 1999-11-01 2001-05-02 Konami Corporation Music playing game apparatus
WO2003016881A3 (en) * 2001-08-13 2004-01-22 Particle Measuring Syst Spectroscopic measurement of the chemical constituents of a cmp slurry
JP2010091307A (en) * 2008-10-03 2010-04-22 National Institute Of Advanced Industrial Science & Technology Method and device for measuring volume of trace amount of droplet
CN103499676A (en) * 2013-10-11 2014-01-08 中国水产科学研究院黄海水产研究所 Method for estimating excretion amount of nitrogen, phosphorus and organic carbon in marine shellfish aquaculture
CN103499676B (en) * 2013-10-11 2015-09-23 中国水产科学研究院黄海水产研究所 The evaluation method of seashells cultivation nitrogen, phosphorus and organic carbon excretion
JP2016095282A (en) * 2014-11-17 2016-05-26 株式会社堀場製作所 Absorption spectrometry apparatus and analytical curve creating method
CN105823734A (en) * 2016-04-18 2016-08-03 苏州镭旭光电科技有限公司 Portable soil quality and water quality detecting equipment
WO2019031331A1 (en) * 2017-08-07 2019-02-14 株式会社堀場製作所 Analyzer, analysis method, analyzer program, and analysis learning device
JPWO2019031331A1 (en) * 2017-08-07 2020-06-25 株式会社堀場製作所 Analysis device, analysis method, analysis device program, and analysis learning device
US11448588B2 (en) 2017-08-07 2022-09-20 Horiba, Ltd. Analyzer, analysis method, analyzer program, and analysis learning device
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method
KR102359468B1 (en) * 2020-09-17 2022-02-07 서울과학기술대학교 산학협력단 Improve Total Organic Carbon Analysis Method with pretreatment and homogeneity evaluation of Sample
CN112816430A (en) * 2021-01-28 2021-05-18 深圳安志生态环境有限公司 Water body environment monitoring method and device
WO2023053585A1 (en) * 2021-09-30 2023-04-06 富士フイルム株式会社 Training data acquisition method, training data acquisition system, soft sensor construction method, soft sensor, and training data
WO2023090111A1 (en) * 2021-11-22 2023-05-25 株式会社堀場アドバンスドテクノ Component concentration measuring device, component concentration measuring program, and component concentration measuring method
CN114235726A (en) * 2021-12-06 2022-03-25 武汉新烽光电股份有限公司 Data processing method, system, equipment and medium for microfluidic total nitrogen concentration detection
CN114235726B (en) * 2021-12-06 2023-10-20 武汉新烽光电股份有限公司 Data processing method, system, equipment and medium for microfluidic total nitrogen concentration detection
WO2023126996A1 (en) * 2021-12-27 2023-07-06 日本たばこ産業株式会社 Method, system, and program for predicting amount of prescribed component contained in plant
CN116297251A (en) * 2023-05-17 2023-06-23 安徽新宇环保科技股份有限公司 Multi-sensor combined water quality detection system and detection probe thereof
CN116297251B (en) * 2023-05-17 2023-08-29 安徽新宇环保科技股份有限公司 Multi-sensor combined water quality detection system and detection probe thereof

Also Published As

Publication number Publication date
JP3780646B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP3780646B2 (en) Multiple component determination method and apparatus for sewage
CA2599535C (en) Method to reduce background noise in a spectrum
Fidêncio et al. Determination of organic matter in soil using near-infrared spectroscopy and partial least squares regression
Gorbunov et al. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems
CN108287141A (en) A kind of multicomponent gas concentration analysis method based on spectroscopic methodology
CN107179285A (en) Water quality monitoring probe and method based on ultraviolet-visible absorption spectroscopy and fluorescence spectrum
CN106596436B (en) Multi-parameter water quality real-time online monitoring device based on spectrum method
CN108287140A (en) A kind of method and device for sewage treatment plant's real time on-line monitoring
JPH08512134A (en) Measurement of chemical and physical parameters and characterization process of aqueous suspensions for characterization
RU2544264C1 (en) Method of gas analysis of natural gas
CN206583795U (en) A kind of multi-parameter water quality real time on-line monitoring device based on spectroscopic methodology
Wang et al. Determination of total phosphorus concentration in water by using visible-near-infrared spectroscopy with machine learning algorithm
CA2293921A1 (en) Colorimeter apparatus and related process
Kuzniz et al. Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra
JP3004747B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
CN110658162A (en) Method for predicting crude oil concentration in rock debris extraction liquid by three-dimensional fluorescence spectrum
RU2233438C1 (en) Method for remote finding and identification of organic-origin objects
Benjathapanun et al. Binary encoded 2nd-differential spectrometry using UV-Vis spectral data and neural networks in the estimation of species type and concentration
CN104380086A (en) Quantitative analyzing method for oxidant and quantitative analyzing instrument for oxidant
Yu et al. Analysis of Difenoconazole Content in Lake Water-Quality Testing
Chen et al. Feasibility of using hyperspectral remote sensing for environmental heavy metal monitoring
CN113670866B (en) Method and system for analyzing dissolved organic matters in electro-Fenton process in online quantitative manner
JPH0727703A (en) Quantitative analysis of multiple component substance
CN114527105A (en) High-precision universal method for quantitatively analyzing components of multiple fluorescent substances
Yu et al. Research on the water quality detection method based on fluorescence spectrometry and PSO-RBF network

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees