JPH1137807A - Equipment for calibrating vibration sensor - Google Patents

Equipment for calibrating vibration sensor

Info

Publication number
JPH1137807A
JPH1137807A JP18935897A JP18935897A JPH1137807A JP H1137807 A JPH1137807 A JP H1137807A JP 18935897 A JP18935897 A JP 18935897A JP 18935897 A JP18935897 A JP 18935897A JP H1137807 A JPH1137807 A JP H1137807A
Authority
JP
Japan
Prior art keywords
vibration sensor
vibration
optical path
transmitting body
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18935897A
Other languages
Japanese (ja)
Other versions
JP3023771B2 (en
Inventor
Takashi Usuda
孝 臼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9189358A priority Critical patent/JP3023771B2/en
Publication of JPH1137807A publication Critical patent/JPH1137807A/en
Application granted granted Critical
Publication of JP3023771B2 publication Critical patent/JP3023771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable to inexpensively realize a means for improving the accuracy in calibration of a vibration sensor and also reducing the uncertainty of measurement by an optical system. SOLUTION: In the equipment for calibrating a vibration sensor which is so designed that the amplitude of periodic vibration is measured by using a vibration sensor 101 and also measured according to the number counting method by using a Michelson type light wave interferometer and the information obtained from measurement by the vibration sensor is calibrated with the information obtained from measurement according to the number counting method used as reference information, interference fringes in the Michelson type light wave interferometer are converted into electric pulse signals by using an optical pickup 6, while a light-transmitting body P is disposed in an optical path between a beam splitter 2 in the Michelson type light wave interferometer and a reference mirror 5. By fine regulation of an angle formed by the light- transmitting body P and the optical path, the pulse signal are shifted up and the amplitude of vibration is determined from the counted number of pulse signals Vo' obtained by the shifting up and is made the reference information.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、周期的な振動振
幅を振動センサを用いて測定するとともに、マイケルソ
ン型光波干渉計を用いて計数法で測定し、その計数法に
よる測定情報を参照情報として振動センサ測定情報を校
正するようにした振動センサ校正装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a periodic vibration amplitude using a vibration sensor and a Michelson-type light wave interferometer by a counting method. The present invention relates to a vibration sensor calibrating device for calibrating vibration sensor measurement information.

【0002】[0002]

【従来の技術】振動ピックアップ(振動センサ)の絶対
校正法は現在JIS B 0908(振動及び衝撃ピッ
クアップの校正方法−基本概念、1991年)に規定さ
れている。そのうち、マイケルソン型光波干渉計を用
い、周期的振動に対応する光路長の変化を干渉縞の最大
輝度の数として検出し、その最大輝度数から変位振幅を
求める方法は計数法と呼ばれ、広く実施されている。
2. Description of the Related Art An absolute calibration method for a vibration pickup (vibration sensor) is currently defined in JIS B 0908 (Calibration method for vibration and shock pickup-basic concept, 1991). Among them, a method of detecting the change in the optical path length corresponding to the periodic vibration as the number of the maximum luminance of the interference fringes using a Michelson-type light wave interferometer, and calculating the displacement amplitude from the maximum luminance number is called a counting method, Widely implemented.

【0003】図3は従来の振動センサ校正装置における
光学系を原理的に示す図である。この振動センサ校正装
置は、加振器3(対物鏡4)の振動振幅を、振動ピック
アップ(振動センサ)101と光学系(マイケルソン型
光波干渉計)とを用いてそれぞれ測定し、その双方の測
定データを比較検討することで、振動ピックアップ10
1を校正するものである。
FIG. 3 is a view showing in principle an optical system in a conventional vibration sensor calibrating apparatus. This vibration sensor calibrating device measures the vibration amplitude of the vibrator 3 (objective mirror 4) using a vibration pickup (vibration sensor) 101 and an optical system (Michelson-type light wave interferometer). By comparing the measured data, the vibration pickup 10
1 is to be calibrated.

【0004】図において、光源1の光は、電界ベクトル
E0の電場内を進んでビームスプリッタ(半透反射板)
2に入射し、そのまま透過もしくは反射する。透過光
は、電界ベクトルE2の電場内を進んで、加振器3で振
動させられている対物鏡4で反射後、ビームスプリッタ
2に戻る。反射光は、電界ベクトルE1の電場内を進ん
で、参照鏡5で反射後、同様にビームスプリッタ2に戻
ってくる。そして、これらのビームスプリッタ2に戻っ
てきた各々の光は再結合して干渉光となり、電界ベクト
ル(E1+E2)の電場内を進み、光検出器6に入る。
In FIG. 1, light from a light source 1 travels in an electric field of an electric field vector E0 and is split by a beam splitter (semi-transmissive reflector).
2 and is transmitted or reflected as it is. The transmitted light travels in the electric field of the electric field vector E2, is reflected by the objective mirror 4 vibrated by the vibrator 3, and returns to the beam splitter 2. The reflected light travels in the electric field of the electric field vector E1, is reflected by the reference mirror 5, and returns to the beam splitter 2 in the same manner. Each light returning to the beam splitter 2 is recombined into interference light, travels in the electric field of the electric field vector (E1 + E2), and enters the photodetector 6.

【0005】干渉光は、ビームスプリッタ2から参照鏡
5、対物鏡4までの各距離(基準光路長)L1,L2の
距離差Lに応じて、強め合ったり、打ち消し合ったりし
ている。
The interference light reinforces or cancels each other according to the distance difference L between the distances (reference optical path lengths) L1 and L2 from the beam splitter 2 to the reference mirror 5 and the objective mirror 4.

【0006】ここで、測定すべき対物鏡4の振動変位を
d(t)で表し、その振幅をd0とする。光源1の光の
波長をλとすると、光検出器6に入射する光束(干渉
光)の輝度I(t)は、次式(1)で表される。
[0006] Here, the vibration displacement of the objective mirror 4 to be measured is represented by d (t), and the amplitude thereof is d0. Assuming that the wavelength of the light from the light source 1 is λ, the luminance I (t) of the light beam (interference light) incident on the photodetector 6 is expressed by the following equation (1).

【数1】 (Equation 1)

【0007】上記式(1)において、最大輝度は、次の
式(2)の条件を満たすとき生じる。
In the above equation (1), the maximum brightness occurs when the following equation (2) is satisfied.

【数2】 ここで、n:整数 さらに、2つの最大輝度間の距離に相当する変位はλ/
2(波長の半分)で与えられる。
(Equation 2) Here, n: an integer, and a displacement corresponding to a distance between two maximum luminances is λ /
2 (half the wavelength).

【0008】図4は従来の振動センサ校正装置の装置例
を示す図である。干渉光は光検出器6により電気信号と
して検出される。加振器3は正弦波発振器7により生じ
増幅器8で増幅された正弦波に従い振動し、その振動に
応じて対物鏡4が振動する。計数カウンタ9は正弦波発
振器7からの正弦波の1周期をゲートタイムとし、この
間の光検出器6からの電気的なパルス信号Voを干渉光
の最大輝度として計数する。1周期(ゲートタイム)の
間に計数された最大輝度数をRとすると、対物鏡5の変
位振幅d0は、次式(3)で与えられる。
FIG. 4 is a diagram showing an example of a conventional vibration sensor calibrating device. The interference light is detected by the light detector 6 as an electric signal. The vibrator 3 vibrates according to the sine wave generated by the sine wave oscillator 7 and amplified by the amplifier 8, and the objective mirror 4 vibrates according to the vibration. The count counter 9 uses one cycle of the sine wave from the sine wave oscillator 7 as a gate time, and counts the electric pulse signal Vo from the photodetector 6 during this period as the maximum brightness of the interference light. Assuming that the maximum luminance number counted during one cycle (gate time) is R, the displacement amplitude d0 of the objective mirror 5 is given by the following equation (3).

【数3】 (Equation 3)

【0009】一方、加振器3と対物鏡4との間には、振
動ピックアップ101が介在しており、この振動ピック
アップ101が検出した加振器3(対物鏡4)の振動
は、電気信号としてピックアップアンプ102で増幅さ
れた後、電圧計103から出力される。そして、この電
圧計103に出力された振動ピックアップ101による
測定データと、上記の計数カウンタ9でのデータとが比
較検討され、その結果に基づいて振動ピックアップ10
1の校正が行われる。
On the other hand, a vibration pickup 101 is interposed between the vibrator 3 and the objective mirror 4, and the vibration of the vibrator 3 (the objective mirror 4) detected by the vibration pickup 101 is an electric signal. Is amplified by the pickup amplifier 102 and then output from the voltmeter 103. Then, the data measured by the vibration pickup 101 output to the voltmeter 103 and the data obtained by the above-described counter 9 are compared and examined.
1 is performed.

【0010】[0010]

【発明が解決しようとする課題】上記従来の振動センサ
校正装置による測定、すなわち光学系による測定の不確
かさ(誤差)の要因のうち、振動振幅に関するものは、
主に量子化誤差と干渉縞の計数誤差に起因する。このう
ち、量子化誤差は光干渉による輝度間隔を計測の最小単
位(レーザ波長の1/2)とするため避けられないもの
である。
Among the factors of the uncertainty (error) of the measurement by the above-described conventional vibration sensor calibration apparatus, that is, the measurement by the optical system, those relating to the vibration amplitude are as follows.
It is mainly caused by quantization errors and counting errors of interference fringes. Among them, the quantization error is inevitable because the luminance interval due to optical interference is set to the minimum unit of measurement (1/2 of the laser wavelength).

【0011】一方、計数誤差は、パルス信号のうち、実
際には輝度に対応する信号ではなく、単なるノイズであ
るにもかかわらず、そのノイズを輝度信号として計数し
てしまう現象である。この現象を図5に示す。横軸は時
間tを、縦軸は電圧Vを示す。Voは光検出器6での検
出電圧、Vthは計数カウンタ9におけるしきい電圧を
それぞれ示す。計数カウンタ9は、1周期(ゲートタイ
ム)内で検出電圧Voがしきい電圧Vthを上回った回
数を計数する。対物鏡4の振動折り返し付近における検
出電圧Voを拡大したものが図6である。区間Mに示す
ように、検出電圧Voは実際にはノイズを含んでいるた
め、検出電圧Voがしきい電圧Vth近傍で折り返すと
き、ノイズによる計数誤差が生じる。このことは、参照
データとして用いる光学系データの信頼性を低下させ、
結果的に振動ピックアップ101の校正精度を悪化させ
る要因となっていた。
On the other hand, the counting error is a phenomenon in which the pulse signal is not actually a signal corresponding to the luminance but is simply a noise, but the noise is counted as a luminance signal. This phenomenon is shown in FIG. The horizontal axis indicates time t, and the vertical axis indicates voltage V. Vo indicates a detection voltage of the photodetector 6, and Vth indicates a threshold voltage of the counter 9. The count counter 9 counts the number of times that the detection voltage Vo exceeds the threshold voltage Vth within one cycle (gate time). FIG. 6 is an enlarged view of the detection voltage Vo in the vicinity of the turning back of the objective mirror 4. As shown in the section M, since the detection voltage Vo actually contains noise, when the detection voltage Vo turns around near the threshold voltage Vth, a counting error due to the noise occurs. This reduces the reliability of optical system data used as reference data,
As a result, the calibration accuracy of the vibration pickup 101 is deteriorated.

【0012】このようなノイズによる計数誤差は、図5
および図6に示すように、検出電圧VoをVo’にシフ
トし、電圧波形の折り返しレベルをVthから確実に離
すことにより防ぐことができる。
The counting error due to such noise is shown in FIG.
As shown in FIG. 6 and FIG. 6, the detection voltage Vo can be shifted to Vo ′ and the turning level of the voltage waveform can be prevented from being surely separated from Vth.

【0013】そして、検出電圧Voの波形を望ましい波
形Vo’にシフトさせるには、基準光路長L1を光波長
λの数分の1程度増減すればよい。光源1にHe−Ne
レーザを用いた場合、波長λは約633nmなので、1
00nm程度に相当する。
In order to shift the waveform of the detection voltage Vo to the desired waveform Vo ', the reference optical path length L1 may be increased or decreased by a fraction of the optical wavelength λ. He-Ne for light source 1
When a laser is used, the wavelength λ is about 633 nm, so that 1
It corresponds to about 00 nm.

【0014】基準光路長L1を変化させるのは一般に参
照鏡5を移動することで実現できるが、機械的に行うた
めには、波長λに比べ十分な位置分解能と直進安定性の
ある直動装置が必要となる。このような装置は一般に大
がかりで高価であるという欠点がある。
The reference optical path length L1 can be generally changed by moving the reference mirror 5. However, in order to perform the mechanical operation, a linear motion device having a sufficient positional resolution and a straight running stability compared with the wavelength λ is required. Is required. Such devices have the disadvantage that they are generally bulky and expensive.

【0015】この発明は上記に鑑み提案されたもので、
振動センサの校正精度を向上させるとともに、光学系に
よる測定の不確かさを減ずる手段を安価に実現すること
ができる振動センサ校正装置を提供することを目的とす
る。
The present invention has been proposed in view of the above,
An object of the present invention is to provide a vibration sensor calibrating apparatus capable of improving the calibration accuracy of a vibration sensor and realizing a means for reducing the uncertainty of measurement by an optical system at low cost.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、この発明の振動センサ校正装置は、周期的な振動振
幅を振動センサを用いて測定するとともに、マイケルソ
ン型光波干渉計を用いて計数法で測定し、その計数法に
よる測定情報を参照情報として振動センサ測定情報を校
正するようにした振動センサ校正装置において、上記マ
イケルソン型光波干渉計での干渉縞を電気的なパルス信
号に変換するとともに、そのマイケルソン型光波干渉計
でのビームスプリッタと参照鏡との間の光路内に光透過
体を配置し、その光透過体と光路との成す角度の微少調
整により、上記パルス信号をシフトアップし、そのシフ
トアップしたパルス信号のカウント数から振動振幅を求
め上記参照情報とした、ことを特徴としている。
To achieve the above object, a vibration sensor calibrating apparatus according to the present invention measures a periodic vibration amplitude using a vibration sensor and uses a Michelson-type light wave interferometer. In a vibration sensor calibrating device that measures by a counting method and calibrates the vibration sensor measurement information using the measurement information by the counting method as reference information, the interference fringe in the Michelson type light wave interferometer is converted into an electric pulse signal. Along with the conversion, a light transmitting body is arranged in the optical path between the beam splitter and the reference mirror in the Michelson-type light wave interferometer, and the above-described pulse signal is obtained by minutely adjusting the angle formed between the light transmitting body and the optical path. Is shifted up, and the vibration amplitude is obtained from the count number of the shifted up pulse signal, and is used as the reference information.

【0017】[0017]

【発明の実施の形態】以下にこの発明の実施の形態を図
面に基づいて詳細に説明する。図1はこの発明の振動セ
ンサ校正装置における光学系を原理的に示す図である。
なお、以下の説明において、上記従来の振動センサ校正
装置(図3、図4、図5および図6)と同一の構成要素
には、同一符号等を付してその説明を省略することとす
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a view principally showing an optical system in the vibration sensor calibrating device of the present invention.
In the following description, the same components as those of the above-described conventional vibration sensor calibration device (FIGS. 3, 4, 5, and 6) are denoted by the same reference numerals and the like, and description thereof will be omitted. .

【0018】この発明は、ビームスプリッタ2と参照鏡
5との間の基準光路長は、参照鏡5を移動させる以外
に、その光路内に屈折率の異なる物質を挿入することで
も等価的に変化させることができることに着目して成さ
れたものである。すなわち、ビームスプリッタ2と参照
鏡5との間の光路に、均一な厚さと屈折率を有する光透
過体、例えばガラスまたはガラスに準ずる材料から成る
平板Pを挿入している。この平板Pは回転微動台10に
保持してあり、平板Pと光路との成す角度は、回転微動
台10によって任意の角度に微調整するすることができ
る。なお、この平板Pの光路への挿入は、図1からも分
かるように、基準光路長の変化にのみ寄与し、光軸のズ
レなどの悪影響は生じない。
According to the present invention, the reference optical path length between the beam splitter 2 and the reference mirror 5 is equivalently changed not only by moving the reference mirror 5 but also by inserting a substance having a different refractive index into the optical path. It is made by paying attention to what can be done. That is, a light transmitting body having a uniform thickness and a refractive index, for example, a flat plate P made of glass or a material similar to glass is inserted into an optical path between the beam splitter 2 and the reference mirror 5. The flat plate P is held by the rotary fine moving table 10, and the angle between the flat plate P and the optical path can be finely adjusted to an arbitrary angle by the rotary fine moving table 10. Note that the insertion of the flat plate P into the optical path contributes only to the change in the reference optical path length, as shown in FIG. 1, and does not cause adverse effects such as deviation of the optical axis.

【0019】ここで、平板Pの空気に対する屈折率を
N、厚さをtとする。光の入射角(回転微動台10の回
転角度)がθとなるように回転微動台10を調整する
と、この平板Pを挿入したことによる実質的な基準光路
長変化量δは近似的に、次式(4)で表される。
Here, the refractive index of the flat plate P with respect to air is N, and the thickness is t. When the rotary fine moving table 10 is adjusted so that the incident angle of light (the rotation angle of the rotary fine moving table 10) becomes θ, the substantial reference optical path length change δ due to the insertion of the flat plate P becomes approximately It is represented by equation (4).

【数4】 (Equation 4)

【0020】Nを1.5、tを2mmとすると、上記式
(4)から光の入射角θを0度から0.1度に変化させ
たときの基準光路長変化量δは、約2nmとなる。一般
に分解能1/10度程度の回転微動台は容易に得ること
ができる。一方、上記したように、光源1にHe−Ne
レーザを用いた場合、検出電圧Voを望ましい波形V
o’にシフトさせるには、基準光路長を100nm程度
増減することが要求されるが、回転微動台10を用いる
上記手段では、θを0度から0.1度に変化させたとき
の基準光路長変化量δは約2nmであるので、基準光路
長L1を波長λの数十分の1レベルで変化させることが
できる。
Assuming that N is 1.5 and t is 2 mm, the reference optical path length variation δ when the light incident angle θ is changed from 0 degree to 0.1 degree from the above equation (4) is about 2 nm. Becomes In general, a rotary fine table with a resolution of about 1/10 degree can be easily obtained. On the other hand, as described above, He-Ne
When a laser is used, the detection voltage Vo is set to a desired waveform V
To shift to o ′, it is required to increase or decrease the reference optical path length by about 100 nm. However, in the above-described means using the rotary fine moving table 10, the reference optical path when θ is changed from 0 ° to 0.1 ° is required. Since the length change amount δ is about 2 nm, the reference optical path length L1 can be changed at one level of several tenths of the wavelength λ.

【0021】このため、この発明の構成によれば十分な
分解能で波形Voをシフトさせることができ、しきい電
圧Vth付近におけるノイズの影響を除去することがで
きる。したがって、光学系の測定精度を向上させること
ができ、振動ピックアップ101の校正を高精度で確実
なものとすることができる。
Therefore, according to the configuration of the present invention, the waveform Vo can be shifted with a sufficient resolution, and the influence of noise near the threshold voltage Vth can be eliminated. Therefore, the measurement accuracy of the optical system can be improved, and the calibration of the vibration pickup 101 can be performed with high accuracy and certainty.

【0022】また、基準光路長L1の増減を、容易に得
ることができる回転微動台10を用いて行うので、安価
に振動センサ校正装置の精度向上を実現することができ
る。
Further, since the reference optical path length L1 is increased or decreased by using the rotary fine moving table 10 which can be easily obtained, the accuracy of the vibration sensor calibrating apparatus can be improved at low cost.

【0023】図6は本発明の振動センサ校正装置の構成
例を示す図である。平板Pを保持する回転微動台10を
適当に回転し、検出電圧Voのシフトにより計数カウン
タ9の表示値が安定するまで、回転角度θを調整するこ
とで、ノイズの影響のない加速度測定が可能となる。
FIG. 6 is a diagram showing a configuration example of the vibration sensor calibrating device of the present invention. By rotating the fine rotary table 10 holding the flat plate P appropriately and adjusting the rotation angle θ until the display value of the counter 9 becomes stable due to the shift of the detection voltage Vo, acceleration measurement without the influence of noise can be performed. Becomes

【0024】もしくは、オシロスコープ11により検出
電圧Voの波形を観察し、適当な波形にシフトするま
で、回転微動台10の回転角度θを調整するようにして
もよい。
Alternatively, the waveform of the detection voltage Vo may be observed by the oscilloscope 11 and the rotation angle θ of the rotary fine moving table 10 may be adjusted until the waveform is shifted to an appropriate waveform.

【0025】[0025]

【発明の効果】以上説明したように、この発明の振動セ
ンサ校正装置によれば、マイケルソン型光波干渉計での
ビームスプリッタと参照鏡との間の光路内に光透過体を
配置し、その光透過体と光路との成す角度の微少調整に
より、パルス信号をシフトアップし、そのシフトアップ
したパルス信号をカウントするようにしたので、基準光
路長を波長に比べ十分精密に変化させることができ、こ
のため、十分な分解能でパルス信号をシフトアップで
き、このシフトアップにより、ノイズの影響を確実に除
去させることができる。したがって、マイケルソン型光
波干渉計での測定精度を向上させることができ、振動セ
ンサの校正を高精度で確実なものとすることができる。
As described above, according to the vibration sensor calibrating apparatus of the present invention, the light transmitting body is arranged in the optical path between the beam splitter and the reference mirror in the Michelson-type light wave interferometer. The pulse signal is shifted up by minute adjustment of the angle between the light transmitting body and the optical path, and the shifted up pulse signal is counted, so that the reference optical path length can be changed sufficiently accurately compared to the wavelength. Therefore, the pulse signal can be shifted up with a sufficient resolution, and the effect of the noise can be reliably removed by the shift up. Therefore, the measurement accuracy of the Michelson lightwave interferometer can be improved, and the calibration of the vibration sensor can be performed with high accuracy and reliability.

【0026】また、光透過体と光路との成す角度の調整
は、例えば回転微動台を用いることで容易に行うことが
できるので、安価に振動センサ校正装置の精度向上を実
現することができる。
Further, since the angle between the light transmitting body and the optical path can be easily adjusted by using, for example, a rotary fine moving table, the accuracy of the vibration sensor calibrating apparatus can be improved at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の振動センサ校正装置における光学系を
原理的に示す図である。
FIG. 1 is a diagram showing in principle an optical system in a vibration sensor calibration device of the present invention.

【図2】本発明の振動センサ校正装置の構成例を示す図
である。
FIG. 2 is a diagram showing a configuration example of a vibration sensor calibration device of the present invention.

【図3】従来の振動センサ校正装置における光学系を原
理的に示す図である。
FIG. 3 is a diagram showing in principle an optical system in a conventional vibration sensor calibration device.

【図4】従来の振動センサ校正装置の装置例を示す図で
ある。
FIG. 4 is a diagram showing an example of a conventional vibration sensor calibration device.

【図5】干渉光の光検出器による検出電圧Voとしきい
電圧Vthを示す図である。
FIG. 5 is a diagram illustrating a detection voltage Vo and a threshold voltage Vth detected by a photodetector of interference light.

【図6】検出電圧Voカウント時のノイズによる影響の
説明とそれを改善した場合の波形の例を示す図である。
FIG. 6 is a diagram illustrating an effect of noise when counting a detection voltage Vo and an example of a waveform when the effect is improved.

【符号の説明】[Explanation of symbols]

1 光源 2 ビームスプリッタ 3 加振器 4 対物鏡 5 参照鏡 6 光検出器 7 正弦発振器 9 計数カウンタ 10 回転微動台 11 オシロスコープ P 平板 δ 基準光路長変化量 θ 光入射角(回転微動台の回転角度) Vo 干渉光の検出電圧 Vo’シフト電圧 REFERENCE SIGNS LIST 1 light source 2 beam splitter 3 shaker 4 objective mirror 5 reference mirror 6 photodetector 7 sine oscillator 9 count counter 10 rotation fine-adjustment table 11 oscilloscope P plate δ reference optical path length change θ light incident angle (rotation angle of fine rotation table ) Vo Interference light detection voltage Vo 'shift voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 周期的な振動振幅を振動センサを用いて
測定するとともに、マイケルソン型光波干渉計を用いて
計数法で測定し、その計数法による測定情報を参照情報
として振動センサ測定情報を校正するようにした振動セ
ンサ校正装置において、 上記マイケルソン型光波干渉計での干渉縞を電気的なパ
ルス信号に変換するとともに、そのマイケルソン型光波
干渉計でのビームスプリッタと参照鏡との間の光路内に
光透過体を配置し、その光透過体と光路との成す角度の
微少調整により、上記パルス信号をシフトアップし、そ
のシフトアップしたパルス信号のカウント数から振動振
幅を求め上記参照情報とした、 ことを特徴とする振動センサ校正装置。
1. A method for measuring a periodic vibration amplitude using a vibration sensor, measuring the periodic vibration amplitude by a counting method using a Michelson-type light wave interferometer, and using the measurement information obtained by the counting method as reference information to obtain the vibration sensor measurement information. In the vibration sensor calibrating device that is calibrated, the interference fringe in the Michelson-type light wave interferometer is converted into an electric pulse signal, and the interference between the beam splitter and the reference mirror in the Michelson-type light wave interferometer is performed. A light transmitting body is arranged in the light path of the above, the pulse signal is shifted up by minute adjustment of the angle formed between the light transmitting body and the light path, and the vibration amplitude is obtained from the count number of the shifted pulse signal, and the above is obtained. A vibration sensor calibration device, characterized in that it is information.
【請求項2】 上記光透過体を、任意の角度に設定可能
な回転微動台に保持することで、上記光透過体と光路と
の成す角度の微少調整を行うようにした、 ことを特徴とする請求項1に記載の振動センサ校正装
置。
2. The method according to claim 1, wherein the light transmitting body is held on a rotary fine adjustment table that can be set at an arbitrary angle, so that the angle between the light transmitting body and the optical path can be finely adjusted. The vibration sensor calibration device according to claim 1, wherein
JP9189358A 1997-07-15 1997-07-15 Vibration sensor calibration device Expired - Lifetime JP3023771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9189358A JP3023771B2 (en) 1997-07-15 1997-07-15 Vibration sensor calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9189358A JP3023771B2 (en) 1997-07-15 1997-07-15 Vibration sensor calibration device

Publications (2)

Publication Number Publication Date
JPH1137807A true JPH1137807A (en) 1999-02-12
JP3023771B2 JP3023771B2 (en) 2000-03-21

Family

ID=16239997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9189358A Expired - Lifetime JP3023771B2 (en) 1997-07-15 1997-07-15 Vibration sensor calibration device

Country Status (1)

Country Link
JP (1) JP3023771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133757A (en) * 2008-12-03 2010-06-17 Yamatake Corp Physical quantity sensor and physical quantity measuring method
JP2015513086A (en) * 2012-03-01 2015-04-30 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Method for calculating distance change using an interferometer
CN104764477A (en) * 2014-01-08 2015-07-08 致茂电子(苏州)有限公司 Optical detector capable of online correction
CN110793489A (en) * 2019-10-18 2020-02-14 国营芜湖机械厂 Angular position sensor detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133757A (en) * 2008-12-03 2010-06-17 Yamatake Corp Physical quantity sensor and physical quantity measuring method
JP2015513086A (en) * 2012-03-01 2015-04-30 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Method for calculating distance change using an interferometer
US9638519B2 (en) 2012-03-01 2017-05-02 Leica Geosystems Ag Method for determining a change in distance to a movable and reflective target by means of interferometer to determine if the movement of the reflective target is really executable
CN104764477A (en) * 2014-01-08 2015-07-08 致茂电子(苏州)有限公司 Optical detector capable of online correction
CN110793489A (en) * 2019-10-18 2020-02-14 国营芜湖机械厂 Angular position sensor detection device

Also Published As

Publication number Publication date
JP3023771B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
Donati Developing self‐mixing interferometry for instrumentation and measurements
JP3335205B2 (en) Optical system calibration method
US6894788B2 (en) Interferometric system for automated radius of curvature measurements
Köning et al. A method for the in situ determination of Abbe errors and their correction
JPS62232503A (en) Device for measuring fine length
JPH01235889A (en) Light wave distance measuring instrument having linearity error correction function
US20080018907A1 (en) Optical apparatus and method for distance measuring
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
JP3023771B2 (en) Vibration sensor calibration device
Dib et al. A broadband amplitude-modulated fibre optic vibrometer with nanometric accuracy
JPS61221614A (en) Measuring instrument for fine displacement
Zhang et al. An absolute calibration method for displacement sensors
Davis et al. Fiber optic displacement sensor
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
CN110006356B (en) Real-time calibration device and method based on SS-OCT (SS-OCT) distance measurement system
JPS62212507A (en) Probe type surface shape detector requiring no calibration by laser interferometer
Liang et al. A novel piezo vibration platform for probe dynamic performance calibration
JP3519862B2 (en) Vibration pickup calibration method and device
JPH05272913A (en) Highly-accurate gage interferometer
JPH01502536A (en) Apparatus and method for determining the direction of an atomic beam
RU2010236C1 (en) Device for graduation of means measuring angular parameters of motion
SU761847A1 (en) Apparatus for contactless measuring linear displacements and resonance frequencies of articles
JPH02120607A (en) Shape measuring apparatus
JPS6118804A (en) Optical surface roughness meter
Butcher et al. Effective Target Speed-Reduction Techniques for Industrial Interferometers

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term