JPH1137738A - Device for measuring shape and eccentricity of aspherical lens - Google Patents

Device for measuring shape and eccentricity of aspherical lens

Info

Publication number
JPH1137738A
JPH1137738A JP18984597A JP18984597A JPH1137738A JP H1137738 A JPH1137738 A JP H1137738A JP 18984597 A JP18984597 A JP 18984597A JP 18984597 A JP18984597 A JP 18984597A JP H1137738 A JPH1137738 A JP H1137738A
Authority
JP
Japan
Prior art keywords
lens
optical system
measuring
eccentricity
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18984597A
Other languages
Japanese (ja)
Inventor
Masaaki Takai
雅明 高井
Nobuhiro Morita
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18984597A priority Critical patent/JPH1137738A/en
Publication of JPH1137738A publication Critical patent/JPH1137738A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve measurement precision and to simplify the configuration of a drive mechanism, by aligning a lens to be inspected, which is aspherical for eccentricity measurement with the optical axis of the lens to be inspected as a reference. SOLUTION: After alignment of a lens to be inspected 1 held by a holding means 2 with an irradiation optical system, an imaging optical system, a gravity position detecting means, etc., measurement is performed two times at an initial position and a position rotated by 90 deg. from the initial position using a measurement means 15 comprising a displacement gauge 16 and a rotation means 3 for rotating the holding means 2, so that a sectional shape data in two directions of the aligned lens to be inspected 1 orthogonal to each other is obtained, and then based on calculation result of the data, measurement of the shape of the lens to be inspected 1 and eccentricity of optical axis reference is performed with high precision.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カメラ等に用いら
れる非球面レンズの形状及び偏心測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the shape and eccentricity of an aspheric lens used in a camera or the like.

【0002】[0002]

【従来の技術】近年、カメラ等にあっては非球面レンズ
が広く用いられるようになってきている。この場合、非
球面レンズは研磨による非球面創成が困難なことから、
一般に、型成形による非球面創成が行われている。この
ため、非球面の偏心が生じやすい。
2. Description of the Related Art In recent years, aspherical lenses have been widely used in cameras and the like. In this case, it is difficult to create an aspheric surface by polishing the aspheric lens.
Generally, an aspheric surface is created by molding. For this reason, eccentricity of the aspherical surface easily occurs.

【0003】非球面レンズにおける非球面の偏心測定
は、例えば、製品検査において、製品の良否を判定する
際に必要となる他、製作の途上で試作された非球面レン
ズの偏心により型押しの向きを調整する場合にも必要と
なる。
The measurement of the eccentricity of an aspherical surface of an aspherical lens is necessary, for example, in product inspection to judge the quality of a product, and the direction of embossing is determined by the eccentricity of a prototyped aspherical lens in the course of manufacture. It is also necessary when adjusting.

【0004】ここで、前者の製品の良否の判定だけであ
れば偏心量のみを測定すればよいが、後者の型押しの向
きの調整の場合には偏心量のみならずその偏心の方向、
即ち、偏心がどの方向に生じているかを測定する必要が
ある。
Here, only the eccentricity may be measured if only the former is good or bad, but in the latter case the adjustment of the embossing direction is performed not only in the eccentricity but also in the direction of the eccentricity.
That is, it is necessary to measure in which direction the eccentricity occurs.

【0005】[0005]

【発明が解決しようとする課題】非球面レンズの偏心を
測定する手法としては、例えば、特開平3−37544
号公報や特開平1−296132号公報に開示された技
術があるが、これらの公報にも示されているように、通
常は、非球面レンズの形状測定とは別の測定として行う
ようにしている。
A method for measuring the eccentricity of an aspherical lens is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-37544.
There are techniques disclosed in Japanese Unexamined Patent Publication (Kokai) No. HEI-6-196132 and Japanese Unexamined Patent Application Publication No. 1-296132. However, as disclosed in these publications, usually, the measurement is performed separately from the shape measurement of the aspherical lens. I have.

【0006】この結果、測定装置における駆動機構の構
成が複雑化したり、高い測定精度を確保しにくいといっ
た課題がある。
As a result, there are problems that the configuration of the driving mechanism in the measuring device becomes complicated and that it is difficult to ensure high measurement accuracy.

【0007】そこで、本発明は、非球面レンズなる被検
レンズの調心を行うことで被検レンズの光軸を基準とし
た偏心測定を行うことができ、測定精度の向上と駆動機
構の構成の簡略化を図れる非球面レンズの形状及び偏心
測定装置を提供することを目的とする。
Therefore, according to the present invention, it is possible to perform eccentricity measurement with reference to the optical axis of the test lens by adjusting the center of the test lens which is an aspherical lens, thereby improving the measurement accuracy and configuring the drive mechanism. It is an object of the present invention to provide an aspherical lens shape and eccentricity measuring device which can simplify the above.

【0008】また、本発明は、その調心の高精度化を図
れる非球面レンズの形状及び偏心測定装置を提供するこ
とを目的とする。
It is another object of the present invention to provide an aspherical lens shape and eccentricity measuring device capable of achieving high accuracy of the alignment.

【0009】さらには、本発明は、その調心の容易化と
高精度化とを図れる非球面レンズの形状及び偏心測定装
置を提供することを目的とする。
It is a further object of the present invention to provide an aspherical lens shape and eccentricity measuring device capable of facilitating alignment and achieving high accuracy.

【0010】また、本発明は、測定の妨げとなる被検レ
ンズの裏面等からの反射光のような迷光を除去し得る非
球面レンズの形状及び偏心測定装置を提供することを目
的とする。
Another object of the present invention is to provide an aspherical lens shape and eccentricity measuring apparatus capable of removing stray light such as reflected light from the back surface of a lens to be measured, which hinders measurement.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
非球面レンズを被検レンズとして保持する保持手段と、
照明用光源を含み、この照明用光源から出射された光束
を収束性光束又は発散性光束として前記被検レンズの被
検面に照射する照射光学系と、前記保持手段の中心軸と
前記照射光学系の光軸とに実質的に合致するように光軸
が設定されて、前記被検面の近軸球面からの反射光を結
像させる結像光学系と、この結像光学系により結像され
た像の重心位置を検出する重心位置検出手段と、前記保
持手段により保持された前記被検レンズを前記光軸を回
転軸として回転させる回転手段と、前記被検レンズの外
径部を押して前記光軸に直交する直交面内で前記被検レ
ンズを任意の1方向に移動させる移動手段と、前記被検
レンズに対して1方向への走査機構を有する変位計に基
づき前記被検レンズの断面形状を測定する測定手段と、
この測定手段の測定結果等に基づいて前記被検レンズの
形状及び偏心を算出する演算処理手段とを備えている。
According to the first aspect of the present invention,
Holding means for holding the aspherical lens as a lens to be tested;
An illumination optical system that includes an illumination light source, and irradiates a light beam emitted from the illumination light source as a convergent light beam or a divergent light beam to a surface to be inspected of the lens to be inspected; a central axis of the holding unit; An optical axis that is set so as to substantially match the optical axis of the system, forms an image of reflected light from the paraxial spherical surface of the surface to be inspected, and forms an image with the imaging optical system. A center-of-gravity position detecting means for detecting the center-of-gravity position of the image, a rotating means for rotating the test lens held by the holding means around the optical axis as a rotation axis, and pressing an outer diameter portion of the test lens. A moving means for moving the test lens in one arbitrary direction in a plane orthogonal to the optical axis; and a displacement meter having a scanning mechanism in one direction with respect to the test lens. Measuring means for measuring the cross-sectional shape;
And an arithmetic processing means for calculating the shape and eccentricity of the lens to be inspected based on the measurement results of the measuring means and the like.

【0012】従って、照射光学系、結像光学系、重心位
置検出手段等を用いて保持手段により保持された被検レ
ンズの調心を行った上で、変位計を有する測定手段と、
保持手段を回転させる回転手段とを用いることで、調心
された被検レンズの直交2方向の断面形状データを得る
ことができ、これらのデータの演算処理に基づき被検レ
ンズの形状及び光軸基準の偏心測定を高精度に行うこと
ができ、そのための機構も簡単で済む。
Therefore, after the alignment of the test lens held by the holding means using the irradiation optical system, the imaging optical system, the center of gravity position detecting means, and the like, the measuring means having the displacement meter,
By using the rotating means for rotating the holding means, it is possible to obtain cross-sectional shape data of the centered test lens in two orthogonal directions, and based on the processing of these data, the shape of the test lens and the optical axis The reference eccentricity measurement can be performed with high accuracy, and the mechanism for that can be simplified.

【0013】請求項2記載の発明は、非球面レンズを被
検レンズとして保持する保持手段と、照明用光源を含
み、この照明用光源から出射された光束を収束性光束又
は発散性光束として前記被検レンズの被検面に照射する
照射光学系と、前記保持手段の中心軸と前記照射光学系
の光軸とに実質的に合致するように光軸が設定されて、
前記被検面の近軸球面からの反射光を結像させる結像光
学系と、この結像光学系により結像された像の重心位置
を検出する重心位置検出手段と、前記被検レンズの外径
部を押して前記光軸に直交する直交面内で前記被検レン
ズを直交する2方向に移動させる移動手段と、前記被検
レンズに対して直交する2方向への走査機構を有する変
位計に基づき前記被検レンズの断面形状を測定する測定
手段と、この測定手段の測定結果等に基づいて前記被検
レンズの形状及び偏心を算出する演算処理手段とを備え
ている。
The invention according to claim 2 includes a holding means for holding the aspherical lens as a lens to be inspected, and an illumination light source, wherein the light emitted from the illumination light source is converted into a convergent light or a divergent light. An irradiation optical system that irradiates the test surface of the test lens, and an optical axis is set so as to substantially match a central axis of the holding unit and an optical axis of the irradiation optical system,
An imaging optical system that forms an image of reflected light from the paraxial spherical surface of the surface to be inspected; a center of gravity position detecting unit that detects a center of gravity of an image formed by the imaging optical system; A displacement unit having a moving unit for pushing an outer diameter part to move the lens to be tested in two directions perpendicular to the optical axis and a scanning mechanism in two directions perpendicular to the lens to be tested; Measuring means for measuring the cross-sectional shape of the lens to be inspected on the basis of the above, and arithmetic processing means for calculating the shape and eccentricity of the lens to be inspected based on the measurement results of the measuring means.

【0014】従って、照射光学系、結像光学系、重心位
置検出手段等を用いて保持手段により保持された被検レ
ンズの調心を行った上で、直交する2方向に移動自在な
変位計を有する測定手段を用いることで、調心された被
検レンズの直交2方向の断面形状データを得ることがで
き、これらのデータの演算処理に基づき被検レンズの形
状及び光軸基準の偏心測定を高精度に行うことができ、
そのための機構も簡単で済む。
Therefore, after the alignment of the test lens held by the holding means using the irradiation optical system, the imaging optical system, the center of gravity position detecting means, etc., the displacement meter is movable in two orthogonal directions. By using the measuring means having the above, it is possible to obtain the cross-sectional shape data of the centered test lens in two orthogonal directions, and to measure the shape of the test lens and the eccentricity based on the optical axis based on the arithmetic processing of these data. Can be performed with high accuracy,
The mechanism for that is also simple.

【0015】請求項3記載の発明は、請求項1又は2記
載の非球面レンズの形状及び偏心測定装置において、移
動手段による被検レンズの位置調整時に重心位置検出手
段により検出される重心位置に基づき前記被検レンズの
最適な移動量を算出して前記移動手段をフィードバック
制御するフィードバック制御演算手段を備えている。従
って、被検レンズの形状及び光軸基準の偏心測定を行う
に際しての被検レンズの調心を高精度に行うことができ
る。
According to a third aspect of the present invention, in the apparatus for measuring the shape and eccentricity of the aspherical lens according to the first or second aspect, the position of the center of gravity detected by the center of gravity position detecting means when the position of the lens to be inspected is adjusted by the moving means. And a feedback control calculating means for calculating an optimum movement amount of the lens to be tested based on the calculated movement amount and performing feedback control on the moving means. Therefore, the alignment of the test lens can be performed with high accuracy when measuring the shape of the test lens and the eccentricity based on the optical axis.

【0016】請求項4記載の発明は、請求項1又は2記
載の非球面レンズの形状及び偏心測定装置において、結
像光学系は、拡大率が可変自在である。従って、結像光
学系の拡大率を可変することで、粗調整は拡大率を小さ
くして広視野状態で行わせ、微調整は拡大率を大きくし
て狭視野状態で行わせることができ、よって、被検レン
ズの調心を容易に行える上に、拡大率を上げるほど調心
を高精度に行わせることもできる。
According to a fourth aspect of the present invention, in the apparatus for measuring the shape and eccentricity of the aspherical lens according to the first or second aspect, the magnification ratio of the imaging optical system is variable. Therefore, by changing the magnification of the imaging optical system, the coarse adjustment can be performed in a wide field of view by reducing the magnification, and the fine adjustment can be performed in a narrow field of view by increasing the magnification. Therefore, the alignment of the test lens can be easily performed, and the alignment can be performed with higher precision as the magnification ratio is increased.

【0017】請求項5記載の発明は、請求項1又は2記
載の非球面レンズの形状及び偏心測定装置において、被
検面の近軸球面からの反射光を2つに分岐する分岐手段
を備え、分岐された反射光毎に異なる拡大率の結像光学
系と重心位置検出手段とを備えている。従って、一方の
結像光学系の拡大率を小さくして粗調整を広視野状態で
行わせ、他方の結像光学系の拡大率を大きくして微調整
を狭視野状態で行わせることができ、よって、被検レン
ズの調心を容易に行える上に、拡大率を上げるほど調心
を高精度に行わせることもできる。
According to a fifth aspect of the present invention, in the aspherical lens shape and eccentricity measuring apparatus according to the first or second aspect, there is provided a branching means for branching the reflected light from the paraxial spherical surface of the surface to be measured into two. An image-forming optical system having a different magnification for each branched reflected light and a center-of-gravity position detecting means are provided. Therefore, the coarse adjustment can be performed in a wide field of view by reducing the magnification of one imaging optical system, and the fine adjustment can be performed in a narrow field of view by increasing the magnification of the other imaging optical system. Therefore, the alignment of the lens to be inspected can be easily performed, and the alignment can be performed with higher precision as the magnification ratio is increased.

【0018】請求項6記載の発明は、請求項1又は2記
載の非球面レンズの形状及び偏心測定装置において、照
射光学系は、光軸方向に移動自在に設けられている。従
って、照明光学系中の光学部材を光軸方向に移動させて
被検レンズとの間の間隔を調整することにより被検レン
ズの種類が変わった場合にも対処することができる。
According to a sixth aspect of the present invention, in the apparatus for measuring the shape and eccentricity of the aspherical lens according to the first or second aspect, the irradiation optical system is provided movably in the optical axis direction. Therefore, by moving the optical member in the illumination optical system in the optical axis direction and adjusting the distance between the lens and the test lens, it is possible to cope with a case where the type of the test lens changes.

【0019】請求項7記載の発明は、請求項1又は2記
載の非球面レンズの形状及び偏心測定装置において、被
検レンズを保持した保持手段は、中心軸方向に移動自在
に設けられている。従って、保持手段を光軸方向に移動
させてこの保持手段に保持された被検レンズと照明光学
系中の光学部材との間の間隔を調整することにより被検
レンズの種類が変わった場合にも対処することができ
る。
According to a seventh aspect of the present invention, in the apparatus for measuring the shape and eccentricity of the aspherical lens according to the first or second aspect, the holding means holding the test lens is provided so as to be movable in the direction of the central axis. . Therefore, when the type of the test lens changes by moving the holding means in the optical axis direction and adjusting the distance between the test lens held by the holding means and the optical member in the illumination optical system. Can also be addressed.

【0020】請求項8記載の発明は、請求項1又は2記
載の非球面レンズの形状及び偏心測定装置において、照
射光学系は、交換自在な集光レンズを有する。従って、
被検レンズの種類が変わった場合にはその被検レンズに
見合った曲率を有する集光レンズに交換することによ
り、被検レンズの種類の変更に簡単に対処することがで
きる。
According to an eighth aspect of the present invention, in the apparatus for measuring the shape and eccentricity of the aspherical lens according to the first or second aspect, the irradiation optical system has a replaceable condenser lens. Therefore,
When the type of the lens to be inspected changes, it is possible to easily cope with the change in the type of the lens to be inspected by replacing the lens with a condenser lens having a curvature corresponding to the lens to be inspected.

【0021】請求項9記載の発明は、請求項1又は2記
載の非球面レンズの形状及び偏心測定装置において、照
射光学系は、その光軸上に円形開口が形成された遮光部
材を有する。従って、被検レンズの裏面等からの反射光
が測定の妨げとなる迷光として生ずるようなことがあっ
ても、円形開口が形成された遮光部材により遮光するこ
とで、迷光の影響が除去される。
According to a ninth aspect of the present invention, in the apparatus for measuring the shape and eccentricity of the aspherical lens according to the first or second aspect, the irradiation optical system has a light shielding member having a circular opening formed on the optical axis thereof. Therefore, even if reflected light from the back surface of the test lens or the like may be generated as stray light that hinders measurement, the influence of the stray light is removed by shielding the light with the light shielding member having the circular opening. .

【0022】請求項10記載の発明は、請求項1又は2
記載の非球面レンズの形状及び偏心測定装置において、
照射光学系は、その光軸上に開口径可変自在な絞り部材
を有する。従って、被検レンズの裏面等からの反射光が
測定の妨げとなる迷光として生ずるようなことがあって
も、絞り部材により遮光することで、迷光の影響が除去
される。特に、絞り部材の開口径を可変させることで、
被検レンズの種類が変わった場合にも簡単に対処するこ
とができる。
The invention according to claim 10 is the first or second invention.
In the shape and eccentricity measuring device of the described aspheric lens,
The irradiation optical system has a stop member whose aperture diameter is variable on the optical axis. Therefore, even if the reflected light from the back surface of the test lens or the like is generated as stray light that hinders the measurement, the influence of the stray light is removed by shielding the light with the aperture member. In particular, by changing the aperture diameter of the diaphragm member,
Even when the type of the lens to be inspected changes, it can be easily dealt with.

【0023】[0023]

【発明の実施の形態】本発明の第一の実施の形態を図1
ないし図6に基づいて説明する。図1は本実施の形態の
測定装置における光学系の基本構成を示す概略正面図で
ある。まず、非球面レンズを被検レンズ1として保持す
る保持手段2が設けられている。この保持手段2は前記
被検レンズ1の被検面1aとは反対側の面の球面部1b
を保持するもので、基本的には、前記被検レンズ1の近
軸球面部の曲率中心が光軸φ上にくるように保持する。
この保持手段2は回転手段3上に搭載されている。この
回転手段3は前記保持手段2をその中心軸(光軸)φを
回転軸として回転させることにより、この保持手段2に
保持された前記被検レンズ1を回転させるものである。
FIG. 1 shows a first embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 is a schematic front view showing a basic configuration of an optical system in the measuring apparatus according to the present embodiment. First, a holding unit 2 for holding an aspheric lens as the lens 1 to be measured is provided. The holding means 2 has a spherical portion 1b on the surface of the lens 1 opposite to the surface 1a to be measured.
Basically, the lens is held such that the center of curvature of the paraxial spherical portion of the lens 1 to be measured is on the optical axis φ.
The holding means 2 is mounted on the rotating means 3. The rotating means 3 rotates the lens 1 to be measured held by the holding means 2 by rotating the holding means 2 with its central axis (optical axis) φ as a rotation axis.

【0024】一方、前記被検レンズ1の被検面1a側に
対しては照射光学系4が設けられている。この照射光学
系4はレーザ光源等の照明用光源5を備え、この照明用
光源5から出射された光束を前記被検面1aに対して収
束性光束(又は、発散性光束)として照射させるもの
で、本実施の形態では、対物レンズ6、コリメートレン
ズ7及び集光レンズ8を順に設けることにより構成され
ている。ここで、この照射光学系4の光軸は前記保持手
段2の中心軸φに実質的に合致するように設定されてい
る。さらに、前記照射光学系4中に介在させたハーフミ
ラー等の光分岐手段9により分岐された光軸上には結像
光学系10が設けられている。この結像光学系10は前
記被検面1aから反射された反射光が前記集光レンズ
8、コリメートレンズ7及び光分岐手段9を経た後、受
光素子上に結像させるもので、複数枚のレンズと受光素
子との組合せにより構成されている。この結像光学系1
0の光軸も実質的に前記保持手段2の中心軸φに実質的
に合致するように設定されている。即ち、本実施の形態
においては、保持手段2の中心軸φが光学系4,10の
光軸に実質的に合致していることを前提としている。前
記結像光学系10中の受光素子からの出力を受ける重心
位置検出手段11は前記結像光学系10により結像され
る反射光のスポット像の重心位置をモニタ12を通じて
検出するものである。
On the other hand, an irradiation optical system 4 is provided on the test surface 1a side of the test lens 1. The irradiating optical system 4 includes an illuminating light source 5 such as a laser light source, and irradiates a light beam emitted from the illuminating light source 5 to the surface to be measured 1a as a convergent light beam (or a divergent light beam). In this embodiment, the objective lens 6, the collimator lens 7, and the condenser lens 8 are provided in this order. Here, the optical axis of the irradiation optical system 4 is set so as to substantially coincide with the central axis φ of the holding means 2. Further, an image forming optical system 10 is provided on the optical axis branched by the light branching means 9 such as a half mirror interposed in the irradiation optical system 4. The imaging optical system 10 forms an image on a light receiving element after the reflected light reflected from the surface 1a to be detected passes through the condenser lens 8, the collimating lens 7, and the light splitting means 9. It is composed of a combination of a lens and a light receiving element. This imaging optical system 1
The optical axis of 0 is also set to substantially coincide with the central axis φ of the holding means 2. That is, in the present embodiment, it is assumed that the central axis φ of the holding means 2 substantially matches the optical axes of the optical systems 4 and 10. A center-of-gravity position detecting means 11 for receiving an output from a light receiving element in the image forming optical system 10 detects a center of gravity position of a spot image of reflected light formed by the image forming optical system 10 through a monitor 12.

【0025】このような基本的な構成の下、照明用光源
5から出射された光束は、照射光学系4によって保持手
段2に保持されている被検レンズ1の被検面1aに照射
される。そして、この被検面1aからの反射光は同様の
光路を通った後、光分岐手段9により結像光学系10側
に偏向され、この結像光学系10によって反射光のスポ
ット像が形成され、このスポット像に関して重心位置検
出手段11によってその重心位置が検出される。
With such a basic configuration, the light beam emitted from the illumination light source 5 is irradiated on the surface 1a of the lens 1 to be measured held by the holding means 2 by the irradiation optical system 4. . Then, the reflected light from the test surface 1a passes through the same optical path and is deflected to the imaging optical system 10 side by the light splitting means 9, and a spot image of the reflected light is formed by the imaging optical system 10. The center of gravity of the spot image is detected by the center of gravity position detecting means 11.

【0026】ここで、前記被検レンズ1付近の光学的位
置関係等について図2を参照して説明する。保持手段2
により保持された被検レンズ1に対して、集光レンズ8
は被検レンズ1の近軸球面部の曲率中心点1a′に集光
する位置にセットされている。この場合、被検レンズ1
の被検面1aから近軸球面部の曲率中心点1a′までの
距離は、被検レンズ1の近軸球面部の曲率半径R0 に等
しい。よって、被検面1aの近軸球面部からの反射光は
集光レンズ8で再び平行光となるため、結像光学系10
を経た後は反射光のスポット像となる。
Here, the optical positional relationship and the like in the vicinity of the test lens 1 will be described with reference to FIG. Holding means 2
The lens 1 is held by the condenser lens 8
Is set at a position where light is condensed at the curvature center point 1a 'of the paraxial spherical portion of the lens 1 to be measured. In this case, the test lens 1
Is equal to the radius of curvature R 0 of the paraxial spherical portion of the lens 1 to be measured. Therefore, the reflected light from the paraxial spherical portion of the test surface 1a becomes parallel light again by the condenser lens 8, so that the image forming optical system 10
After that, the reflected light becomes a spot image.

【0027】また、本実施の形態においては、保持手段
2により保持された被検レンズ1の位置調整(調心)を
行うため、図3に示すように、前記被検レンズ1の外径
部を押して光軸φに直交する直交面内で被検レンズ1を
任意の1方向にのみ移動させる型押し等の移動手段13
が設けられている。そこで、まず、被検レンズ1を保持
手段2により保持した状態で回転手段3により被検レン
ズ1を光軸φ回りに回転させながら、被検レンズ1の近
軸球面部からの反射光のスポット像の重心位置を重心位
置検出手段11により検出する。このとき、被検レンズ
1の光軸が図1中に示すような光学系光軸φからずれて
いる場合には、その反射光のスポット像の重心位置は図
3中に示すように回転軌跡14を描くことにより検出さ
れる。そこで、ずれがある場合、被検レンズ1を光軸φ
に直交する直交面内で任意の1方向に移動する移動手段
13により前記回転軌跡14が零となるように被検レン
ズ1の位置を調整する。このような調整が完了した時点
では、被検レンズ1の光軸が光学系4,10の光軸φと
一致した状態となる。
In the present embodiment, as shown in FIG. 3, the outer diameter of the lens 1 to be inspected is adjusted to adjust the position (centering) of the lens 1 to be inspected held by the holding means 2. Pressing means 13 for moving the lens 1 to be tested in only one arbitrary direction in a plane orthogonal to the optical axis φ.
Is provided. Therefore, first, while rotating the test lens 1 around the optical axis φ by the rotating means 3 while holding the test lens 1 by the holding means 2, the spot of the reflected light from the paraxial spherical portion of the test lens 1 The center of gravity position of the image is detected by the center of gravity position detecting means 11. At this time, if the optical axis of the test lens 1 is deviated from the optical axis φ of the optical system as shown in FIG. 1, the position of the center of gravity of the spot image of the reflected light becomes the rotation locus as shown in FIG. 14 is detected. Therefore, when there is a deviation, the test lens 1 is moved to the optical axis φ.
The position of the test lens 1 is adjusted by the moving means 13 that moves in an arbitrary direction in an orthogonal plane perpendicular to the direction of the lens 1 so that the rotation locus 14 becomes zero. When such adjustment is completed, the optical axis of the lens 1 to be inspected coincides with the optical axis φ of the optical systems 4 and 10.

【0028】さらに、図4に示すように、上記のように
被検レンズ1を保持手段2上に保持させその調心を行っ
た後で用いられる測定手段15が設けられている。この
測定手段15は、被検レンズ1の被検面1aに対して光
軸φに直交する直交面内において任意の1方向Aにのみ
移動自在な走査機構(図示せず)を有して前記被検面1
aに接触(又は、非接触)してその断面形状を測定する
変位計16を備えている。また、特に図示しないが、前
記変位計16により測定された被検レンズ1の断面形状
に基づき被検レンズ1の形状及び偏心量を算出する演算
処理手段が設けられている。
Further, as shown in FIG. 4, there is provided a measuring means 15 which is used after the lens 1 to be measured is held on the holding means 2 and the alignment thereof is performed as described above. The measuring means 15 has a scanning mechanism (not shown) which is movable only in one arbitrary direction A in a plane orthogonal to the optical axis φ with respect to the surface 1a of the lens 1 to be measured. Test surface 1
a is provided with a displacement gauge 16 which comes into contact with (or does not contact) a. Although not particularly shown, an arithmetic processing unit for calculating the shape and the amount of eccentricity of the test lens 1 based on the cross-sectional shape of the test lens 1 measured by the displacement meter 16 is provided.

【0029】このような構成において、被検レンズ1を
保持手段2上に保持させその調心を行った後で、測定手
段15を用いてその断面形状を測定する。即ち、変位計
16を光軸φに直交する直交面内で1方向Aに移動させ
ながら被検面1aを走査することにより、その1方向A
に関する被検レンズ1の断面形状が測定される(1回
目)。その後、回転手段3により保持手段2とともに被
検レンズ1を90°回転させて停止させ、その位置で、
再び変位計16を光軸φに直交する直交面内で1方向A
に移動させながら被検面1aを走査することにより、そ
の1方向Aに関する被検レンズ1の断面形状が測定され
る(2回目)。ここに、1回目と2回目とでは90°異
なった位置の被検レンズ1の断面形状であるので、結果
として、被検レンズ1の直交2方向(X方向、Y方向)
の断面形状が測定されたことになる。そこで、例えば図
5(a)(b)中に示すようにX,Y方向のこれらの2
つの断面形状データに基づき各々の方向の軸の傾斜角を
算出すれば、図6に示すような座標関係から、被検レン
ズ1(被検面1a)の非球面軸の傾き(太線)が得られ
る。このときの非球面軸の傾斜角θが被検レンズ1の光
軸を基準とした偏心量となる。この際、被検レンズ1の
保持状態で任意の1方向Aを基準とした偏心方向も算出
することができる。
In such a configuration, after the lens 1 to be measured is held on the holding means 2 and its alignment is performed, the sectional shape thereof is measured using the measuring means 15. That is, by moving the displacement meter 16 in one direction A in a plane orthogonal to the optical axis φ while scanning the surface 1a to be measured, the one direction A
Is measured (first time). Thereafter, the test lens 1 is rotated by 90 ° together with the holding means 2 by the rotating means 3 and stopped, and at that position,
Again, the displacement gauge 16 is moved in one direction A in an orthogonal plane orthogonal to the optical axis φ.
The cross-sectional shape of the test lens 1 in the one direction A is measured by scanning the test surface 1a while moving to the second position (second time). Here, the cross-sectional shape of the test lens 1 at a position different by 90 ° between the first time and the second time results in two directions orthogonal to the test lens 1 (X direction, Y direction).
Is measured. Therefore, for example, as shown in FIGS. 5A and 5B, these two in the X and Y directions
If the inclination angles of the axes in the respective directions are calculated based on the two cross-sectional shape data, the inclination (thick line) of the aspherical axis of the test lens 1 (test surface 1a) is obtained from the coordinate relationship shown in FIG. Can be The inclination angle θ of the aspherical axis at this time is the amount of eccentricity with respect to the optical axis of the test lens 1. At this time, it is also possible to calculate the eccentric direction with reference to an arbitrary direction A while the test lens 1 is held.

【0030】従って、本実施の形態によれば、被検レン
ズ1の位置調整が可能であり、この被検レンズ1の設置
及びその位置調整を行った上で、変位計16を備えた測
定手段15を用い、かつ、回転手段3により被検レンズ
1を90°回転させることで、直交2方向の断面形状デ
ータを得ることができこれらのデータの演算処理に基づ
き、被検レンズ1の形状及び光軸基準の偏心測定が可能
となる。
Therefore, according to the present embodiment, it is possible to adjust the position of the lens 1 to be inspected. After the installation and adjustment of the position of the lens 1 to be inspected, the measuring means provided with the displacement meter 16 15 and the rotating means 3 rotates the test lens 1 by 90 °, so that cross-sectional shape data in two orthogonal directions can be obtained, and the shape and the shape of the test lens 1 The eccentricity measurement based on the optical axis can be performed.

【0031】ところで、本実施の形態においては、結像
光学系10は、その拡大率が可変自在とされている。拡
大率可変の手法としては、例えば、ズームレンズを使用
する、或いは、この結像光学系10を構成するレンズを
リボルバ方式により交換自在又は位置可変自在とすれば
よい。このように結像光学系10の拡大率を可変自在と
すれば、例えば、粗調整は拡大率を小さくして広視野状
態で行わせ、微調整は拡大率を大きくして狭視野状態で
行わせることができ、被検レンズ1の調心を容易に行え
る。また、拡大率を上げるほど調心を高精度に行わせる
こともできる。
In the present embodiment, the magnification of the imaging optical system 10 is variable. As a method of changing the magnification, for example, a zoom lens may be used, or a lens constituting the imaging optical system 10 may be exchangeable or position-changeable by a revolver method. If the magnification of the imaging optical system 10 is made variable as described above, for example, the coarse adjustment is performed in a wide field of view with a small magnification, and the fine adjustment is performed in a narrow field of view with a large magnification. Alignment of the test lens 1 can be easily performed. Further, the centering can be performed with higher accuracy as the enlargement ratio is increased.

【0032】また、本実施の形態では、照射光学系4中
の集光レンズ8が光軸φ方向に移動調整自在に設けられ
ている。これにより、図2に示すように、集光レンズ8
(焦点距離f1 )と被検レンズ1の被検面1aとの間の
距離Zが調整自在とされている。被検レンズ1はその種
類が変われば、近軸球面部の曲率が変わってしまうが、
それに合わせて被検レンズ1と集光レンズ8との距離Z
を変えれば、被検レンズ1に照射する光の曲率は変わっ
ていくので、被検レンズ1の種類が変わっても対処でき
ることになる。即ち、被検レンズ1の近軸球面部の曲率
に合わせてその距離Zを調整すればよい。
In this embodiment, the condenser lens 8 in the irradiation optical system 4 is provided so as to be movable and adjustable in the direction of the optical axis φ. As a result, as shown in FIG.
The distance Z between (focal length f 1 ) and the test surface 1 a of the test lens 1 is adjustable. If the type of the test lens 1 changes, the curvature of the paraxial spherical portion changes,
The distance Z between the test lens 1 and the condenser lens 8 is adjusted accordingly.
Is changed, the curvature of the light applied to the test lens 1 changes, so that even if the type of the test lens 1 changes, it is possible to cope with the change. That is, the distance Z may be adjusted according to the curvature of the paraxial spherical portion of the lens 1 to be measured.

【0033】もっとも、集光レンズ8側を固定し、被検
レンズ1側を保持手段2とともに光軸φ方向に移動調整
自在としてもよいことはもちろんである。さらには、集
光レンズ8自体を交換自在とし、被検レンズ1が変わっ
た場合の対応策としてその被検レンズ1に見合った曲率
を有する集光レンズ8に交換するようにしてもよい。
Needless to say, the condenser lens 8 side may be fixed, and the test lens 1 side may be movable and adjustable in the optical axis φ direction together with the holding means 2. Further, the condenser lens 8 itself may be exchangeable, and as a countermeasure in the case where the test lens 1 changes, the condenser lens 8 may be replaced with a condenser lens 8 having a curvature corresponding to the test lens 1.

【0034】本発明の第二の実施の形態を図7に基づい
て説明する。前記実施の形態で示した部分と同一部分は
同一符号を用いて示し、説明も省略する(以下の各実施
の形態でも同様とする)。本実施の形態では、重心位置
検出手段11に接続されて移動手段13をフィードバッ
ク制御するフィードバック制御演算手段17が付加され
ている。このフィードバック制御演算手段17は、前記
移動手段13による被検レンズ1の位置調整時に前記重
心位置検出手段11により検出される重心位置に基づき
被検レンズ1の最適な移動量を算出して前記移動手段1
3をフィードバック制御する。より具体的には、被検レ
ンズ1の位置調整時に得られる反射スポット像の回転軌
跡14の径の大きさから被検レンズ1の光軸φからのず
れ量、即ち、被検レンズ1の移動手段13による最適な
移動量が算出される。よって、本実施の形態によれば、
被検レンズ1の形状及び光軸基準の偏心量を測定する際
の、被検レンズ1の設置に関して高精度な位置調整が可
能となる。
A second embodiment of the present invention will be described with reference to FIG. The same parts as those described in the above embodiments are denoted by the same reference numerals, and description thereof is omitted (the same applies to each of the following embodiments). In the present embodiment, a feedback control calculating means 17 connected to the center-of-gravity position detecting means 11 and performing feedback control of the moving means 13 is added. The feedback control calculating means 17 calculates an optimum amount of movement of the lens 1 to be measured based on the position of the center of gravity detected by the center-of-gravity position detecting means 11 at the time of adjusting the position of the lens 1 to be measured by the moving means 13 and performs the movement. Means 1
3 is feedback-controlled. More specifically, the amount of deviation from the optical axis φ of the test lens 1 based on the diameter of the rotation locus 14 of the reflected spot image obtained when the position of the test lens 1 is adjusted, that is, the movement of the test lens 1 The optimal movement amount by the means 13 is calculated. Therefore, according to the present embodiment,
When measuring the shape of the test lens 1 and the amount of eccentricity based on the optical axis, the position of the test lens 1 can be adjusted with high accuracy.

【0035】本発明の第三の実施の形態を図8に基づい
て説明する。本実施の形態では、被検面1aの近軸球面
からの反射光の光軸上にその反射光を2つに分岐する分
岐手段18が設けられ、その一方の分岐光軸上に結像光
学系10が設けられ、他方の分岐光軸上にも結像光学系
19が設けられている。これらの結像光学系10,19
は異なる拡大率を有する構成とされており、例えば、拡
大率の大きな結像光学系10側が微調整用、拡大率の小
さな結像光学系19側が粗調整用とされている。これら
の結像光学系10,19の出力側は重心位置検出手段1
1側に接続されている。
A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, on the optical axis of the reflected light from the paraxial spherical surface of the test surface 1a, there is provided a branching means 18 for branching the reflected light into two, and an image forming optical system is provided on one of the branched optical axes. A system 10 is provided, and an imaging optical system 19 is also provided on the other branch optical axis. These imaging optical systems 10 and 19
Are configured to have different magnifications. For example, the imaging optical system 10 having a large magnification is used for fine adjustment, and the imaging optical system 19 having a small magnification is used for coarse adjustment. The output side of these imaging optical systems 10 and 19 is a center-of-gravity position detecting means 1.
It is connected to one side.

【0036】よって、本実施の形態によれば、被検レン
ズ1の調心時に、最初は粗調整として拡大率の小さな結
像光学系19と重心位置検出手段11とを用いて広視野
状態で行わせ、微調整時には拡大率の大きな結像光学系
10と重心位置検出手段11とを用いて狭視野状態で行
わせることができ、被検レンズ1の調心を容易に行え
る。また、結像光学系10側の拡大率を上げるほど調心
を高精度に行わせることもできる。
Therefore, according to the present embodiment, at the time of centering of the lens 1 to be inspected, first, as a rough adjustment, the imaging optical system 19 having a small enlargement ratio and the center-of-gravity position detecting means 11 are used in a wide visual field state. The fine adjustment can be performed in a narrow visual field state by using the imaging optical system 10 having a large enlargement ratio and the center-of-gravity position detecting means 11, and the alignment of the test lens 1 can be easily performed. In addition, the higher the magnification on the imaging optical system 10 side, the more accurate the alignment can be.

【0037】本発明の第四の実施の形態を図9に基づい
て説明する。本実施の形態では、照射光学系6中におい
て光分岐手段9より前段の光軸φ上に円形開口20aが
形成された遮光部材20が介在されている。
A fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, a light-shielding member 20 having a circular opening 20a formed on the optical axis φ in front of the light splitting means 9 in the irradiation optical system 6 is interposed.

【0038】このような遮光部材20の介在により、照
射光学系6によって被検レンズ1に照射する光の特定部
分が遮光されることになる。被検レンズ1の種類によっ
ては、例えば、裏面側からの反射光が被検面(表面)1
aとほぼ同じ光路を通って結像光学系10に戻ってくる
こともあり得るが、このような状況下では、円形開口2
0aを被検レンズ1に見合った大きさに形成しておけ
ば、この円形開口20aを有する遮光部材20による遮
光により裏面側からの反射光(迷光)を適切に除去でき
る。
With the interposition of the light shielding member 20, a specific portion of the light to be irradiated on the lens 1 to be inspected by the irradiation optical system 6 is shielded. Depending on the type of the lens 1 to be inspected, for example, the reflected light from the back side is the surface to be inspected (front surface) 1.
It may return to the imaging optical system 10 through substantially the same optical path as that of the circular aperture 2a.
If 0a is formed in a size corresponding to the lens 1 to be inspected, the light reflected by the back surface side (stray light) can be appropriately removed by the light shielding by the light shielding member 20 having the circular opening 20a.

【0039】なお、本実施の形態に関して、遮光部材2
0として、円形開口20aの大きさを可変し得る絞り部
材を用いれば、被検レンズ1の種類が変わった場合にも
簡単に対応できる。
In this embodiment, the light shielding member 2
If a stop member that can change the size of the circular opening 20a is used as 0, it is possible to easily cope with a case where the type of the lens 1 to be measured is changed.

【0040】本発明の第五の実施の形態を図10ないし
図12に基づいて説明する。本実施の形態では、まず、
図1に対応する基本構成において、図10に示すように
回転手段3が省略された構成とされている。また、図1
1に示すように、保持手段2により保持された被検レン
ズ1に対しては光軸φに直交する直交面内で直交する2
方向に移動させる2つの移動手段13x,13yが設け
られている。これにより、被検レンズ1を保持手段2に
より保持した状態で被検レンズ1の近軸球面部からの反
射光のスポット像の重心位置を重心位置検出手段11に
より検出する。このとき、被検レンズ1の光軸が光学系
光軸φからずれている場合には、被検レンズ1を光軸φ
に直交する直交面内で直交する2方向に移動する移動手
段13x,13yによりずれが零となるように被検レン
ズ1の位置を調整する。このような調整が完了した時点
では、被検レンズ1の光軸が光学系4,10の光軸φと
一致した状態となる。
A fifth embodiment of the present invention will be described with reference to FIGS. In the present embodiment, first,
In the basic configuration corresponding to FIG. 1, the rotation unit 3 is omitted as shown in FIG. FIG.
As shown in FIG. 1, the lens 1 to be inspected held by the holding means 2 is orthogonal to the lens 1 in an orthogonal plane orthogonal to the optical axis φ.
Two moving means 13x and 13y for moving in the directions are provided. Thus, the center-of-gravity position of the spot image of the reflected light from the paraxial spherical portion of the lens 1 to be detected is detected by the center-of-gravity position detecting means 11 while the lens 1 to be measured is held by the holding means 2. At this time, when the optical axis of the test lens 1 is shifted from the optical axis φ of the optical system, the test lens 1 is moved to the optical axis φ.
The position of the lens 1 to be measured is adjusted by the moving means 13x and 13y moving in two directions orthogonal to each other in the orthogonal plane orthogonal to the position of the lens 1 to be measured. When such adjustment is completed, the optical axis of the lens 1 to be inspected coincides with the optical axis φ of the optical systems 4 and 10.

【0041】さらに、本実施の形態にあっては、図12
に示すように、上記のように被検レンズ1を保持手段2
上に保持させその調心を行った後で用いられる測定手段
15が設けられている。この測定手段15は、被検レン
ズ1の被検面1aに対して光軸φに直交する直交面内に
おいて直交する2方向A,A′に移動自在な走査機構
(図示せず)を有して前記被検面1aに接触(又は、非
接触)してその断面形状を測定する変位計21を備えて
いる。また、特に図示しないが、前記変位計21により
測定された被検レンズ1の直交2方向の断面形状に基づ
き被検レンズ1の形状及び偏心量を算出する演算処理手
段が設けられている。
Further, in the present embodiment, FIG.
As shown in FIG.
Measuring means 15 is provided which is used after being held above and centered. The measuring means 15 has a scanning mechanism (not shown) movable in two directions A and A ′ perpendicular to the surface 1a of the lens 1 to be measured in a plane perpendicular to the optical axis φ. And a displacement gauge 21 for measuring the cross-sectional shape of the surface 1a by contacting (or non-contacting) the surface 1a. Although not particularly shown, an arithmetic processing unit is provided for calculating the shape and the amount of eccentricity of the lens 1 to be measured based on the cross-sectional shape of the lens 1 to be measured in the two orthogonal directions measured by the displacement meter 21.

【0042】このような構成において、被検レンズ1を
保持手段2上に保持させその調心を行った後で、測定手
段15を用いてその断面形状を測定する。即ち、変位計
21を光軸φに直交する直交面内で1方向Aに移動させ
ながら被検面1aを走査することにより、その1方向A
に関する被検レンズ1の断面形状が測定される(1回
目)。その後、変位計21を光軸φに直交する直交面内
で今度は1方向Aに直交する1方向A′に移動させなが
ら被検面1aを走査することにより、その1方向A′に
関する被検レンズ1の断面形状が測定される(2回
目)。ここに、1回目と2回目とでは90°異なった位
置の被検レンズ1の断面形状であるので、結果として、
被検レンズ1の直交2方向(X方向、Y方向)の断面形
状が測定されたことになる。そこで、例えば図5(a)
(b)中に示したようなX,Y方向のこれらの2つの断
面形状データに基づき各々の方向の軸の傾斜角を算出す
れば、図6に示したような座標関係から、被検レンズ1
(被検面1a)の非球面軸の傾き(太線)が得られる。
このときの非球面軸の傾斜角θが被検レンズ1の光軸を
基準とした偏心量となる。
In such a configuration, after the test lens 1 is held on the holding means 2 and its alignment is performed, the cross-sectional shape is measured using the measuring means 15. That is, by moving the displacement meter 21 in one direction A in an orthogonal plane perpendicular to the optical axis φ, the object 1a is scanned in the one direction A.
Is measured (first time). Then, by moving the displacement gauge 21 in a direction A 'orthogonal to the direction A in a direction orthogonal to the optical axis φ, the surface 1a is scanned while scanning in the direction A'. The cross-sectional shape of the lens 1 is measured (second time). Here, since the cross-sectional shape of the test lens 1 at a position different by 90 ° between the first time and the second time, as a result,
This means that the cross-sectional shape of the test lens 1 in two orthogonal directions (X direction, Y direction) has been measured. Therefore, for example, FIG.
If the inclination angle of the axis in each direction is calculated based on these two cross-sectional shape data in the X and Y directions as shown in (b), the lens to be inspected can be obtained from the coordinate relationship shown in FIG. 1
The inclination (thick line) of the aspherical axis of (test surface 1a) is obtained.
The inclination angle θ of the aspherical axis at this time is the amount of eccentricity with respect to the optical axis of the test lens 1.

【0043】従って、本実施の形態によれば、被検レン
ズ1の位置調整が可能であり、この被検レンズ1の設置
及びその位置調整を行った上で、直交する2方向に移動
自在な変位計21を備えた測定手段15を用いること
で、回転手段3を用いることなく、直交2方向の断面形
状データを得ることができこれらのデータの演算処理に
基づき、被検レンズ1の形状及び光軸基準の偏心測定が
可能となる。
Therefore, according to the present embodiment, the position of the test lens 1 can be adjusted. After the test lens 1 is installed and its position is adjusted, the test lens 1 can be moved in two orthogonal directions. By using the measuring means 15 having the displacement meter 21, the cross-sectional shape data in two orthogonal directions can be obtained without using the rotating means 3, and the shape and the shape of the lens 1 to be inspected can be obtained based on the arithmetic processing of these data. The eccentricity measurement based on the optical axis can be performed.

【0044】なお、特に図示しないが、本実施の形態に
関しても、第一の実施の形態の場合と同様に、前述した
第二ないし第四の実施の形態の方式や変形例方式を適用
し得る。
Although not particularly shown, the present embodiment can be applied to the systems of the above-described second to fourth embodiments and the modified examples similarly to the case of the first embodiment. .

【0045】[0045]

【発明の効果】請求項1記載の発明によれば、上述した
ように構成したので、保持手段により保持された被検レ
ンズの調心を照射光学系、結像光学系、重心位置検出手
段等を用いて行った上で、変位計を有する測定手段と、
保持手段を回転させる回転手段とを用いることで調心さ
れた被検レンズの直交2方向の断面形状データを得るこ
とができ、よって、これらのデータの演算処理に基づき
非球面レンズの形状及び光軸基準の偏心測定を高精度に
行うことができ、そのための機構も簡単にすることがで
きる。
According to the first aspect of the present invention, since the configuration is as described above, the alignment of the test lens held by the holding means is adjusted by the irradiation optical system, the imaging optical system, the center of gravity position detecting means, etc. After performing by using, measuring means having a displacement meter,
By using the rotating means for rotating the holding means, it is possible to obtain the cross-sectional shape data of the centered test lens in two orthogonal directions. Therefore, the shape of the aspherical lens and the light The eccentricity measurement based on the axis can be performed with high accuracy, and the mechanism for that can be simplified.

【0046】請求項2記載の発明によれば、上述したよ
うに構成したので、保持手段により保持された被検レン
ズの調心を照射光学系、結像光学系、重心位置検出手段
等を用いて行った上で、直交する2方向に移動自在な変
位計を有する測定手段を用いることで調心された被検レ
ンズの直交2方向の断面形状データを得ることができ、
これらのデータの演算処理に基づき非球面レンズの形状
及び光軸基準の偏心測定を高精度に行うことができ、そ
のための機構も簡単にすることができる。
According to the second aspect of the present invention, since the configuration described above is used, the alignment of the test lens held by the holding means is determined by using the irradiation optical system, the imaging optical system, the center of gravity position detecting means, and the like. After that, the cross-sectional shape data of the centered test lens in the two orthogonal directions can be obtained by using a measuring unit having a displacement meter movable in two orthogonal directions,
The eccentricity measurement based on the shape of the aspherical lens and the optical axis can be performed with high accuracy based on the arithmetic processing of these data, and the mechanism therefor can be simplified.

【0047】請求項3記載の発明によれば、請求項1又
は2記載の非球面レンズの形状及び偏心測定装置におい
て、移動手段による被検レンズの位置調整時に重心位置
検出手段により検出される重心位置に基づき被検レンズ
の最適な移動量を算出して移動手段をフィードバック制
御するフィードバック制御演算手段を備えているので、
非球面レンズの形状及び光軸基準の偏心測定を行うに際
しての被検レンズの調心を高精度に行うことができる。
According to the third aspect of the present invention, in the apparatus for measuring the shape and eccentricity of the aspherical lens according to the first or second aspect, the center of gravity detected by the center of gravity position detecting means when the position of the lens to be inspected is adjusted by the moving means. Since there is provided a feedback control operation means for calculating an optimal movement amount of the test lens based on the position and performing feedback control of the movement means,
The alignment of the test lens can be performed with high accuracy when measuring the shape of the aspheric lens and the eccentricity based on the optical axis.

【0048】請求項4記載の発明によれば、請求項1又
は2記載の非球面レンズの形状及び偏心測定装置におい
て、結像光学系の拡大率が可変自在であるので、結像光
学系の拡大率を可変することで、粗調整は拡大率を小さ
くして広視野状態で行わせ、微調整は拡大率を大きくし
て狭視野状態で行わせることができ、よって、被検レン
ズの調心を容易に行える上に、拡大率を上げるほど調心
を高精度に行わせることもできる。
According to the fourth aspect of the present invention, in the aspheric lens shape and eccentricity measuring device according to the first or second aspect, the magnification of the imaging optical system is variable, so that By changing the magnification, coarse adjustment can be performed in a wide field of view with a small magnification, and fine adjustment can be performed in a narrow field of view with a large magnification. In addition to being able to easily perform the centering, the centering can be performed with higher precision as the enlargement ratio is increased.

【0049】請求項5記載の発明によれば、請求項1又
は2記載の非球面レンズの形状及び偏心測定装置におい
て、被検面の近軸球面からの反射光を2つに分岐する分
岐手段を備え、分岐された反射光毎に異なる拡大率の結
像光学系と重心位置検出手段とを備えているので、一方
の結像光学系の拡大率を小さくして粗調整を広視野状態
で行わせ、他方の結像光学系の拡大率を大きくして微調
整を狭視野状態で行わせることができ、よって、被検レ
ンズの調心を容易に行える上に、拡大率を上げるほど調
心を高精度に行わせることもできる。
According to the fifth aspect of the present invention, in the aspherical lens shape and eccentricity measuring apparatus according to the first or second aspect, the branching means for branching the reflected light from the paraxial spherical surface of the surface to be tested into two. The imaging optical system and the center-of-gravity position detection means having different magnifications for each of the branched reflected lights are provided, so that the magnification is reduced for one of the imaging optical systems and coarse adjustment is performed in a wide field of view. The fine adjustment can be performed in a narrow field of view by increasing the magnification of the other image forming optical system. The mind can be performed with high precision.

【0050】請求項6記載の発明によれば、請求項1又
は2記載の非球面レンズの形状及び偏心測定装置におい
て、照射光学系が光軸方向に移動自在に設けられている
ので、照明光学系中の光学部材を光軸方向に移動させて
被検レンズとの間の間隔を調整することにより被検レン
ズの種類が変わった場合にも対処することができる。
According to the sixth aspect of the present invention, in the aspherical lens shape and eccentricity measuring apparatus according to the first or second aspect, the illumination optical system is provided so as to be movable in the optical axis direction, so that the illumination optical system is provided. By moving the optical member in the system in the optical axis direction to adjust the distance between the lens and the test lens, it is possible to cope with a case where the type of the test lens changes.

【0051】請求項7記載の発明によれば、請求項1又
は2記載の非球面レンズの形状及び偏心測定装置におい
て、被検レンズを保持した保持手段が中心軸方向に移動
自在に設けられているので、保持手段を光軸方向に移動
させてこの保持手段に保持された被検レンズと照明光学
系中の光学部材との間の間隔を調整することにより被検
レンズの種類が変わった場合にも対処することができ
る。
According to the seventh aspect of the present invention, in the aspherical lens shape and eccentricity measuring device according to the first or second aspect, the holding means for holding the lens to be measured is provided movably in the central axis direction. Moving the holding means in the direction of the optical axis to adjust the distance between the test lens held by the holding means and the optical member in the illumination optical system, thereby changing the type of the test lens. Can also be dealt with.

【0052】請求項8記載の発明によれば、請求項1又
は2記載の非球面レンズの形状及び偏心測定装置におい
て、照射光学系が交換自在な集光レンズを有しているの
で、被検レンズの種類が変わった場合にはその被検レン
ズに見合った曲率を有する集光レンズに交換することに
より、被検レンズの種類の変更に簡単に対応できる。
According to the eighth aspect of the present invention, in the aspherical lens shape and eccentricity measuring apparatus according to the first or second aspect, the irradiation optical system has an exchangeable condenser lens. When the type of the lens changes, it is possible to easily cope with the change in the type of the lens to be inspected by replacing the lens with a condenser lens having a curvature corresponding to the lens to be inspected.

【0053】請求項9記載の発明によれば、請求項1又
は2記載の非球面レンズの形状及び偏心測定装置におい
て、照射光学系が、その光軸上に円形開口が形成された
遮光部材を有しているので、被検レンズの裏面等からの
反射光が測定の妨げとなる迷光として生ずるようなこと
があっても、円形開口が形成された遮光部材により遮光
することで、迷光の影響が除去される。
According to the ninth aspect of the present invention, in the aspherical lens shape and eccentricity measuring apparatus according to the first or second aspect, the irradiation optical system includes a light shielding member having a circular opening formed on an optical axis thereof. Even if reflected light from the back surface of the test lens or the like may be generated as stray light that hinders measurement, the light is shielded by the light-blocking member having the circular opening, so that the influence of the stray light is reduced. Is removed.

【0054】請求項10記載の発明によれば、請求項1
又は2記載の非球面レンズの形状及び偏心測定装置にお
いて、照射光学系が、その光軸上に開口径可変自在な絞
り部材を有しているので、被検レンズの裏面等からの反
射光が測定の妨げとなる迷光として生ずるようなことが
あっても、絞り部材により遮光することで、迷光の影響
を除去でき、特に、絞り部材の開口径を可変させること
で、被検レンズの種類が変わった場合にも簡単に対処で
きる。
According to the tenth aspect, according to the first aspect,
Or in the aspherical lens shape and eccentricity measuring device according to 2, since the irradiation optical system has a stop member with a variable aperture diameter on its optical axis, reflected light from the back surface of the lens to be inspected or the like. Even if it occurs as stray light that hinders measurement, it is possible to remove the effect of stray light by blocking light with a diaphragm member.In particular, by changing the aperture diameter of the diaphragm member, the type of lens to be inspected can be changed. You can easily deal with changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施の形態の基本構成を示す概
略正面図である。
FIG. 1 is a schematic front view showing a basic configuration of a first embodiment of the present invention.

【図2】その保持手段付近を拡大して示す正面図であ
る。
FIG. 2 is an enlarged front view showing the vicinity of the holding means.

【図3】被検レンズ付近を拡大して示す平面図である。FIG. 3 is an enlarged plan view showing the vicinity of a test lens.

【図4】要部を示し、(a)は保持手段付近を拡大して
示す正面図、(b)はその平面図である。
FIGS. 4A and 4B show main parts, wherein FIG. 4A is an enlarged front view showing the vicinity of a holding means, and FIG. 4B is a plan view thereof.

【図5】断面形状データを示す特性図である。FIG. 5 is a characteristic diagram showing cross-sectional shape data.

【図6】傾斜角を示す3次元座標系による特性図であ
る。
FIG. 6 is a characteristic diagram showing a tilt angle in a three-dimensional coordinate system.

【図7】本発明の第二の実施の形態の構成を示す概略正
面図である。
FIG. 7 is a schematic front view showing the configuration of the second embodiment of the present invention.

【図8】本発明の第三の実施の形態の構成を示す概略正
面図である。
FIG. 8 is a schematic front view showing the configuration of the third embodiment of the present invention.

【図9】本発明の第四の実施の形態の構成を示す概略正
面図である。
FIG. 9 is a schematic front view showing the configuration of the fourth embodiment of the present invention.

【図10】本発明の第五の実施の形態の構成を示す概略
正面図である。
FIG. 10 is a schematic front view showing the configuration of a fifth embodiment of the present invention.

【図11】被検レンズ付近を拡大して示す平面図であ
る。
FIG. 11 is an enlarged plan view showing the vicinity of a test lens.

【図12】要部を示し、(a)は保持手段付近を拡大し
て示す正面図、(b)はその平面図である。
FIGS. 12A and 12B show main parts, wherein FIG. 12A is an enlarged front view showing the vicinity of the holding means, and FIG. 12B is a plan view thereof.

【符号の説明】[Explanation of symbols]

1 被検レンズ 1a 被検面 2 保持手段 3 回転手段 4 照射光学系 5 照明用光源 8 集光レンズ 10 結像光学系 11 重心位置検出手段 13,13x,13y 移動手段 15 測定手段 16 変位計 17 フィードバック制御演算手段 18 分岐手段 19 結像光学系 20 遮光部材 20a 円形開口 21 変位計 φ 光軸、中心軸 DESCRIPTION OF SYMBOLS 1 Test lens 1a Test surface 2 Holding means 3 Rotating means 4 Irradiation optical system 5 Illumination light source 8 Condensing lens 10 Imaging optical system 11 Center of gravity position detecting means 13, 13x, 13y Moving means 15 Measuring means 16 Displacement meter 17 Feedback control calculation means 18 Branching means 19 Imaging optical system 20 Light shielding member 20a Circular aperture 21 Displacement meter φ Optical axis, central axis

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 非球面レンズを被検レンズとして保持す
る保持手段と、 照明用光源を含み、この照明用光源から出射された光束
を収束性光束又は発散性光束として前記被検レンズの被
検面に照射する照射光学系と、 前記保持手段の中心軸と前記照射光学系の光軸とに実質
的に合致するように光軸が設定されて、前記被検面の近
軸球面からの反射光を結像させる結像光学系と、 この結像光学系により結像された像の重心位置を検出す
る重心位置検出手段と、 前記保持手段により保持された前記被検レンズを前記光
軸を回転軸として回転させる回転手段と、 前記被検レンズの外径部を押して前記光軸に直交する直
交面内で前記被検レンズを任意の1方向に移動させる移
動手段と、 前記被検レンズに対して1方向への走査機構を有する変
位計に基づき前記被検レンズの断面形状を測定する測定
手段と、 この測定手段の測定結果等に基づいて前記被検レンズの
形状及び偏心を算出する演算処理手段と、 を備えることを特徴とする非球面レンズの形状及び偏心
測定装置。
An illumination light source, comprising: a holding unit for holding an aspheric lens as a lens to be inspected; and a light beam emitted from the illumination light source as a convergent light beam or a divergent light beam. An irradiation optical system for irradiating a surface, an optical axis is set so as to substantially coincide with a central axis of the holding unit and an optical axis of the irradiation optical system, and the reflection from the paraxial spherical surface of the surface to be measured is performed. An imaging optical system that forms light, a center-of-gravity position detecting unit that detects a center-of-gravity position of an image formed by the imaging optical system, and the optical axis of the test lens held by the holding unit. Rotating means for rotating as a rotation axis; moving means for pushing an outer diameter portion of the test lens to move the test lens in any one direction within an orthogonal plane orthogonal to the optical axis; On the other hand, based on a displacement meter with a scanning mechanism in one direction Measuring means for measuring the cross-sectional shape of the test lens; and arithmetic processing means for calculating the shape and eccentricity of the test lens based on the measurement results of the measuring means and the like. Lens shape and eccentricity measuring device.
【請求項2】 非球面レンズを被検レンズとして保持す
る保持手段と、 照明用光源を含み、この照明用光源から出射された光束
を収束性光束又は発散性光束として前記被検レンズの被
検面に照射する照射光学系と、 前記保持手段の中心軸と前記照射光学系の光軸とに実質
的に合致するように光軸が設定されて、前記被検面の近
軸球面からの反射光を結像させる結像光学系と、 この結像光学系により結像された像の重心位置を検出す
る重心位置検出手段と、 前記被検レンズの外径部を押して前記光軸に直交する直
交面内で前記被検レンズを直交する2方向に移動させる
移動手段と、 前記被検レンズに対して直交する2方向への走査機構を
有する変位計に基づき前記被検レンズの断面形状を測定
する測定手段と、 この測定手段の測定結果等に基づいて前記被検レンズの
形状及び偏心を算出する演算処理手段と、 を備えることを特徴とする非球面レンズの形状及び偏心
測定装置。
2. An inspection apparatus comprising: a holding means for holding an aspheric lens as a lens to be inspected; and a light source for illumination, wherein a light beam emitted from the light source for illumination is detected as a convergent light beam or a divergent light beam. An irradiation optical system for irradiating a surface, an optical axis is set so as to substantially coincide with a central axis of the holding unit and an optical axis of the irradiation optical system, and the reflection from the paraxial spherical surface of the surface to be measured is performed. An imaging optical system that forms light, a center-of-gravity position detection unit that detects a center-of-gravity position of an image formed by the imaging optical system, and an orthogonal diameter to the optical axis by pushing an outer diameter portion of the test lens. A cross-sectional shape of the lens to be measured is measured based on a displacement unit having a moving unit for moving the lens to be tested in two directions perpendicular to each other in a perpendicular plane, and a displacement meter having a scanning mechanism in two directions perpendicular to the lens to be tested. Measuring means for measuring Arithmetic processing means for calculating the shape and eccentricity of the lens to be inspected based on the data.
【請求項3】 移動手段による被検レンズの位置調整時
に重心位置検出手段により検出される重心位置に基づき
前記被検レンズの最適な移動量を算出して前記移動手段
をフィードバック制御するフィードバック制御演算手段
を備えることを特徴とする請求項1又は2記載の非球面
レンズの形状及び偏心測定装置。
3. A feedback control operation for calculating an optimum amount of movement of the lens to be measured based on the position of the center of gravity detected by the center-of-gravity position detecting means when the position of the lens to be inspected is adjusted by the moving means, and performing feedback control of the moving means. 3. An apparatus for measuring the shape and eccentricity of an aspheric lens according to claim 1, further comprising means.
【請求項4】 結像光学系は、拡大率が可変自在である
ことを特徴とする請求項1又は2記載の非球面レンズの
形状及び偏心測定装置。
4. The apparatus for measuring the shape and decentering of an aspheric lens according to claim 1, wherein the magnification ratio of the imaging optical system is variable.
【請求項5】 被検面の近軸球面からの反射光を2つに
分岐する分岐手段を備え、分岐された反射光毎に異なる
拡大率の結像光学系と重心位置検出手段とを備えること
を特徴とする請求項1又は2記載の非球面レンズの形状
及び偏心測定装置。
5. A splitting means for splitting reflected light from a paraxial spherical surface of a test surface into two, an imaging optical system having a different magnification for each split reflected light, and a center of gravity position detecting means. The apparatus for measuring the shape and eccentricity of an aspheric lens according to claim 1 or 2, wherein:
【請求項6】 照射光学系は、光軸方向に移動自在に設
けられていることを特徴とする請求項1又は2記載の非
球面レンズの形状及び偏心測定装置。
6. An apparatus for measuring the shape and eccentricity of an aspheric lens according to claim 1, wherein the irradiation optical system is provided so as to be movable in the optical axis direction.
【請求項7】 被検レンズを保持した保持手段は、中心
軸方向に移動自在に設けられていることを特徴とする請
求項1又は2記載の非球面レンズの形状及び偏心測定装
置。
7. The apparatus for measuring the shape and eccentricity of an aspheric lens according to claim 1, wherein the holding means for holding the test lens is provided so as to be movable in the central axis direction.
【請求項8】 照射光学系は、交換自在な集光レンズを
有することを特徴とする請求項1又は2記載の非球面レ
ンズの形状及び偏心測定装置。
8. An apparatus for measuring the shape and decentering of an aspheric lens according to claim 1, wherein the irradiation optical system has an exchangeable condenser lens.
【請求項9】 照射光学系は、その光軸上に円形開口が
形成された遮光部材を有することを特徴とする請求項1
又は2記載の非球面レンズの形状及び偏心測定装置。
9. The illumination optical system according to claim 1, further comprising a light-shielding member having a circular opening formed on an optical axis thereof.
Or an apparatus for measuring the shape and eccentricity of the aspherical lens according to 2.
【請求項10】 照射光学系は、その光軸上に開口径可
変自在な絞り部材を有することを特徴とする請求項1又
は2記載の非球面レンズの形状及び偏心測定装置。
10. The aspherical lens shape and eccentricity measuring apparatus according to claim 1, wherein the irradiation optical system has a stop member having a variable aperture diameter on an optical axis thereof.
JP18984597A 1997-07-15 1997-07-15 Device for measuring shape and eccentricity of aspherical lens Pending JPH1137738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18984597A JPH1137738A (en) 1997-07-15 1997-07-15 Device for measuring shape and eccentricity of aspherical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18984597A JPH1137738A (en) 1997-07-15 1997-07-15 Device for measuring shape and eccentricity of aspherical lens

Publications (1)

Publication Number Publication Date
JPH1137738A true JPH1137738A (en) 1999-02-12

Family

ID=16248172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18984597A Pending JPH1137738A (en) 1997-07-15 1997-07-15 Device for measuring shape and eccentricity of aspherical lens

Country Status (1)

Country Link
JP (1) JPH1137738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250708A (en) * 2008-04-03 2009-10-29 Nikon Corp Measurement device and measurement method
US11065513B2 (en) 2011-11-28 2021-07-20 Acushnet Company Set of golf club heads and method of manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250708A (en) * 2008-04-03 2009-10-29 Nikon Corp Measurement device and measurement method
US11065513B2 (en) 2011-11-28 2021-07-20 Acushnet Company Set of golf club heads and method of manufacture

Similar Documents

Publication Publication Date Title
KR100594919B1 (en) Non-contact surface configuration measuring apparatus and method thereof
JP2003156405A (en) Method for measuring decentering of aspherical lens and device for measuring decentering
JP2015513219A (en) Lithographic system and method for processing a target such as a wafer
EP2549222B1 (en) Use of an abscissa calibration jig, abscissa calibration method and laser interference measuring apparatus
JPH0593888A (en) Method and device for determining optical axis of off-set mirror
JPH02161332A (en) Device and method for measuring radius of curvature
JP2002296005A (en) Aligning method, point diffraction interference measuring instrument, and high-accuracy projection lens manufacturing method using the same instrument
US6972850B2 (en) Method and apparatus for measuring the shape of an optical surface using an interferometer
JPH1137738A (en) Device for measuring shape and eccentricity of aspherical lens
JP2002116010A (en) Three-dimensional shape measuring method and device
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
JP4190044B2 (en) Eccentricity measuring device
JP3410896B2 (en) Method and apparatus for measuring eccentricity of aspherical lens
JPH06174430A (en) Center thickness measuring method and device used for it
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
JP2003161610A (en) Optical measurement device
JP4128463B2 (en) Optical system eccentricity measuring apparatus and eccentricity measuring method
JPH1194700A (en) Measuring device and method for lens
US20230236085A1 (en) Non Rotating Lens Centering Device
JP3304571B2 (en) Method and apparatus for measuring eccentricity of aspherical lens
JP2005083981A (en) Aspheric surface eccentricity measuring apparatus and method
JPH09210845A (en) Method and apparatus for measurement of decentering of aspheric lens
JP2001304826A (en) Three-dimensional shape measuring apparatus
JPH08166209A (en) Polygon mirror evaluating device