JPH1137577A - Nozzle device - Google Patents

Nozzle device

Info

Publication number
JPH1137577A
JPH1137577A JP9195780A JP19578097A JPH1137577A JP H1137577 A JPH1137577 A JP H1137577A JP 9195780 A JP9195780 A JP 9195780A JP 19578097 A JP19578097 A JP 19578097A JP H1137577 A JPH1137577 A JP H1137577A
Authority
JP
Japan
Prior art keywords
passage
refrigerant
nozzle
ejector
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9195780A
Other languages
Japanese (ja)
Other versions
JP3603552B2 (en
Inventor
Hirotsugu Takeuchi
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP19578097A priority Critical patent/JP3603552B2/en
Publication of JPH1137577A publication Critical patent/JPH1137577A/en
Application granted granted Critical
Publication of JP3603552B2 publication Critical patent/JP3603552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a cooling performance a freezing cycle provided with an ejector by a method wherein a nozzle effect is further improved while an increasing of an entire length of a nozzle main body assembled in the ejector is restricted to be a minimum value. SOLUTION: Throttle sections 17, 18 are arranged in the midway part of a refrigerant passage 15. A refrigerant passage 15 of a nozzle main body 12 is formed in such a way that a second spread angle θ2 of a passage wall surface of a fourth passage 24 ranging from a fluid peeling-off portion 19 to an injection port 20 is made smaller than a first spread angle θ1 at a passage wall surface of a third passage 23 ranging form the throttle section 18 to a fluid peeling-off section 19. With such as arrangement as above, the occurrence of peeling-off state of gas-liquid double-phase refrigerant from the passage wall surface within the fourth passage 24 and well as the occurrence of eddy flow is restricted, thereby making it possible to restrict reduction in pressure in respect to a uniform flow model without reducing a spread angle of entire region of the refrigerant passage 15 at a downstream side of the throttle section 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば冷凍サイク
ルのエジェクタとして利用されるノズル装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nozzle device used as, for example, an ejector of a refrigeration cycle.

【0002】[0002]

【従来の技術】従来より、例えば車両用空気調和装置の
冷凍サイクルの高効率化手段として、冷媒蒸発器を還流
する冷媒の循環流量を増加させるために冷凍サイクルの
冷媒凝縮器と気液分離器との間にエジェクタを連結して
いる。そして、更なる冷凍サイクルの性能向上のために
は、エジェクタの高効率化が不可欠である。ここで、エ
ジェクタを高効率化するためにノズル効率を向上した技
術として、特開平5−149652号公報に記載の技術
がある。
2. Description of the Related Art Heretofore, as a means for improving the efficiency of a refrigeration cycle of a vehicle air conditioner, for example, a refrigerant condenser and a gas-liquid separator of a refrigeration cycle have been used in order to increase the circulation flow rate of the refrigerant circulating in a refrigerant evaporator. And an ejector is connected between them. In order to further improve the performance of the refrigeration cycle, it is essential to increase the efficiency of the ejector. Here, as a technique for improving the nozzle efficiency in order to increase the efficiency of the ejector, there is a technique described in Japanese Patent Application Laid-Open No. 5-149652.

【0003】この従来の技術は、図3(a)に示したよ
うに、エジェクタ本体内に組み込まれるノズル本体10
0の噴出口101の上流側に2個の絞り部102、10
3を設けて内部に流入する冷媒を気液二相流状態にし、
さらに絞り部102、103の間の流体通路の内径を拡
大し、二相流を細かい気泡を残して再凝縮させることに
より、次の流体通路で沸騰し易い状態にしている。それ
によって、絞り部103から噴出口101までの流体通
路内の冷媒の循環流を、液滴の微粒化により均質流に近
づけて気液の速度差を低減することにより、ノズル効率
を向上させるようにしている。
[0003] As shown in FIG. 3A, this conventional technique uses a nozzle body 10 incorporated in an ejector body.
The two throttle portions 102, 10 on the upstream side of the
3 to make the refrigerant flowing into the gas-liquid two-phase flow state,
Further, the inside diameter of the fluid passage between the throttle portions 102 and 103 is enlarged, and the two-phase flow is re-condensed while leaving fine bubbles, thereby making it easy to boil in the next fluid passage. Thereby, the circulating flow of the refrigerant in the fluid passage from the throttle unit 103 to the ejection port 101 is made closer to a homogeneous flow by atomizing the droplets to reduce the difference in gas-liquid velocity, thereby improving the nozzle efficiency. I have to.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の技術
においては、ノズル効率は80%程度であり、実用に供
する90%程度の効率には、及ばないという問題が生じ
ている。この主要因は、流体通路の内壁面の拡がり角度
が絞り部103から噴出口101まで一定の角度θ0 で
あると、図3(b)に破線で示した均質流モデルに対
し、従来モデルの途中での圧力が急激に低下しているこ
とから分かるように、絞り部103から噴出口101ま
での流体通路の途中で大きく剥離が生じ、流体通路の内
壁面にて渦流が発生していると推測される。ここで、図
3(b)中の△印は第1従来例Aを表し、エジェクタの
吸引部に吸引される吸引流量(Ge)が0の場合を示
す。また、図3(b)中の□印は第2従来例Bを表し、
エジェクタの吸引部に吸引され吸引流量(Ge)が最大
値の場合を示す。
However, in the prior art, there is a problem that the nozzle efficiency is about 80%, which is lower than the practically used efficiency of about 90%. The main cause of this is that, when the divergence angle of the inner wall surface of the fluid passage is a constant angle θ0 from the restricting portion 103 to the ejection port 101, the homogeneous flow model shown by the broken line in FIG. As can be seen from the rapid decrease in the pressure at the nozzle, it is assumed that a large separation occurred in the middle of the fluid passage from the throttle portion 103 to the ejection port 101, and that a vortex was generated on the inner wall surface of the fluid passage. Is done. Here, a mark in FIG. 3B represents the first conventional example A, and shows a case where the suction flow rate (Ge) sucked by the suction portion of the ejector is 0. 3 (b) indicates the second conventional example B,
The case where the suction flow rate (Ge) is suctioned by the suction unit of the ejector and is the maximum value is shown.

【0005】このため、従来の技術においては、流体通
路内での冷媒の圧力低下が、速度エネルギーにうまく変
換されず、実用に供する90%程度のノズル効率には及
ばないという問題が生じている。この問題に対し、流体
通路の拡がり角度を全領域で小さくすることを考えられ
るが、流体通路において絞り部103から冷媒の剥離が
生じる剥離部分までの通路長が長くなる。これにより、
ノズル本体100の筒方向の寸法が長くなるので、エジ
ェクタ本体の大型化を招くという問題が生じる。
[0005] For this reason, in the prior art, there is a problem that the pressure drop of the refrigerant in the fluid passage is not well converted to velocity energy, and does not reach a nozzle efficiency of about 90% which is practically used. . To solve this problem, it is conceivable to reduce the spread angle of the fluid passage in the entire region. However, in the fluid passage, the passage length from the throttle portion 103 to the separated portion where the coolant is separated is increased. This allows
Since the dimension of the nozzle body 100 in the cylinder direction becomes longer, there is a problem that the ejector body becomes larger.

【0006】[0006]

【発明の目的】本発明の目的は、ノズル本体の筒方向の
寸法の増大を最小限にしながらも、ノズル効率を更に向
上することにより、実用に供するノズル効率を得ること
のできるノズル装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a nozzle device capable of obtaining a practical nozzle efficiency by further improving the nozzle efficiency while minimizing the increase in the size of the nozzle body in the cylinder direction. Is to do.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明に
よれば、絞り部から流体の剥離現象が発生する流体剥離
部分までの流体通路の通路壁面の第1拡がり角度より
も、流体剥離部分から噴出口までの流体通路の通路壁面
の第2拡がり角度を小さくすることにより、流体通路内
での通路壁面からの流体の剥離および渦流の発生を抑え
て均質流に対する圧力低下を抑えることができる。それ
によって、流体通路内での流体の圧力低下を略全部速度
エネルギーに変換することができる。そして、絞り部か
ら噴出口までの流体通路の全領域の拡がり角度を小さく
することなく、ノズル効率を更に向上することができ
る。したがって、ノズル本体の筒方向の寸法の増大を最
小限にしながらも、実用に供するノズル効率を得ること
ができる。
According to the first aspect of the present invention, the fluid separation is made larger than the first spread angle of the passage wall surface of the fluid passage from the throttle portion to the fluid separation portion where the separation phenomenon of the fluid occurs. By reducing the second divergence angle of the passage wall surface of the fluid passage from the portion to the jet outlet, the separation of the fluid from the passage wall surface in the fluid passage and the generation of the vortex flow can be suppressed, and the pressure drop against the homogeneous flow can be suppressed. it can. Thereby, almost all the pressure drop of the fluid in the fluid passage can be converted into velocity energy. Further, the nozzle efficiency can be further improved without reducing the divergence angle of the entire area of the fluid passage from the throttle section to the ejection port. Therefore, it is possible to obtain practical nozzle efficiency while minimizing the increase in the dimension of the nozzle body in the cylinder direction.

【0008】そして、請求項2に記載の発明によれば、
流体剥離部分から噴出口まで第2拡がり角度を一定の角
度にすることにより、ノズル本体の製作がし易くなる。
また、請求項3に記載の発明によれば、均質流の圧力変
化に沿うように第2拡がり角度を変更することにより、
必要最小限のノズル本体の筒方向の寸法でノズル効率を
更に向上することができる。
According to the second aspect of the present invention,
By making the second spread angle a constant angle from the fluid separation portion to the jet port, it becomes easy to manufacture the nozzle body.
According to the third aspect of the present invention, by changing the second spread angle so as to follow the pressure change of the homogeneous flow,
Nozzle efficiency can be further improved with the minimum necessary dimension of the nozzle body in the cylinder direction.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施形態の構成〕図1および図2は本発明の実施形態
を示したもので、図1は車両用空気調和装置の冷凍サイ
クルを示した図である。
[Structure of Embodiment] FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 is a diagram showing a refrigeration cycle of an air conditioner for a vehicle.

【0010】本実施形態の車両用空気調和装置の冷凍サ
イクル1は、例えばエンジン搭載車、電気自動車または
ハイブリッド自動車等の車両に搭載され、冷媒圧縮機
2、冷媒凝縮器3、エジェクタ9および気液分離器4が
冷媒流路5によって環状に連結したエジェクタサイクル
である。そして、冷凍サイクル1は、気液分離器4の液
相冷媒側とエジェクタ9の吸引部とがバイパス流路6に
よって連結されている。そして、そのバイパス流路6の
途中には、減圧装置7および冷媒蒸発器8が設置されて
いる。
The refrigeration cycle 1 of the vehicle air conditioner of this embodiment is mounted on a vehicle such as an engine-mounted vehicle, an electric vehicle or a hybrid vehicle, and includes a refrigerant compressor 2, a refrigerant condenser 3, an ejector 9 and a gas-liquid compressor. This is an ejector cycle in which the separator 4 is annularly connected by the refrigerant flow path 5. In the refrigeration cycle 1, the liquid-phase refrigerant side of the gas-liquid separator 4 and the suction section of the ejector 9 are connected by a bypass flow path 6. A pressure reducing device 7 and a refrigerant evaporator 8 are provided in the middle of the bypass passage 6.

【0011】冷媒圧縮機2は、車両のエンジンルーム内
に搭載されたエンジンまたは電動モータ等の駆動源によ
り回転駆動されて、内部に吸入した気相冷媒を圧縮して
高温高圧の気相冷媒を冷媒凝縮器3側に吐出するコンプ
レッサである。冷媒凝縮器3は、車両のエンジンルーム
内の走行風を受け易い場所に設置されて、冷媒圧縮機2
の吐出口から吐出された気相冷媒と冷却ファン(図示せ
ず)等により送られた室外空気とを熱交換して気相冷媒
を凝縮液化させるコンデンサである。
The refrigerant compressor 2 is rotationally driven by a drive source such as an engine or an electric motor mounted in an engine room of a vehicle, compresses a gas-phase refrigerant sucked into the compressor, and converts a high-temperature and high-pressure gas-phase refrigerant. This is a compressor that discharges to the refrigerant condenser 3 side. The refrigerant condenser 3 is installed in a place in the engine room of the vehicle that is susceptible to traveling wind, and the refrigerant compressor 2
Is a condenser for exchanging heat between the gaseous refrigerant discharged from the discharge port and outdoor air sent by a cooling fan (not shown) or the like to condense and liquefy the gaseous refrigerant.

【0012】気液分離器4は、エジェクタ9により減圧
膨張された気液二相冷媒を気液分離するアキュームレー
タである。減圧装置7は、気液分離器4の液相冷媒側か
ら流入した液相冷媒を減圧して気液二相冷媒にするキャ
ピラリチューブやオリフィス等の固定絞りである。冷媒
蒸発器8は、図示しない空調ダクト内に設置されて、減
圧装置7から流入した気液二相冷媒と送風機(図示せ
ず)等により送られた空気とを熱交換して気液二相冷媒
を蒸発気化させるエバポレータである。
The gas-liquid separator 4 is an accumulator for separating the gas-liquid two-phase refrigerant decompressed and expanded by the ejector 9 into gas and liquid. The decompression device 7 is a fixed throttle such as a capillary tube or an orifice that decompresses the liquid-phase refrigerant flowing from the liquid-phase refrigerant side of the gas-liquid separator 4 into a gas-liquid two-phase refrigerant. The refrigerant evaporator 8 is installed in an air conditioning duct (not shown), and performs heat exchange between the gas-liquid two-phase refrigerant flowing from the pressure reducing device 7 and air sent by a blower (not shown) to perform gas-liquid two-phase. An evaporator for evaporating and evaporating the refrigerant.

【0013】次に、エジェクタ9の構造を図1および図
2に基づいて説明する。ここで、図2(a)はエジェク
タのノズル本体を示した図で、図2(b)は冷媒圧力と
断面積比との関係を示したグラフである。
Next, the structure of the ejector 9 will be described with reference to FIGS. Here, FIG. 2A is a diagram illustrating a nozzle body of the ejector, and FIG. 2B is a graph illustrating a relationship between a refrigerant pressure and a sectional area ratio.

【0014】エジェクタ9は、本発明のノズル装置に相
当するもので、エジェクタ本体11と、このエジェクタ
本体11内に設けられたノズル本体12とを備えてい
る。エジェクタ本体11は、金属材料により略筒形状に
形成され、ディフューザ14内で吸引部13より吸引し
た気相冷媒とノズル本体12から噴出された気液二相冷
媒とを混合すると共に昇圧する。
The ejector 9 corresponds to the nozzle device of the present invention, and includes an ejector main body 11 and a nozzle main body 12 provided in the ejector main body 11. The ejector main body 11 is formed of a metal material into a substantially cylindrical shape, and mixes the gas-phase refrigerant sucked from the suction part 13 in the diffuser 14 with the gas-liquid two-phase refrigerant ejected from the nozzle main body 12 and increases the pressure.

【0015】ノズル本体12は、金属材料により略筒形
状に形成され、冷媒凝縮器3から流入した液相冷媒を気
液二相冷媒にしてディフューザ14内に噴出するもので
ある。そのノズル本体12の内部には、冷媒が流れる冷
媒通路15が形成されている。その冷媒通路15の途中
には、1段目の絞り部17および2段目の絞り部18が
形成されている。1段目の絞り部17および2段目の絞
り部18は、冷媒通路15の通路断面積を絞ることによ
り液相冷媒を減圧して気液二相冷媒にする部分である。
なお、ノズル本体12の上流側の外形形状は、外径が変
化しない円筒形状であるが、下流側の外形形状は、先端
に向けて徐々に外径が小さくなる円錐台形状である。
The nozzle body 12 is formed of a metal material into a substantially cylindrical shape, and converts the liquid-phase refrigerant flowing from the refrigerant condenser 3 into a gas-liquid two-phase refrigerant and jets it into the diffuser 14. A coolant passage 15 through which the coolant flows is formed inside the nozzle body 12. A first-stage throttle portion 17 and a second-stage throttle portion 18 are formed in the middle of the refrigerant passage 15. The first-stage throttle portion 17 and the second-stage throttle portion 18 are portions that reduce the liquid-phase refrigerant to a gas-liquid two-phase refrigerant by reducing the passage cross-sectional area of the refrigerant passage 15.
The outer shape on the upstream side of the nozzle body 12 is a cylindrical shape whose outer diameter does not change, whereas the outer shape on the downstream side is a truncated cone whose outer diameter gradually decreases toward the tip.

【0016】そして、冷媒通路15は、本発明の流体通
路に相当する部分で、上流側には、ノズル本体12の入
口16から絞り部17まで内径が漸減する第1通路21
と、絞り部17から絞り部18まで内径が一旦漸増した
後に再度内径が漸減する第2通路22とが設けられてい
る。そして、冷媒通路15の下流側には、絞り部17か
ら冷媒の剥離現象が発生する流体剥離部分19まで内径
が漸増する第3通路23と、流体剥離部分19から噴出
口20まで内径が漸増する第4通路24とが設けられて
いる。すなわち、冷媒通路15は、第3通路23の通路
壁面の第1拡がり角度(θ1 )よりも、第4通路24の
通路壁面の第2拡がり角度(θ2 )を小さくなるように
形成されている。なお、第1拡がり角度(θ1 )は4°
〜5°程度の一定角度で、第2拡がり角度(θ2 )は1
°程度の一定角度である。
The refrigerant passage 15 is a portion corresponding to the fluid passage of the present invention. On the upstream side, the first passage 21 whose inner diameter gradually decreases from the inlet 16 of the nozzle body 12 to the throttle portion 17 is provided.
And a second passage 22 whose inner diameter gradually increases from the narrowed portion 17 to the narrowed portion 18 and then gradually decreases again. On the downstream side of the refrigerant passage 15, a third passage 23 whose inner diameter gradually increases from the throttle portion 17 to the fluid separation portion 19 where the refrigerant separation phenomenon occurs, and an inner diameter gradually increases from the fluid separation portion 19 to the jet port 20. A fourth passage 24 is provided. That is, the refrigerant passage 15 is formed such that the second spread angle (θ2) of the passage wall surface of the fourth passage 24 is smaller than the first spread angle (θ1) of the passage wall surface of the third passage 23. The first spreading angle (θ1) is 4 °
At a constant angle of about 5 °, the second spread angle (θ2) is 1
It is a constant angle of about °.

【0017】〔実施形態の作用〕次に、本実施形態の冷
凍サイクル1の作用を図1および図2に基づいて簡単に
説明する。ここで、図1中のGnは駆動流量を示し、図
1中のGeは吸引流量を示す。
[Operation of Embodiment] Next, the operation of the refrigeration cycle 1 of this embodiment will be briefly described with reference to FIGS. Here, Gn in FIG. 1 indicates a drive flow rate, and Ge in FIG. 1 indicates a suction flow rate.

【0018】冷媒圧縮機2で圧縮されて高温高圧となっ
た気相冷媒は、冷媒凝縮器3で凝縮液化されて高温高圧
の液相冷媒になる。その後に、エジェクタ9内に流入す
る。エジェクタ9のノズル本体12内に流入した液相冷
媒は、ノズル本体12の2個の絞り部17、18を通過
する際に減圧されて気液二相冷媒となってノズル本体1
2の噴出口20からディフューザ14内に噴出される。
そして、ディフューザ14を通過する際に昇圧される。
The high-temperature and high-pressure gas-phase refrigerant compressed by the refrigerant compressor 2 is condensed and liquefied by the refrigerant condenser 3 to become a high-temperature and high-pressure liquid-phase refrigerant. After that, it flows into the ejector 9. The liquid-phase refrigerant that has flowed into the nozzle body 12 of the ejector 9 is decompressed when passing through the two throttle portions 17 and 18 of the nozzle body 12 to become a gas-liquid two-phase refrigerant and become a gas-liquid two-phase refrigerant.
The gas is ejected from the second ejection port 20 into the diffuser 14.
Then, the pressure is increased when passing through the diffuser 14.

【0019】このとき、ノズル本体12から高速で噴出
する冷媒回りの圧力低下を利用して、エジェクタ9の吸
引部13にバイパス流路6から気相冷媒が吸引される。
このため、ノズル本体12の噴出口20から噴出した気
液二相冷媒と吸引部13から吸引された気相冷媒とがデ
ィフューザ14内で混合する。これにより、エジェクタ
9より流出した気液二相冷媒は、気液分離器4内に流入
して気液分離する。その後に、気液分離器4内の気相冷
媒は、冷媒圧縮機2の吸入力によって冷媒圧縮機2に吸
入される。
At this time, the gas phase refrigerant is sucked from the bypass passage 6 to the suction part 13 of the ejector 9 by utilizing the pressure drop around the refrigerant ejected from the nozzle body 12 at high speed.
Therefore, the gas-liquid two-phase refrigerant spouted from the spout 20 of the nozzle body 12 and the gas-phase refrigerant sucked from the suction part 13 are mixed in the diffuser 14. Thus, the gas-liquid two-phase refrigerant flowing out of the ejector 9 flows into the gas-liquid separator 4 and is separated into gas and liquid. Thereafter, the gas-phase refrigerant in the gas-liquid separator 4 is sucked into the refrigerant compressor 2 by the suction force of the refrigerant compressor 2.

【0020】また、気液分離器4の底部に溜まっている
液相冷媒は、エジェクタ9の吸引部13の吸引作用によ
り減圧装置7に流入し、その減圧装置7を通過する際に
減圧膨張されて気液二相冷媒となって冷媒蒸発器8内に
流入する。冷媒蒸発器8内に流入した冷媒は、ダクト内
を流れる空気と熱交換して蒸発気化された後に、エジェ
クタ9の吸引部13に吸引されて、前述したように、デ
ィフューザ14内でノズル本体12の噴出口20から噴
出した気液二相冷媒と混合する。
The liquid-phase refrigerant accumulated at the bottom of the gas-liquid separator 4 flows into the pressure reducing device 7 by the suction effect of the suction portion 13 of the ejector 9 and is decompressed and expanded when passing through the pressure reducing device 7. And flows into the refrigerant evaporator 8 as a gas-liquid two-phase refrigerant. The refrigerant flowing into the refrigerant evaporator 8 exchanges heat with the air flowing through the duct and evaporates, and then is sucked by the suction part 13 of the ejector 9, and as described above, the nozzle body 12 in the diffuser 14. Is mixed with the gas-liquid two-phase refrigerant spouted from the spout 20 of the nozzle.

【0021】〔実施形態の効果〕以上のように、本実施
形態のディフューザ14のノズル本体12は、図2
(a)に示したように、絞り部18から流体剥離部分1
9までの第3通路23の通路壁面の第1拡がり角度(θ
1 )よりも、流体剥離部分19から噴出口20までの第
4通路24の通路壁面の第2拡がり角度(θ2 )を小さ
くすることにより、図2(b)に示したように、第4通
路24内での通路壁面からの気液二相冷媒の剥離および
渦流の発生を抑えることができるので、均質流モデル
(図示破線)に対する圧力低下を第1、第2従来例A、
Bよりも抑えることができる。それによって、ノズル本
体12内での気液二相冷媒の圧力低下を略全部速度エネ
ルギーに変換することができる。
[Effects of Embodiment] As described above, the nozzle body 12 of the diffuser 14 of the present embodiment is
As shown in FIG.
The first divergence angle (θ) of the passage wall surface of the third passage 23 up to 9
By reducing the second divergence angle (θ2) of the passage wall surface of the fourth passage 24 from the fluid separation portion 19 to the jet port 20 as compared to 1), the fourth passage 24 is formed as shown in FIG. Since the separation of the gas-liquid two-phase refrigerant and the generation of the vortex from the wall surface of the passage in the passage 24 can be suppressed, the pressure drop with respect to the homogeneous flow model (shown by a broken line in the drawing) is reduced by the first and second conventional examples A,
B can be suppressed. As a result, the pressure drop of the gas-liquid two-phase refrigerant in the nozzle body 12 can be substantially entirely converted into velocity energy.

【0022】したがって、実用に供する90%以上のノ
ズル効率(本実施形態では95%)を得ることができる
ので、エジェクタ9の吸引部13に吸引される冷媒の吸
引流量(Ge)が増加するので、冷媒蒸発器8を還流す
る冷媒の循環流量が増加する。これにより、冷媒蒸発器
8の吸熱性能が更に向上するので、冷凍サイクル1の冷
房性能(冷却性能)を更に向上することができる。
Therefore, a nozzle efficiency of 90% or more (95% in this embodiment) that can be practically used can be obtained, and the suction flow rate (Ge) of the refrigerant sucked into the suction portion 13 of the ejector 9 increases. As a result, the circulation flow rate of the refrigerant circulating through the refrigerant evaporator 8 increases. Thereby, the heat absorption performance of the refrigerant evaporator 8 is further improved, so that the cooling performance (cooling performance) of the refrigeration cycle 1 can be further improved.

【0023】そして、絞り部18から噴出口20までの
冷媒通路15(第3通路23および第4通路24)の全
領域で拡がり角度を小さくしていないので、全領域で拡
がり角度を小さくしたノズル本体と比較して、ノズル本
体12の全長を必要最小限にすることができる。それに
よって、エジェクタ9のエジェクタ本体11の全長を短
縮することができるので、コンパクトなエジェクタ9を
提供できる。
Since the divergence angle is not reduced in the entire region of the refrigerant passage 15 (the third passage 23 and the fourth passage 24) from the throttle portion 18 to the jet port 20, the nozzle whose divergence angle is reduced in the entire region is reduced. As compared with the main body, the overall length of the nozzle main body 12 can be minimized. Thus, the entire length of the ejector body 11 of the ejector 9 can be shortened, so that a compact ejector 9 can be provided.

【0024】〔他の実施形態〕本実施形態では、本発明
を冷凍サイクル1に組み込まれるエジェクタ9に適用し
たが、水力発電用のタービンに水流を噴出するノズル装
置、あるいはペルトン水車に水を噴出するノズル装置に
利用しても良い。
[Other Embodiments] In the present embodiment, the present invention is applied to the ejector 9 incorporated in the refrigeration cycle 1, but a nozzle device for jetting a water flow to a turbine for hydroelectric power generation, or water is jetted to a Pelton turbine. The present invention may be applied to a nozzle device that performs the following operations.

【0025】本実施形態では、ノズル本体12内の冷媒
通路15の第4通路24の第2拡がり角度(θ2 )を一
定の角度(例えば1°)に設定したが、第2拡がり角度
(θ2 )を図2(b)の均質流モデルの圧力変化に沿う
ように拡がり角度を最適値にしながら変更しても良い。
但し、第2拡がり角度(θ2 )は、第1拡がり角度(θ
1 )よりも小さい角度とする。
In the present embodiment, the second divergence angle (θ2) of the fourth passage 24 of the refrigerant passage 15 in the nozzle body 12 is set to a constant angle (for example, 1 °), but the second divergence angle (θ2) is set. May be changed while adjusting the spread angle to an optimum value so as to follow the pressure change of the homogeneous flow model of FIG.
However, the second divergence angle (θ2) is the first divergence angle (θ
The angle is smaller than 1).

【0026】本実施形態では、第1拡がり角度(θ1 )
を4°〜5°に設定し、第2拡がり角度(θ2 )を1°
に設定したが、第1拡がり角度(θ1 )を2°以上6°
以下角度に設定し、第2拡がり角度(θ2 )を0°より
も大きく2°よりも小さい角度に設定しても良い。
In the present embodiment, the first spread angle (θ1)
Is set to 4 ° to 5 °, and the second spread angle (θ2) is set to 1 °.
, But the first spread angle (θ1) is 2 ° or more and 6 °
The angle may be set as follows, and the second spread angle (θ2) may be set to an angle larger than 0 ° and smaller than 2 °.

【図面の簡単な説明】[Brief description of the drawings]

【図1】車両用空気調和装置の冷凍サイクルを示した構
成図である(実施形態)。
FIG. 1 is a configuration diagram showing a refrigeration cycle of an air conditioner for a vehicle (embodiment).

【図2】(a)はエジェクタのノズル本体を示した断面
図で、(b)は冷媒圧力と断面積比との関係を示したグ
ラフである(実施形態)。
FIG. 2A is a cross-sectional view illustrating a nozzle body of an ejector, and FIG. 2B is a graph illustrating a relationship between a refrigerant pressure and a cross-sectional area ratio (embodiment).

【図3】(a)はエジェクタのノズル本体を示した断面
図で、(b)は冷媒圧力と噴出口の面積/2段目の絞り
部の面積との関係を示したグラフである(従来の技
術)。
FIG. 3A is a cross-sectional view illustrating a nozzle body of an ejector, and FIG. 3B is a graph illustrating a relationship between a refrigerant pressure and an area of an ejection port / an area of a second-stage throttle portion (prior art). Technology).

【符号の説明】[Explanation of symbols]

1 冷凍サイクル 9 エジェクタ(ノズル装置) 11 エジェクタ本体 12 ノズル本体 13 吸引部 14 ディフューザ 15 冷媒通路(流体通路) 16 入口 17 絞り部 18 絞り部 19 流体剥離部分 20 噴出口 21 第1通路 22 第2通路 23 第3通路 24 第4通路 DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 9 Ejector (nozzle apparatus) 11 Ejector main body 12 Nozzle main body 13 Suction part 14 Diffuser 15 Refrigerant passage (fluid passage) 16 Inlet 17 Restricted part 18 Restricted part 19 Fluid separation part 20 Spout 21 First passage 22 Second passage 23 third passage 24 fourth passage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】先端に設けられた噴出口から流体を噴出す
る筒状のノズル本体と、このノズル本体内に形成された
流体通路と、この流体通路の途中に設けられた絞り部と
を備えたノズル装置であって、 前記ノズル本体は、前記絞り部から流体の剥離現象が発
生する流体剥離部分までの通路壁面の第1拡がり角度よ
りも、前記流体剥離部分から前記噴出口までの通路壁面
の第2拡がり角度を小さくしたことを特徴とするノズル
装置。
A cylindrical nozzle body for ejecting a fluid from an ejection port provided at a tip, a fluid passage formed in the nozzle body, and a throttle provided in the middle of the fluid passage. The nozzle body, wherein the nozzle main body has a passage wall surface from the fluid separation portion to the ejection port, which is larger than a first spread angle of a passage wall surface from the throttle portion to a fluid separation portion where a fluid separation phenomenon occurs. The nozzle device, wherein the second spread angle is reduced.
【請求項2】請求項1に記載のノズル装置において、 前記第2拡がり角度は、前記流体剥離部分から前記噴出
口まで一定の角度にしたことを特徴とするノズル装置。
2. The nozzle device according to claim 1, wherein the second spread angle is a constant angle from the fluid separation portion to the jet port.
【請求項3】請求項1に記載のノズル装置において、 前記第2拡がり角度は、均質流の圧力変化に沿うように
変更したことを特徴とするノズル装置。
3. The nozzle device according to claim 1, wherein the second diverging angle is changed so as to follow a change in pressure of the homogeneous flow.
JP19578097A 1997-07-22 1997-07-22 Nozzle device Expired - Fee Related JP3603552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19578097A JP3603552B2 (en) 1997-07-22 1997-07-22 Nozzle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19578097A JP3603552B2 (en) 1997-07-22 1997-07-22 Nozzle device

Publications (2)

Publication Number Publication Date
JPH1137577A true JPH1137577A (en) 1999-02-12
JP3603552B2 JP3603552B2 (en) 2004-12-22

Family

ID=16346850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19578097A Expired - Fee Related JP3603552B2 (en) 1997-07-22 1997-07-22 Nozzle device

Country Status (1)

Country Link
JP (1) JP3603552B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844036A1 (en) 2002-08-29 2004-03-05 Denso Corp REFRIGERANT CYCLE WITH AN EJECTOR COMPRISING A CHANGEABLE NOZZLE
US6880362B2 (en) 2003-06-23 2005-04-19 Denso Corporation Refrigerating cycle apparatus
JP2009221883A (en) * 2008-03-13 2009-10-01 Denso Corp Ejector device and vapor compression refrigeration cycle using ejector device
JP2011058422A (en) * 2009-09-10 2011-03-24 Denso Corp Ejector
WO2016143300A1 (en) * 2015-03-09 2016-09-15 株式会社デンソー Ejector, method for producing ejector, and ejector-type refrigeration cycle
JP2016169729A (en) * 2015-03-09 2016-09-23 株式会社デンソー Ejector, method of manufacturing ejector and ejector type refrigeration cycle
US9771954B2 (en) 2012-11-16 2017-09-26 Denso Corporation Ejector
US9834215B2 (en) 2004-10-05 2017-12-05 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640857B2 (en) 2011-03-28 2014-12-17 株式会社デンソー Pressure reducing device and refrigeration cycle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10339001B4 (en) * 2002-08-29 2016-02-04 Denso Corporation Refrigerant circuit with an ejector with respect to their degree of throttle changeable nozzle
US6782713B2 (en) 2002-08-29 2004-08-31 Denso Corporation Refrigerant cycle with ejector having throttle changeable nozzle
FR2844036A1 (en) 2002-08-29 2004-03-05 Denso Corp REFRIGERANT CYCLE WITH AN EJECTOR COMPRISING A CHANGEABLE NOZZLE
US6880362B2 (en) 2003-06-23 2005-04-19 Denso Corporation Refrigerating cycle apparatus
US9834215B2 (en) 2004-10-05 2017-12-05 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
JP2009221883A (en) * 2008-03-13 2009-10-01 Denso Corp Ejector device and vapor compression refrigeration cycle using ejector device
DE102009012362A1 (en) 2008-03-13 2009-12-10 DENSO CORPORATION, Kariya-shi Ejector device and refrigeration cycle device using the same
US8191383B2 (en) 2008-03-13 2012-06-05 Denso Corporation Ejector device and refrigeration cycle apparatus using the same
DE102009012362B4 (en) * 2008-03-13 2017-10-26 Denso Corporation Ejector device and refrigeration cycle device using the same
JP2011058422A (en) * 2009-09-10 2011-03-24 Denso Corp Ejector
US8523091B2 (en) 2009-09-10 2013-09-03 Denso Corporation Ejector
US8282025B2 (en) 2009-09-10 2012-10-09 Denso Corporation Ejector
DE102010044532A1 (en) 2009-09-10 2011-05-05 Denso Corporation, Kariya-City ejector
DE102010044532B4 (en) 2009-09-10 2018-10-25 Denso Corporation ejector
US9771954B2 (en) 2012-11-16 2017-09-26 Denso Corporation Ejector
WO2016143300A1 (en) * 2015-03-09 2016-09-15 株式会社デンソー Ejector, method for producing ejector, and ejector-type refrigeration cycle
JP2016169729A (en) * 2015-03-09 2016-09-23 株式会社デンソー Ejector, method of manufacturing ejector and ejector type refrigeration cycle
CN107407293A (en) * 2015-03-09 2017-11-28 株式会社电装 Injector, the manufacture method of injector and ejector-type kind of refrigeration cycle
US10316865B2 (en) 2015-03-09 2019-06-11 Denso Corporation Ejector, manufacturing method thereof, and ejector-type refrigeration cycle
DE112016001141B4 (en) 2015-03-09 2023-07-27 Denso Corporation Ejector, manufacturing method for the same, and ejector-type refrigeration cycle

Also Published As

Publication number Publication date
JP3603552B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
US9372014B2 (en) Ejector-type refrigeration cycle device
KR100393170B1 (en) Ejector cycle system
CN102022387B (en) Ejector
CN101532760B (en) Ejector device and refrigeration cycle apparatus using the same
US10215196B2 (en) Ejector using swirl flow
JP4812665B2 (en) Ejector and refrigeration cycle apparatus
WO2015015752A1 (en) Ejector
JP2004270460A (en) Ejector
JP2007147198A (en) Vapor compression type refrigeration cycle using ejector, and its low-pressure-system component
CN2583578Y (en) Injector for injector cyclic system
JP5338481B2 (en) Ejector
JP4000966B2 (en) Vapor compression refrigerator
JPH1137577A (en) Nozzle device
JPH11148733A (en) Ejector for refrigerating cycle
JP3941495B2 (en) Ejector type decompression device
JP2006183586A (en) Ejector and refrigeration system
JP2004108736A (en) Vapor compression type refrigerator
JP2001200800A (en) Ejector
JP4888050B2 (en) Refrigeration cycle equipment
JP4110830B2 (en) Ejector type decompression device
JP2003004319A (en) Ejector cycle
JP2002349500A (en) Ejector and freezing system
KR20020028521A (en) Variable capacity ejector
JP3941646B2 (en) Ejector type decompression device
JP2003262413A (en) Ejector cycle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees