JPH1137121A - Stud thread structure - Google Patents

Stud thread structure

Info

Publication number
JPH1137121A
JPH1137121A JP19291297A JP19291297A JPH1137121A JP H1137121 A JPH1137121 A JP H1137121A JP 19291297 A JP19291297 A JP 19291297A JP 19291297 A JP19291297 A JP 19291297A JP H1137121 A JPH1137121 A JP H1137121A
Authority
JP
Japan
Prior art keywords
screw
thread
stud
root
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19291297A
Other languages
Japanese (ja)
Inventor
Satoru Hashiguchi
悟 橋口
Masaharu Higuchi
正春 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAGA TEKKOSHO KK
Nissan Motor Co Ltd
Original Assignee
SAGA TEKKOSHO KK
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAGA TEKKOSHO KK, Nissan Motor Co Ltd filed Critical SAGA TEKKOSHO KK
Priority to JP19291297A priority Critical patent/JPH1137121A/en
Publication of JPH1137121A publication Critical patent/JPH1137121A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance fatigue strength by making the root of a stud thread larger than that of a standard thread, and enlarging an inner diameter on the internal thread side. SOLUTION: The root R (R=R1) of a stud thread in relation to a thread pitch P is to be R1=0.108P-0.144P, and the minimum value Dmin of a corresponding internal thread inner diameter is to be Dmin=d2 max-2(H/2-3/2.Rmax), Dmin=d2 max-H+3Rmax, where d2 max is the maximum value of the effective diameter of the stud thread, H is 0.866025P, Rmax is the maximum value (0.144P) of the thread root R, from the geometric relation so as not to interfere with the root of an external thread. With this constitution, in case of fastening the stud thread to the internal thread to fit a mechanical element, stress concentration on the stud thread is relaxed, so that stress applied to the stud thread is reduced. Fatigue strength as stud thread structure is therefore enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スタッドねじ構
造、特に機械要素を締結している植え込み側ねじの疲労
強度を高めることのできるスタッドねじ構造に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stud screw structure, and more particularly to a stud screw structure capable of increasing the fatigue strength of an implantable screw fastening a mechanical element.

【0002】[0002]

【従来の技術】各種機械要素の取り付け、あるいは結合
を行なうのに、作業上の手間を省いて迅速に作業が遂行
できるようにするために、被取付用の機械要素にめねじ
を形成し、このめねじに植え込み側ねじとなるスタッド
ボルトを植え込んでスタッドねじ構造とし、取付機械要
素(以下、機械要素を「部材」という)を被取付部材に
取り付ける方法が採られる場合がある。このようなスタ
ッドねじ構造の従来例では、被取付部材に一般の規格の
めねじを開け、このめねじに、やはり一般の規格にした
がって製作されたスタッドボルトを螺合させ、被取付部
材への取付部材の固定取り付けが行なわれている。
2. Description of the Related Art A female screw is formed on a machine element to be mounted in order to save time and effort in performing a work when mounting or connecting various machine elements. A method may be adopted in which a stud bolt serving as an implantation-side screw is implanted into the female thread to form a stud screw structure, and an attachment machine element (hereinafter, the machine element is referred to as a “member”) is attached to the attachment member. In a conventional example of such a stud screw structure, a female screw of a general standard is opened on a member to be mounted, and a stud bolt which is also manufactured in accordance with a general standard is screwed to the female screw, and a screw to the member to be mounted is attached. The attachment member is fixedly attached.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のスタッドねじ構造にあっては、取付部材を被
取付部材に取り付けた後、その取り付け部分に応力が繰
り返し加わると金属の疲労によってスタッドボルトが破
損する可能性がある。繰り返し加わる外部応力として
は、単純な引張・圧縮応力の他に、高温ガス配管類のよ
うな温度差のある取付部材をスタッドボルトで締結する
場合は熱膨張差によりスタッドボルト植込部に発生する
曲げ応力が加わり、一段と厳しい使用環境となることが
ある。
However, in such a conventional stud screw structure, when a mounting member is mounted on a member to be mounted and a stress is repeatedly applied to the mounting portion, the stud bolt is caused by metal fatigue. May be damaged. In addition to simple tensile and compressive stress, when a mounting member having a temperature difference, such as high-temperature gas piping, is fastened with a stud bolt, the external stress generated at the stud bolt stud portion due to a difference in thermal expansion. Bending stress may be applied, resulting in a more severe use environment.

【0004】本発明は上記従来の問題点に鑑みてなされ
たもので、その目的は、機械要素を締結するためのスタ
ッドボルトの疲労強度を高めることのできるスタッドね
じ構造を提供することである。
[0004] The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a stud screw structure that can increase the fatigue strength of a stud bolt for fastening a mechanical element.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、植え込み側ねじ(スタッドボルト)とめ
ねじ(被取付部材)とから構成されるスタッドねじ構造
の、植え込み側ねじの谷底Rを、規格通りのねじの谷底
Rよりも大きくするとともに、めねじ側の内径を、おね
じと螺合させた場合におねじの谷底と干渉が起きないよ
うに拡大させたことを要旨とする。
In order to achieve the above object, the present invention provides a stud screw structure comprising a stud bolt (stud bolt) and a female screw (attached member). The gist is that R is made larger than the root R of the thread as specified, and the inner diameter of the female thread is enlarged so that when it is screwed with the male thread, it does not interfere with the root of the thread. I do.

【0006】谷底Rの例としては、植え込み側ねじの谷
底R(R=R1とする)を、ねじピッチPに対して、 R1=0.108P〜0.144P とし、それに対応するめねじ内径の最小値Dminを、
おねじの谷底と干渉を起こさないように、図1に示す幾
何学的関係より、 Dmin=d2max−2(H/2−3/2・Rma
x) Dmin=d2max−H+3Rmax ただし、 d2max:植え込み側ねじ有効径最大値 H :0.866025P Rmax :ねじ谷底R最大値(0.144P) とする。
As an example of the root R, the root R (R = R1) of the implanted screw is set to R1 = 0.108P to 0.144P with respect to the screw pitch P, and the minimum diameter of the corresponding internal thread is Value Dmin,
From the geometrical relationship shown in FIG. 1, Dmin = d2max−2 (H / 2−3 / 2 · Rma) so as not to cause interference with the root of the male screw.
x) Dmin = d2max−H + 3Rmax, where d2max: maximum value of effective diameter of implantation side screw H: 0.866025P Rmax: maximum value of thread root R (0.144P)

【0007】かかる構成により、植え込み側ねじをめね
じに締め付けて機械要素の取付を行なった場合、植え込
み側ねじへの応力集中が緩和されて当該植え込み側ねじ
に加わる応力が小さくなりスタッドねじ構造としての疲
労強度が増大する。また、上記のように植え込み側ねじ
に加わる応力が小さくなることにより、植え込み側ねじ
製作時における熱処理後転造と転造後熱処理との間の疲
労特性の差異が顕在化し、疲労強度が相乗的に増大す
る。
[0007] With this configuration, when the mechanical element is mounted by tightening the implantable screw on the female screw, the stress concentration on the implantable screw is reduced, and the stress applied to the implantable screw is reduced, so that a stud screw structure is formed. Increases the fatigue strength. In addition, since the stress applied to the implant-side screw is reduced as described above, the difference in the fatigue characteristics between the post-heat treatment rolling and the post-rolling heat treatment during the production of the implant-side screw becomes apparent, and the fatigue strength is synergistic. To increase.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、ねじ素材に熱処理後転造される植え込み側ねじとこ
の植え込み側ねじに対応するめねじとから成るスタッド
ねじ構造において、植え込み側ねじの谷底Rを、規格通
りのねじの谷底Rよりも大きくするとともに、めねじ側
の内径を、おねじと螺合させた場合におねじの谷底と干
渉が起きないように拡大させたものであり、おねじとめ
ねじを螺合させて締め付けた場合に双方で干渉が起きな
いように図るととも に、植え込み側ねじへの応力集中
が緩和されて当該植え込み側ねじに加わる応力が小さく
なりスタッドねじ構造としての疲労強度を増大させると
いう作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a stud screw structure comprising a stud thread formed by heat treatment on a screw material and a female thread corresponding to the stud thread. The root R of the screw is made larger than the root R of the screw as specified, and the inner diameter of the female thread is enlarged so that it will not interfere with the root of the screw when screwed with a male screw. In addition, when the male screw and the female screw are screwed together and tightened, interference does not occur between them, and stress concentration on the implanted screw is reduced, and the stress applied to the implanted screw is reduced. This has the effect of increasing the fatigue strength of the stud screw structure.

【0009】本発明の請求項2に記載の発明は、ねじ素
材に熱処理後植え込み側ねじ転造を行なうスタッドねじ
とこのスタッドねじに対応するめねじとから成るスタッ
ドねじ構造において、植え込み側ねじの谷底R(R=R
1)を、ねじピッチPに対して、 R1=0.108P〜0.144P とし、それに対応するめねじ内径の最小値Dminを Dmin=d2max−H+3Rmax ただし、 d2max:植え込みねじ有効径最大値 H :0.866025P Rmax :ねじ谷底R最大値(0.144P) とし、また、植え込み側ねじの不完全ねじ部の谷底R
(R=R2)を、ねじピッチPに対して、 R2=0.108P 以上としたもので、おねじとめねじを螺合させて締め付
けた場合にめねじ内径とおねじの谷底で干渉が起きない
ように図るとともに、植え込み側ねじへの応力集中が緩
和されて当該植え込み側ねじに加わる応力が小さくなり
スタッドねじ構造としての疲労強度を増大させ、さら
に、植え込み側ねじに加わる応力が小さくなることによ
り、植え込み側ねじ製作時における熱処理後転造と転造
後熱処理との間の疲労特性の差異が顕在化し、疲労強度
を相乗的に増大させるという作用を有する。
According to a second aspect of the present invention, there is provided a stud screw structure comprising a stud screw for forming a thread on an implanted side after heat treatment on a screw material and a female thread corresponding to the stud thread, wherein the root of the thread on the implanted side is formed. R (R = R
1) with respect to the thread pitch P, R1 = 0.108P to 0.144P, and the corresponding minimum value Dmin of the internal diameter of the internal thread is Dmin = d2max-H + 3Rmax, where d2max: maximum value of the effective diameter of the implanted screw H: 0 .8666025P Rmax: The maximum value of the thread root R (0.144P), and the root R of the imperfect thread of the implantation side screw.
(R = R2) is set to R2 = 0.108P or more with respect to the thread pitch P. When the male screw and the female screw are screwed together and tightened, no interference occurs between the inner diameter of the female screw and the root of the male screw. As a result, the stress concentration on the implanted screw is reduced, the stress applied to the implanted screw is reduced, the fatigue strength of the stud screw structure is increased, and the stress applied to the implanted screw is reduced. In addition, the difference in fatigue characteristics between the post-heat treatment rolling and the post-rolling heat treatment during the production of the implantation side screw becomes apparent, and has an effect of synergistically increasing the fatigue strength.

【0010】以下、本発明の一実施の形態を図面を参照
して説明する。図2は本発明に係るスタッドねじ構造を
構成する植え込み側ねじとしてのスタッドボルトの正面
図である。この図において、符号1はスタッドボルトを
被取付部材に植え込むときの案内の役割を持つパイロッ
ト部、2はスタッドボルトを被取付部材に植え込み固定
する植え込み側ねじ部、3はナットを螺合させることに
より取付部材を被取付部材に固定取り付けするナット側
ねじ部、4は植え込み側ねじ部2と軸部6の間に設けら
れた不完全ねじ部、5はスタッドボルトを被取付部材に
植え込む操作を行なうべく工具が係合するトルク伝達部
である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a front view of a stud bolt as a stud-side screw constituting the stud screw structure according to the present invention. In this figure, reference numeral 1 denotes a pilot portion having a role of guiding when a stud bolt is implanted in a member to be mounted, 2 denotes a stud-side screw portion which studs the stud bolt to a member to be mounted, and 3 denotes a nut to be screwed. The nut-side screw portion for fixing and attaching the mounting member to the member to be mounted by 4 is an incomplete screw portion provided between the stud-side screw portion 2 and the shaft portion 6, and 5 is an operation for implanting a stud bolt into the member to be mounted. It is the torque transmitting part with which the tool engages to perform.

【0011】図3は植え込み側ねじ部2の構造を概略的
に表す断面図である。この図において、実線S1で表す
形状はおねじの基本山形を表す。また、一点鎖線S2で
表す形状はねじの許容上限を表す一方、二点鎖線S3で
表す形状はねじの許容下限を表しており、ねじの山形は
線S2と線S3との間の斜線部分の範囲で形状が決めら
れる。
FIG. 3 is a cross-sectional view schematically showing the structure of the thread portion 2 on the implantation side. In this figure, the shape represented by the solid line S1 represents the basic angle of the male screw. The shape represented by the dashed-dotted line S2 represents the allowable upper limit of the screw, while the shape represented by the dashed-dotted line S3 represents the allowable lower limit of the screw, and the angle of the screw represents the hatched portion between the line S2 and the line S3. The shape is determined by the range.

【0012】そして、本実施の形態においては、スタッ
ドボルトの植え込み側ねじの谷底は、例えば図3中実線
S4で示すように、ねじの許容上限よりもさらに上側に
なるように大きく設定してある。この谷底Rは、日本工
業規格にしたがったおねじ(すなわち、一般のスタッド
ボルト)の谷底Rに比較するとより一層大きな値となっ
ている。図3において、一般のスタッドボルトの植え込
み側ねじの谷底Rの一例を点線S5で示す。この断面形
状からも明らかなように、このスタッドボルトでは一般
のスタッドボルトに比べて植え込み側の谷底Rを大きく
設定してある。そして、その谷底RをR=R1とする
と、R1は、 R1=0.108〜0.144P P:ねじのピッチ に設定してある。
In the present embodiment, the root of the stud bolt implantation side screw is set to be larger than the allowable upper limit of the screw as shown by a solid line S4 in FIG. 3, for example. . The valley bottom R has a larger value than the valley bottom R of a male screw (that is, a general stud bolt) according to Japanese Industrial Standards. In FIG. 3, an example of the root R of the thread on the implantation side of the general stud bolt is indicated by a dotted line S5. As is clear from this cross-sectional shape, the stud bolt has a larger root R at the implantation side than a general stud bolt. Then, assuming that the root R is R = R1, R1 is set to R1 = 0.108 to 0.144P P: pitch of screw.

【0013】また、上記植え込み側ねじに対応するめね
じについては、その内径(Dとする)を、おねじと螺合
させた場合におねじの谷底と干渉が起きないように、め
ねじの内径を拡大させてある。すなわち、本実施の形態
においては、めねじの内径Dは、例えばめねじのねじ山
が図3中実線S1に一致するように成形し、当該めねじ
のねじ山が上記植え込み側ねじの谷底よりも余裕をもっ
て上側にくるように大きく設定してある。図3におい
て、従来のめねじのねじ山の位置を点線S6で示す。こ
のように、従来のめねじを上記本実施の形態の植え込み
側ねじの相手として用いると、めねじを螺合させたとき
おねじの谷底と干渉が生じる。
The internal thread (D) of the female screw corresponding to the above-mentioned stud-side screw is adjusted so that when the female screw is screwed with the male screw, no interference occurs with the root of the screw. Is enlarged. That is, in the present embodiment, the inner diameter D of the internal thread is formed, for example, such that the thread of the internal thread matches the solid line S1 in FIG. Is also set large so that it comes to the upper side with a margin. In FIG. 3, the position of the thread of the conventional internal thread is indicated by a dotted line S6. As described above, when the conventional female screw is used as the mating side of the implantable screw of the present embodiment, when the female screw is screwed, interference occurs with the root of the male screw.

【0014】そして、本実施の形態においては、上記植
え込み側ねじに対応するめねじの内径の最小値をDmi
nとすると、 Dmin=d2max−H+3Rmax ただし、 d2max:植え込み側ねじの有効径最大値 H :0.866025P Rmax :植え込み側ねじの谷底R最大値(0.14
4P) に設定してある。
In the present embodiment, the minimum value of the inner diameter of the female screw corresponding to the above-mentioned implantation side screw is Dmi.
Assuming that n, Dmin = d2max−H + 3Rmax, where d2max: the maximum effective diameter of the implantation side screw H: 0.866025P Rmax: the root bottom R maximum value of the implantation side screw (0.14
4P).

【0015】さらに、本実施の形態においては、植え込
み側ねじの不完全ねじ部4の谷底R(R=R2)を、ね
じピッチPに対して、 R2=0.108P 以上としている。
Further, in the present embodiment, the root R (R = R2) of the imperfect thread portion 4 of the implantation side thread is set to be R2 = 0.108P or more with respect to the thread pitch P.

【0016】以上のような構成にしたことにより、植え
込み側ねじをめねじに締め付けて機械要素の取り付けを
行なった場合、ねじの締め付けによる応力集中を小さく
することができて植え込み側ねじに加わる応力が小さく
なるから、繰り返し荷重を受けた場合における植え込み
側ねじの疲労強度が増大する。
With the above-described configuration, when a mechanical element is mounted by fastening the implanted screw to the female screw, the stress concentration due to the tightening of the screw can be reduced, and the stress applied to the implanted screw can be reduced. Therefore, the fatigue strength of the implant-side screw when repeatedly loaded is increased.

【0017】その上、上記のように植え込み側ねじに加
わる応力が小さくなることにより、植え込み側ねじ製作
時における熱処理後転造と転造後熱処理との間の疲労特
性の差異が顕在化し、疲労強度が相乗的に増大する。こ
の点について、以下説明する。図4はボルト(本発明の
植え込み側ねじを含む)を熱処理後転造して製作したも
のと、転造後熱処理して製作したものとに区分し、これ
ら2つの区分に属するボルトについてそれぞれ繰り返し
荷重を加えて疲労状況を調べた実験結果をグラフに表し
たものである。ここで、図4中における各グラフ線図に
対応するボルトの種類は、下記に示す(表1)のよう
に、選んである。すなわち、 (表1) 線図上の印 ボルトの種類 線図 白抜き丸印 : M12×1.5,12T;熱処理後転造のボルト L1 黒塗り丸印 : M12×1.5,12T;転造後熱処理のボルト L4 白抜き三角印: M11×1.5,12T;熱処理後転造のボルト L2 黒塗り三角印: M11×1.5,12T;転造後熱処理のボルト L5 白抜き四角印: M12×1.75,12T;熱処理後転造のボルト L3 黒塗り四角印: M12×1.75,12T;転造後熱処理のボルト L6 のものを選んで使用した。
In addition, since the stress applied to the thread on the implantation side is reduced as described above, a difference in the fatigue characteristics between the post-heat treatment rolling and the post-rolling heat treatment during the production of the implantation side screw becomes apparent, Strength increases synergistically. This will be described below. FIG. 4 divides the bolts (including the implant-side screws of the present invention) produced by rolling after heat treatment and those produced by heat treatment after rolling, and repeats the bolts belonging to these two sections respectively. It is the result of an experiment in which a load was applied and the state of fatigue was examined in a graph. Here, the types of bolts corresponding to the respective graphs in FIG. 4 are selected as shown in the following (Table 1). That is, (Table 1) Mark on the diagram Bolt type Diagram White circle: M12 × 1.5, 12T; Bolt L1 blackened after heat treatment Black: M12 × 1.5, 12T; Bolt for heat treatment after forming L4 White triangle: M11 × 1.5, 12T; Bolt for rolling after heat treatment L2 Black triangle: M11 × 1.5, 12T; Bolt for heat treatment after rolling L5 White square : M12 × 1.75, 12T; bolt L3 of rolled after heat treatment Black-marked square mark: M12 × 1.75, 12T; bolt of heat treated after roll L6 was selected and used.

【0018】この実験結果において、グラフの横軸はボ
ルトに加わる平均応力の値(Kgf/mm2 )を示し、
縦軸はボルトが繰り返し受けても疲労破壊しない荷重の
最大値から求められる振幅応力の値(Kgf/mm2
(すなわち疲労破壊強度を表す値)を示す。このグラフ
から、例えばボルト締めをした場合の平均応力が30K
gf/mm2 である場合、M12×1.5,12T;熱
処理後転造のボルト(白抜き丸印)では疲労破壊強度を
表す振幅応力の値は概略15Kgf/mm2 であるとい
うことがわかる。これに対して、同じくボルト締めをし
た場合の平均応力が30Kgf/mm2 である場合、M
12×1.5,12T;転造後熱処理のボルト(黒塗り
丸印)では疲労破壊強度を表す振幅応力の値は概略8K
gf/mm2 であるということがわかる。全体的にみ
て、ボルト締めをした場合の平均応力が30Kgf/m
2 である場合(図4中矢印Aで示す)、熱処理後転造
のボルト(白抜きの印)においては疲労破壊強度を表す
振幅応力の値は概略17Kgf/mm2 であるのに対
し、転造後熱処理のボルト(黒塗りの印)においては疲
労破壊強度を表す振幅応力の値は概略8Kgf/mm2
である。これは、ボルト締めをした場合の平均応力が3
0Kgf/mm2 である場合は、熱処理後転造のボルト
は転造後熱処理のボルトよりも疲労破壊強度を表す振幅
応力の値が10Kgf/mm2 程度大きく、使用に際し
て有利であることを意味する。
In the experimental results, the horizontal axis of the graph indicates the average stress value (Kgf / mm 2 ) applied to the bolt,
The vertical axis represents the value of the amplitude stress (Kgf / mm 2 ) obtained from the maximum value of the load that does not cause fatigue failure even when the bolt is repeatedly received.
(Ie, a value representing fatigue fracture strength). From this graph, for example, the average stress when bolting is 30K
In the case of gf / mm 2 , M12 × 1.5, 12T; the value of the amplitude stress representing the fatigue fracture strength is approximately 15 kgf / mm 2 in the rolled bolts (open circles) after heat treatment. . On the other hand, when the average stress when bolting is also 30 kgf / mm 2 , M
12 × 1.5, 12T: The value of the amplitude stress representing the fatigue fracture strength is approximately 8K for bolts (black solid circles) subjected to post-rolling heat treatment.
gf / mm 2 . As a whole, the average stress when bolted is 30 kgf / m
In the case of m 2 (indicated by an arrow A in FIG. 4), the value of the amplitude stress representing the fatigue fracture strength of a bolt formed by heat treatment and rolling (open mark) is approximately 17 kgf / mm 2 , For the bolts subjected to post-rolling heat treatment (filled black marks), the value of the amplitude stress representing the fatigue fracture strength is approximately 8 kgf / mm 2.
It is. This is because the average stress when bolted is 3
When it is 0 Kgf / mm 2 , it means that the value of the amplitude stress representing the fatigue fracture strength of the bolt after heat treatment and rolling after heat treatment is about 10 kgf / mm 2 larger than that of the bolt after heat treatment and is advantageous in use. .

【0019】次に、図4のグラフにおいて、ボルト締め
をした場合の応力が100Kgf/mm2 〜120Kg
f/mm2 である場合(図4中矢印Bで示す)について
みると、熱処理後転造のボルトも転造後熱処理のボルト
も振幅応力は同様の大きさになり、疲労破壊強度を表す
振幅応力の値が同程度であるということがわかる。そし
て、先の説明に挙げたような温度差(熱膨張差)により
スタッドボルト植込部に曲げ応力が加わるような使用環
境では、上記のような理由から熱処理後転造のボルトを
使用しても転造後熱処理のボルトを使用しても熱処理と
転造の彼此前後の違いによる疲労破壊強度の大小(有
利、不利)は表面化しなかった。
Next, in the graph of FIG. 4, the stress when the bolt is tightened is 100 kgf / mm 2 to 120 kg.
In the case of f / mm 2 (indicated by an arrow B in FIG. 4), the amplitude stress of the bolt after heat treatment and the bolt after heat treatment after rolling are the same, and the amplitude representing the fatigue fracture strength. It can be seen that the stress values are comparable. In a use environment in which a bending stress is applied to the stud bolt stud due to a temperature difference (difference in thermal expansion) as described in the above description, it is necessary to use a rolled bolt after heat treatment for the above-described reason. Also, even if a bolt for heat treatment after rolling was used, the magnitude (advantage or disadvantage) of the fatigue fracture strength due to the difference between the heat treatment and the rolling was not surfaced.

【0020】ところが、前述のように本実施の形態にお
いて、スタッドボルトの植え込み側ねじへの応力集中の
緩和構造により、このような100〜120Kgf/m
2の近辺で植え込み側ねじに加わっていた平均応力
は、小さくなることになる。これにより、植え込み側ね
じ製作時における熱処理後転造と転造後熱処理との間の
疲労特性の差異が顕在化し、上記応力が小さくなったこ
とと、熱処理後転造と転造後熱処理との間の疲労特性の
差異が顕在化したこととの両方の効果によりボルトの疲
労強度が相乗的に増大するのである。
However, as described above, in the present embodiment, such a structure for alleviating stress concentration on the stud-side screw of the stud bolt allows such a 100-120 kgf / m.
The average stress applied to the implant side screw near m 2 will be smaller. Thereby, the difference in fatigue characteristics between post-heat treatment rolling and post-rolling heat treatment during the production of the implantation side screw became apparent, and the stress was reduced. The fatigue strength of the bolt is synergistically increased due to both effects of the fact that the difference in the fatigue characteristics between the two becomes apparent.

【0021】ちなみに、M8×1.25,9T;転造後
熱処理のスタッドボルトを従来品とし、このスタッドボ
ルト(従来品)と、同じスタッドボルトに本発明を適用
して得られたスタッドボルト(改良品)とについて、曲
げ疲労破壊強度の比較試験を行なった結果を図5に示
す。この図5において、線図L11は上記従来のスタッ
ドボルトの疲労破壊線図、L12は従来のスタッドボル
トに対してスタッドボルトの谷底Rを大きくしただけの
改良を加えたスタッドボルト(改良品1)の疲労破壊線
図、L13は従来のスタッドボルトに対してスタッドボ
ルトの谷底Rを大きくし、さらに熱処理後転造を実施す
ることによる改良を加えたスタッドボルト(改良品2、
改良品3)の疲労破壊線図である。このグラフ図から明
らかなように、改良品1は従来品に対して振幅応力で1
0Kgf/mm2 〜15Kgf/mm2 程度改善され、
改良品2および改良品3は従来品に対して振幅応力で2
5Kgf/mm2 〜30Kgf/mm2 程度改善されて
いることがわかる。
By the way, M8 × 1.25, 9T; a stud bolt obtained by applying the present invention to the same stud bolt (conventional product) as this stud bolt (conventional product) and a stud bolt subjected to post-rolling heat treatment. Fig. 5 shows the results of a comparative test of the bending fatigue fracture strength of the improved product).
You. In FIG. 5, a line L11 is a fatigue fracture diagram of the above-mentioned conventional stud bolt, and a line L12 is a stud bolt obtained by improving the conventional stud bolt by merely increasing the root R of the stud bolt (improved product 1). L13 is a stud bolt diagram (improved product 2, improved stud bolt) in which the root R of the stud bolt is made larger than the conventional stud bolt, and further improved by rolling after heat treatment.
It is a fatigue fracture diagram of the improved product 3). As is clear from this graph, the improved product 1 has a larger amplitude stress than the conventional product.
0 Kgf / mm 2 -15 Kgf / mm 2 is improved,
Improved product 2 and improved product 3 are 2
It can be seen that the improvement is about 5 kgf / mm 2 to 30 kgf / mm 2 .

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
ねじ素材に熱処理後転造される植え込み側ねじとこの植
え込み側ねじに対応するめねじとから成るスタッドねじ
構造において、植え込み側ねじの谷底Rを、規格通りの
ねじの谷底Rよりも大きくするとともに、めねじ側の内
径を拡大させたため、植え込み側ねじをめねじに締め付
けて機械要素の取付を行なった場 合、植え込み側ねじ
への応力集中が緩和されて当該植え込み側ねじに加わる
応力が小さくなりスタッドねじ構造としての疲労強度が
増大する。また、上記のように植え込み側ねじに加わる
応力が小さくなることにより、植え込み側ねじ製作時に
おける熱処理後転造と転造後熱処理との間の疲労特性の
差異が顕在化し、疲労強度が相乗的に増大するという効
果が得られる。
As described above, according to the present invention,
In a stud screw structure composed of an implanted screw and a female screw corresponding to the implanted screw which are rolled after heat treatment on the screw material, the root R of the implanted screw is made larger than the root R of the screw as specified. Since the inner diameter of the female thread has been increased, when mounting the machine element by tightening the implantable screw on the female thread, the stress concentration on the implanted screw is reduced and the stress applied to the implanted screw decreases. The fatigue strength of the stud screw structure increases. In addition, since the stress applied to the implant-side screw is reduced as described above, the difference in the fatigue characteristics between the post-heat treatment rolling and the post-rolling heat treatment during the production of the implant-side screw becomes apparent, and the fatigue strength is synergistic. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】おねじとめねじの締結における、おねじ谷底と
干渉を起こさない、めねじ内径値を示す幾何学的な略図
である。
FIG. 1 is a schematic diagram showing an inner diameter value of a female screw which does not cause interference with a root of a male screw in fastening a male screw and a female screw.

【図2】本発明のスタッドねじ構造を構成する植え込み
側ねじとしてのスタッドボルトの一実施の形態を示す正
面図である。
FIG. 2 is a front view showing an embodiment of a stud bolt as a stud-side screw constituting the stud screw structure of the present invention.

【図3】前記実施の形態に係るスタッドボルトの植え込
み側ねじ部の構造を概略的に表す断面図である。
FIG. 3 is a cross-sectional view schematically illustrating a structure of a stud-side thread portion of the stud bolt according to the embodiment.

【図4】前記実施の形態に係るスタッドボルトを熱処理
後転造して製作したものと、転造後熱処理して製作した
ものとに区分し、これら2つの区分に属するボルトにつ
いてそれぞれ繰り返し荷重を加えて疲労状況を調べた実
験結果を示すグラフ図である。
FIG. 4 divides the stud bolt according to the embodiment into a bolt manufactured after heat treatment and rolling, and a bolt manufactured by heat treatment after rolling, and repeatedly applies a load to each of the bolts belonging to these two sections. In addition, it is a graph showing an experimental result of examining the state of fatigue.

【図5】スタッドボルトの従来品と、同じスタッドボル
トに本発明を適用して得られたスタッドボルト(改良品
1、改良品2、改良品3)とについて、疲労破壊強度の
比較試験を行なった結果を示すグラフ図である。
FIG. 5 shows a comparison test of fatigue fracture strength between a conventional stud bolt and a stud bolt (improved product 1, improved product 2, improved product 3) obtained by applying the present invention to the same stud bolt. It is a graph which shows the result.

【符号の説明】[Explanation of symbols]

1 パイロット部 2 植え込み側ねじ部 3 ナット側ねじ部 4 不完全ねじ部 5 トルク伝達 6 軸部 DESCRIPTION OF SYMBOLS 1 Pilot part 2 Implantation side screw part 3 Nut side screw part 4 Incomplete screw part 5 Torque transmission 6 Shaft part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ねじ素材に熱処理後転造される植え込み
側ねじとこの植え込み側ねじに対応するめねじとから成
るスタッドねじ構造において、植え込み側ねじの谷底R
および不完全ねじの谷底Rを、規格通りのねじの谷底R
よりも大きくするとともに、めねじ側の内径を、おねじ
と螺合させた場合に干渉が起きないように拡大させたこ
とを特徴とするスタッドねじ構造。
1. A stud screw structure comprising an implanted screw which is rolled after heat treatment on a screw material and a female thread corresponding to the implanted screw, wherein a root R of the implanted screw is formed.
And the root R of the imperfect thread to the root R
A stud screw structure characterized in that the inner diameter of the stud screw is made larger than that of the female screw, and the inner diameter of the female screw is enlarged so that no interference occurs when the female screw is screwed.
【請求項2】 ねじ素材に熱処理後植え込み側ねじ転造
を行なうスタッドねじとこのスタッドねじに対応するめ
ねじとから成るスタッドねじ構造において、植え込み側
ねじの谷底R(R=R1)を、ねじピッチPに対して、 R1=0.108P〜0.144P とし、それに対応するめねじ内径の最小値Dminを Dmin=d2max−H+3Rmax ただし、d2max:植え込みねじ有効径最大値 H :0.866025P Rmax :ねじ谷底R最大値(0.144P) とし、また、植え込み側ねじの不完全ねじ部の谷底R
(R=R2)を、ねじピッチPに対して、 R2=0.108P 以上としたことを特徴とするスタッドねじ構造。
2. A stud screw structure comprising a stud screw for heat-treating a thread on a screw material and a female thread corresponding to the stud screw, wherein a root R (R = R1) of the thread on the thread is set to a thread pitch. For P, R1 = 0.108P to 0.144P, and the corresponding minimum value Dmin of the internal diameter of the female screw is Dmin = d2max-H + 3Rmax, where d2max: maximum effective diameter of the implanted screw H: 0.866025P Rmax: screw root R maximum value (0.144P), and the root R of the imperfect thread of the implantation side screw
A stud screw structure, wherein (R = R2) is set to R2 = 0.108P or more with respect to a screw pitch P.
JP19291297A 1997-07-17 1997-07-17 Stud thread structure Pending JPH1137121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19291297A JPH1137121A (en) 1997-07-17 1997-07-17 Stud thread structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19291297A JPH1137121A (en) 1997-07-17 1997-07-17 Stud thread structure

Publications (1)

Publication Number Publication Date
JPH1137121A true JPH1137121A (en) 1999-02-09

Family

ID=16299051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19291297A Pending JPH1137121A (en) 1997-07-17 1997-07-17 Stud thread structure

Country Status (1)

Country Link
JP (1) JPH1137121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265150A (en) * 2004-03-22 2005-09-29 Nippon Steel Corp Steel bolt set
JP2007271032A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp Bolt joint structure
CN104847769A (en) * 2014-02-18 2015-08-19 山东华源莱动内燃机有限公司 Double-end stud

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265150A (en) * 2004-03-22 2005-09-29 Nippon Steel Corp Steel bolt set
JP2007271032A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp Bolt joint structure
JP4713387B2 (en) * 2006-03-31 2011-06-29 新日本製鐵株式会社 Bolt joint structure
CN104847769A (en) * 2014-02-18 2015-08-19 山东华源莱动内燃机有限公司 Double-end stud

Similar Documents

Publication Publication Date Title
CA2299238C (en) Low-tolerance threaded fastener
US4157725A (en) Fastener and captive frusto-conical washer assembly
EP0290967B1 (en) Vibration resistant fasteners
US4917555A (en) Joining element for two machine parts of components, such as a fit-stretch fastener and fit-stretch bolt
AU546843B2 (en) Turbine blade repair
WO1990013753A1 (en) Differential thread for transfer of screw thread forces
NO864974L (en) ROUTE CONNECTION FOR OIL AND GAS FIELD FAITHS.
US20030201254A1 (en) Method of manufacturing a welding stud
JP2002519599A (en) Screws and bolted joints at high operating temperatures
CA2401641C (en) Threaded fastener nut with anti-cross threading radiused features
JPH1137121A (en) Stud thread structure
US5431517A (en) Apparatus and method for securing a bracket to a fixed member
US6074126A (en) Structural interlock for inhibiting relative rotation between mating elements
JPS6171142A (en) Method of mounting joint for reinforcing bar steel and jointfor said bar steel
JPH0262461A (en) Spline tooth form for deflection engagement type gear device
US11028870B2 (en) Hybrid three-point drive fastener
JPH0639580A (en) Method for relieving concentration of stress of welding joint
CN209698506U (en) A kind of long axis class output shaft fixture for processing structure
JPH0763289A (en) Oil pipe couping excellent in bending strength
JPH07180714A (en) Manufacture of bolt excellent in fatigue strength
US2853328A (en) Means and method for strengthening shouldered assemblies
JPS5989722A (en) Heat treatment of crank shaft
RU2053092C1 (en) Process of joining of enveloping and enveloped parts
US20070125025A1 (en) Fastener pre-stressing joint
RU1812347C (en) Method of connection of parts