JPH1135884A - Polyurehtane-based electrical insulating coating material - Google Patents

Polyurehtane-based electrical insulating coating material

Info

Publication number
JPH1135884A
JPH1135884A JP20395697A JP20395697A JPH1135884A JP H1135884 A JPH1135884 A JP H1135884A JP 20395697 A JP20395697 A JP 20395697A JP 20395697 A JP20395697 A JP 20395697A JP H1135884 A JPH1135884 A JP H1135884A
Authority
JP
Japan
Prior art keywords
isocyanate
masking
acid
mol
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20395697A
Other languages
Japanese (ja)
Other versions
JP3809535B2 (en
Inventor
Hitoshi Yamato
仁 大和
Hideyuki Imai
英之 今井
Koji Yaguchi
浩二 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUTOKU TORYO KK
Original Assignee
TOUTOKU TORYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUTOKU TORYO KK filed Critical TOUTOKU TORYO KK
Priority to JP20395697A priority Critical patent/JP3809535B2/en
Publication of JPH1135884A publication Critical patent/JPH1135884A/en
Application granted granted Critical
Publication of JP3809535B2 publication Critical patent/JP3809535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polyurethane-based electrical insulating coating material capable of improving the heat resistance while making the most of characteristics that the direct soldering can be carried out without requiring the peeling of an insulating film, etc. SOLUTION: This electrical insulating coating material contains a masked isocyanate compound, containing an isocyanatobenzyl- phenylphthalimidecarboxylic acid, obtained by thermally reacting 2 mol trimellitic anhydride with 2-6.5 mol diphenylmethane diisocyanate in the presence of an organic solvent having >=135 deg.C boiling point and <=10 permittivity at 25 deg.C without any active hydrogen and formed only by the reaction of the anhydride group of the trimellitic anhydride and prepared by masking the isocyanate group of the isocyanatobenzyl-phenylphthalimidecarboxylic acid and the isocyanate groups of the diphenylmethane diisocyanate or its polyisocyanate derivative present in an excessive amount with a masking agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マスキングイソシ
アネ−ト化合物及びそれを用いた電気絶縁塗料並びに当
該塗料を用いた電気絶縁電線に関し、特に、絶縁皮膜の
剥離を要せずに直接半田付けが可能である等の優れた特
性を活かしつつ、その耐熱性の向上を図ったポリウレタ
ン系電気絶縁塗料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a masking isocyanate compound, an electrically insulating paint using the same, and an electrically insulated wire using the same, and more particularly, to a method of directly soldering without removing an insulating film. The present invention relates to a polyurethane-based electrically insulating paint which has improved heat resistance while making use of excellent properties such as the ability to use a polyurethane resin.

【0002】[0002]

【従来の技術】ポリウレタン系電気絶縁電線は、絶縁皮
膜を剥離することなく直接半田付けが可能であるという
特性があり、電線の末端処理、接続の省力化等にとって
有利で、家電を中心としてその使用が拡大している。し
かるに、近年、電気機器の軽、薄、短、小(型)化、高
性能化、耐久性の向上、低コスト化、総合的高品位化、
使用条件の過酷化等の要請から、上記した直接半田付け
性に加えて、電気機器の使用雰囲気温度の上昇に伴う、
高い耐熱性の要求も増している。
2. Description of the Related Art Polyurethane-based electrically insulated wires have the property that they can be directly soldered without peeling off the insulating film, which is advantageous for wire terminal treatment and connection labor savings. Use is expanding. However, in recent years, electrical equipment has become lighter, thinner, shorter, smaller (type), higher performance, higher durability, lower cost, higher overall quality,
Due to demands such as severe use conditions, in addition to the above-mentioned direct solderability, with the rise in the use atmosphere temperature of electrical equipment,
The demand for high heat resistance is also increasing.

【0003】[0003]

【発明が解決しようとする課題】本発明は、かかる従来
技術の有する欠点を解消することのできる技術を提供す
ることを目的としたものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a technique capable of overcoming the drawbacks of the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、トリメリット
酸無水物2モルとジフェニルメタンジイソシアネ−ト2
〜6.5モルとを沸点が135℃以上で25℃での誘電
率が10以下の活性水素を有しない有機溶剤の存在下で
加熱反応させることにより得られた前記トリメリット酸
無水物の無水物基のみの反応によるイミドイソシアネ−
ト酸を含有してなり、且つ、少なくとも、当該イミドイ
ソシアネ−ト酸のイソシアネ−ト基および過剰に存在す
る前記ジフェニルメタンジイソシアネ−トまたはそのポ
リイソシアネ−ト体のイソシアネ−ト基をマスキング剤
にてマスキングしてなることを特徴とするマスキングイ
ソシアネ−ト化合物に係るものである。また、本発明
は、当該マスキングイソシアネ−ト化合物を用いたポリ
ウレタン系電気絶縁塗料に係るものである。さらに、本
発明は、当該ポリウレタン系電気絶縁塗料を用いたポリ
ウレタン系電気絶縁電線に係るものである。
SUMMARY OF THE INVENTION The present invention is directed to a process for preparing trimellitic anhydride (2 mol) and diphenylmethane diisocyanate (2 mol).
To 6.5 moles in the presence of an organic solvent having a boiling point of 135 ° C. or higher and a dielectric constant at 25 ° C. and a dielectric constant of 10 or lower and having no active hydrogen is an anhydride of the trimellitic anhydride obtained by heating. Imide isocyanate by reaction of substance group only
And at least an isocyanate group of the imide isocyanate acid and an excess of the diphenylmethane diisocyanate or the isocyanate group of the polyisocyanate thereof. The present invention relates to a masked isocyanate compound characterized by being masked by a method described in (1). The present invention also relates to a polyurethane-based electrically insulating paint using the masking isocyanate compound. Further, the present invention relates to a polyurethane electric insulated wire using the polyurethane electric insulating paint.

【0005】本発明においては、次の化1の主反応式に
準拠して、トリメリット酸無水物(以下、TMAと称す
ることもある)とジフェニルメタンジイソシアネ−ト
(以下、MDIと称することもある)とを、沸点が13
5℃以上で25℃での誘電率が10以下の活性水素を有
しない有機溶剤の存在下で加熱反応させる。
In the present invention, trimellitic anhydride (hereinafter may be referred to as TMA) and diphenylmethane diisocyanate (hereinafter referred to as MDI) can be obtained based on the main reaction formula of the following chemical formula 1. And the boiling point is 13
The reaction is carried out by heating in the presence of an organic solvent having a dielectric constant at 5 ° C. or more and 25 ° C. and no active hydrogen having a dielectric constant of 10 or less.

【0006】[0006]

【化1】 Embedded image

【0007】上記のようなイソシアネ−トとカルボン酸
との反応においては、通常、活性水素との付加反応が起
るが、上記のような沸点が135℃以上で25℃での誘
電率が10以下の活性水素を有しない有機溶剤の存在下
で加熱反応させると、上記のようにトリメリット酸無水
物の無水物基のみの反応により、五員環のイミド結合を
形成し、当該TMAのカルボン酸基は未反応で、イミド
イソシアネ−ト酸を得ることができる。誘電率が10を
越える等上記を逸脱する有機溶剤例えばN−メチルピロ
リドン、ジメチルホルムアミド等では、TMAのカルボ
ン酸基とイソシアネ−ト基との反応が起り、上記のよう
なイミドイソシアネ−ト酸を得ることはできない。この
場合、アミド結合が生成し、そのアミド結合の−NHと
MDIのNCOが反応して、系内がゲル化を呈して、不
溶解物を生成し、所望のものを得られない。
In the above-mentioned reaction between isocyanate and carboxylic acid, an addition reaction with active hydrogen usually occurs, but the above-mentioned boiling point is 135 ° C. or more and the dielectric constant at 25 ° C. is 10 ° C. When a heat reaction is performed in the presence of the following organic solvent having no active hydrogen, a five-membered imide bond is formed by the reaction of only the anhydride group of trimellitic anhydride as described above, and the carboxylic acid of the TMA is reacted. The acid groups are unreacted and imide isocyanate acid can be obtained. In an organic solvent such as N-methylpyrrolidone and dimethylformamide which deviates from the above, such as a dielectric constant exceeding 10, a reaction between the carboxylic acid group of TMA and the isocyanate group occurs, and the above-mentioned imide isocyanate acid Can not get. In this case, an amide bond is formed, and -NH of the amide bond reacts with NCO of the MDI to cause gelation in the system and to generate an insoluble substance, so that a desired product cannot be obtained.

【0008】本発明に使用される上記有機溶剤の沸点
は、760mmHg(1気圧)における値である。13
5℃未満では、上記所望の反応を起こし難い。誘電率
は、測定温度25℃での値で、10を越えるときには、
上記所望の反応を起こし難い。誘電率は、詳細には、比
誘電率(ε)で、 ε=Cp/Co 但し、Cpは試料の静電容量、Coは空(ε=1とし
た)の静電容量Dある。活性水素を有する有機溶剤の使
用では、上記所望の反応を起こし難い。当該有機溶剤の
例としては、例えば一般式H3COOC(CH3nCO
OCH3(但し、nは1〜10の整数である。)で表さ
れる二塩基酸エステルが挙げられる。その具体例には、
DBE(デュポン社製商品名)が挙げられる。また、他
にメトキシプロピルアセテ−ト(PMA)が挙げられ
る。
[0008] The boiling point of the organic solvent used in the present invention is a value at 760 mmHg (1 atm). 13
If the temperature is lower than 5 ° C., the above-mentioned desired reaction hardly occurs. When the dielectric constant exceeds 10 at a measurement temperature of 25 ° C.,
The above desired reaction is unlikely to occur. Specifically, the dielectric constant is a relative dielectric constant (ε , ), where ε , = Cp / Co, where Cp is the capacitance of the sample and Co is the capacitance D of empty (ε = 1). The use of an organic solvent having active hydrogen hardly causes the above-mentioned desired reaction. Examples of the organic solvent include, for example, the general formula H 3 COOC (CH 3 ) n CO
A dibasic acid ester represented by OCH 3 (where n is an integer of 1 to 10) is exemplified. Specific examples include:
DBE (trade name, manufactured by DuPont). Another example is methoxypropyl acetate (PMA).

【0009】本発明では、上記有機溶剤の存在下でTM
A2モルとMDI 2〜6.5モルとを加熱反応させ
る。MDIを過剰に使用し、当該MDIのポリイソシア
ネ−ト体をも同時に合成させる。前記のように、五員環
のイミド結合を有するイミドイソシアネ−ト酸を得る
が、これと同時にMDIのポリイソシアネ−ト体をも得
ることができるようにしている。すなわち、前記反応式
に従いイミドイソシアネ−ト酸を得る一方で別個にMD
Iのポリイソシアネ−ト体を得ることはコスト的に高く
つくことになるが、その反応の際に同時合成すればコス
トの低減になる。上記反応上、また、直接半田付けが可
能で、耐熱性を向上させた当該ポリウレタン系電気絶縁
塗料を得るには、MDIは、TMA2モルに対し、2〜
6.5モルとする。
[0009] In the present invention, TM in the presence of the above organic solvent
A2 mol and 2-6.5 mol of MDI are heated and reacted. MDI is used in excess, and a polyisocyanate form of the MDI is simultaneously synthesized. As described above, an imide isocyanate having a five-membered imide bond is obtained, and at the same time, a polyisocyanate of MDI can be obtained. That is, while obtaining imide isocyanate acid according to the above reaction formula, MD
Although it is costly to obtain the polyisocyanate form of I, the cost can be reduced by synthesizing simultaneously during the reaction. In order to obtain the polyurethane-based electric insulating paint having improved heat resistance, which can be directly soldered due to the above reaction, MDI is used in an amount of 2 to 2 mol of TMA.
6.5 mol.

【0010】本発明では、当該イミドイソシアネ−ト酸
のイソシアネ−ト基および過剰に存在する前記ジフェニ
ルメタンジイソシアネ−トまたはそのポリイソシアネ−
ト体のイソシアネ−ト基をマスキング剤にてマスキング
してマスキングイソシアネ−ト化合物とする。マスキン
グ剤は、活性水素を保持したものであればよく、特に制
限はないが、好ましくは、キシレノ−ル酸、クレゾ−
ル、フェノールが使用される。
[0010] In the present invention, the isocyanate group of the imide isocyanate acid and the diphenylmethane diisocyanate or polyisocyanate thereof present in excess.
The isocyanate group of the isomer is masked with a masking agent to obtain a masked isocyanate compound. The masking agent may be any as long as it holds active hydrogen, and is not particularly limited, but is preferably xylenolic acid, cresol
And phenol are used.

【0011】本発明では、当該マスキングイソシアネ−
ト化合物を用いてポリウレタン系電気絶縁塗料を構成す
る。その構成例は、当該マスキングイソシアネ−ト化合
物とポリオ−ル成分とからなる。当該ポリオ−ル成分と
しては、活性水素を有するポリオ−ル、例えば、ポリエ
ステルポリオ−ル、ポリウレタンポリ−ル、エポキシ樹
脂等が挙げられる。ポリエステルポリオ−ルの具体例に
は、ニッポラン2008(日本ポリウレタン工業社
製)、デスモヘン600(バイエル社製)などがある。
ポリウレタンポリ−ルの具体例には、デスモヘンD70
(バイエル社製)などがある。エポキシ樹脂の具体例に
は、エピコ−ト1007(シェル化学社製)などがあ
る。当該ポリオ−ル成分は、その一種または二種以上を
使用することができる。上記塗料を構成するイソシアネ
−ト成分には、本発明に係るマスキングイソシアネ−ト
化合物に加えて、一般の(ポリ)マスキングイソシアネ
−ト化合物、例えば、、市販の(ポリ)マスキングイソ
シアネ−ト化合物[ブロックドポリイソシアネート]を
用いることができる。当該マスキングポリイソシアネー
トの例には、コロネートMS−50、同C−2503、
AP−ステーブル(以上、日本ポリウレタン工業社
製)、CTSステ−ブル(バイエル社製)などがある。
上記塗料には、必要に応じて触媒として、例えばオクチ
ル酸金属塩、ナフテン酸金属塩、各種アミン系化合物な
どを用いることもできる。当該アミン系化合物には、例
えば、市販のブルカチッド(バイエル社製商品名)等を
使用することができる。また、ポリビニルホルマール、
ポリアミド、フェノキシ、ポリエステル、ポリウレタ
ン、ポリウレタンポリオール、ポリエーテル、ポリスル
ホン類、ポリエーテルイミドなどの熱可塑性樹脂、フェ
ノール、メラミン、ポリエステル、ポリエステルイミ
ド、ポリアミドイミド、ポリエステルアミドイミド、ポ
リイミド、ポリヒダントインなどの熱硬化性樹脂を添加
することができる。さらに、染料、顔料、滑剤、酸化防
止剤、無機物質などの添加剤を添加することができる。
本発明における電気絶縁塗料には、キシレノ−ル酸、ク
レゾ−ル、フェノール等のフェノ−ル類、グリコ−ルエ
−テル等の有機溶媒を使用することができる。NMP
(N−メチルー2ーピロリドン)、DMF(N,Nージ
メチルホルムアミド)、DMAc(N,Nージメチルア
セトアミド)などの溶剤を用いてもよい。また、希釈剤
として、キシレン、ソルベントナフサなどを用いること
ができる。他に、絶縁塗料の溶剤として用いられている
セロソルブ類、グリコールエステル類、γーブチルラク
トン、アノン、DMSO、アルコール類、乳酸メチル、
乳酸エチル、フルフラールなどを用いることもできる。
In the present invention, the masking isocyanate
Polyurethane-based electric insulating paint is constituted by using a compound. An example of the structure is composed of the masking isocyanate compound and a polyol component. Examples of the polyol component include a polyol having an active hydrogen, such as a polyester polyol, a polyurethane polyol, and an epoxy resin. Specific examples of polyester polyols include Nipporan 2008 (manufactured by Nippon Polyurethane Industry Co., Ltd.) and Desmohen 600 (manufactured by Bayer).
Specific examples of polyurethane polymers include Desmohen D70
(Manufactured by Bayer AG). Specific examples of the epoxy resin include Epicoat 1007 (manufactured by Shell Chemical Co., Ltd.). One or more of the polyol components can be used. In addition to the masking isocyanate compound according to the present invention, general (poly) masking isocyanate compounds, for example, commercially available (poly) masking isocyanate, Compound [blocked polyisocyanate] can be used. Examples of the masking polyisocyanate include Coronate MS-50, C-2503,
AP-Stable (above, manufactured by Nippon Polyurethane Industry Co., Ltd.), CTS Table (manufactured by Bayer) and the like.
In the above-mentioned paint, a catalyst such as a metal octylate, a metal salt of naphthenate, or various amine compounds may be used as a catalyst, if necessary. As the amine-based compound, for example, commercially available Vulcatide (trade name, manufactured by Bayer AG) or the like can be used. Also, polyvinyl formal,
Thermosetting resin such as polyamide, phenoxy, polyester, polyurethane, polyurethane polyol, polyether, polysulfone, and polyetherimide; thermosetting of phenol, melamine, polyester, polyesterimide, polyamideimide, polyesteramideimide, polyimide, and polyhydantoin A hydrophilic resin can be added. Further, additives such as dyes, pigments, lubricants, antioxidants, and inorganic substances can be added.
Organic solvents such as phenols such as xylenoleic acid, cresol and phenol, and glycol ethers can be used for the electrically insulating coating in the present invention. NMP
A solvent such as (N-methyl-2-pyrrolidone), DMF (N, N-dimethylformamide), and DMAc (N, N-dimethylacetamide) may be used. Further, xylene, solvent naphtha, or the like can be used as a diluent. In addition, cellosolves, glycol esters, γ-butyl lactone, anone, DMSO, alcohols, methyl lactate, which are used as solvents for insulating coatings,
Ethyl lactate, furfural and the like can also be used.

【0012】本発明による上記塗料を導体に塗布し、焼
付けると、ウレタン結合とアミド結合を形成し、得られ
た塗膜は、直接半田付けが可能で、耐熱性を向上させる
ことができる。ポリウレタン系電気絶縁電線の優れた特
性を低下させずに、耐熱性の向上を果たし得る。
When the above paint according to the present invention is applied to a conductor and baked, a urethane bond and an amide bond are formed, and the obtained coating film can be directly soldered and heat resistance can be improved. The heat resistance can be improved without deteriorating the excellent characteristics of the polyurethane insulated wire.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0014】[0014]

【実施例】次に、本発明を実施例および比較例に基づい
て説明する。 実施例1 マスキングイソシアネ−ト化合物の合成 3リットルの4口丸底フラスコにマントルヒ−タ、温度
計、撹拌器、コンデンサ−と窒素ガス(1リットル/m
in)の注入を配した系内に、TMA 682g、MD
I 349g、DBE(沸点:196〜225℃/76
0mmHg、誘電率:8.00/25℃)442gを仕
込み、130℃、5時間反応させた。次に、DBE 4
44gを添加して系内を100℃以下にして、キシレノ
−ル酸700g(N−メチルモルホリン1g含有)を添
加して、130℃、2時間マスキング安定化させ、クレ
ゾ−ル酸254gを添加して50%の安定化マスキング
イソシアネ−ト化合物溶液(以下、A−1と称する)を
得た。
Next, the present invention will be described based on examples and comparative examples. Example 1 Synthesis of Masking Isocyanate Compound A mantle heater, a thermometer, a stirrer, a condenser, and nitrogen gas (1 liter / m) were placed in a 3 liter 4-neck round bottom flask.
in), TMA 682 g, MD
I, 349 g, DBE (boiling point: 196 to 225 ° C./76
442 g) (0 mmHg, dielectric constant: 8.00 / 25 ° C.), and reacted at 130 ° C. for 5 hours. Next, DBE 4
44 g was added to lower the temperature of the system to 100 ° C. or lower, 700 g of xylenoleic acid (containing 1 g of N-methylmorpholine) was added, the masking was stabilized at 130 ° C. for 2 hours, and 254 g of cresylic acid was added. As a result, a 50% stabilized masking isocyanate compound solution (hereinafter referred to as A-1) was obtained.

【0015】実施例2 マスキングイソシアネ−ト化合物の合成 TMAを295g、MDIを673g、DBEを416
g仕込み、その後、DBE 459gを添加後、キシレ
ノ−ル酸715gを添加してマスキング安定化後、希釈
クレゾ−ル酸249gを添加した以外は実施例1と同様
にして安定化マスキングイソシアネ−ト化合物溶液(以
下、A−2と称する)を得た。
Example 2 Synthesis of Masking Isocyanate Compound 295 g of TMA, 673 g of MDI, and 416 of DBE
g, then adding 559 g of DBE, stabilizing the masking by adding 715 g of xylenolic acid, and then stabilizing masking isocyanate in the same manner as in Example 1 except that 249 g of diluted cresylic acid was added. A compound solution (hereinafter, referred to as A-2) was obtained.

【0016】実施例3 マスキングイソシアネ−ト化合物の合成 TMA 274g、MDI 714g、DBE 424
g、その後のDBE507g、キシレノ−ル酸776
g、希釈クレゾ−ル酸263gとした以外は実施例1と
同様にして安定化マスキングイソシアネ−ト化合物溶液
(以下、A−3と称する)を得た。
Example 3 Synthesis of masking isocyanate compound 274 g of TMA, 714 g of MDI, DBE 424
g, followed by 507 g of DBE and 776 of xylenoleic acid
g, a diluted masked isocyanate compound solution (hereinafter, referred to as A-3) was obtained in the same manner as in Example 1 except that the amount of diluted cresolic acid was 263 g.

【0017】実施例4〜12 (I)絶縁塗料の作成 上記で得られた安定化マスキングイソシアネ−ト化合物
溶液を用いて、表1の配合にて絶縁塗料を作成した。
尚、表中の材料は次の通り。 ポリオ−ル1:デスモヘン600(バイエル社製)のク
レゾ−ル酸/キシレン=7/3にて希釈の60%溶液 ポリオ−ル2:特公昭60−50389号に記載のポリ
ウレタンポリオ−ル製造例Aのクレゾ−ル40%溶液 ポリオ−ル3:特公昭64−4527号に記載のポリエ
ステルイミド製造例3のクレゾ−ル酸/キシレン=8/
2にて希釈の43%溶液 触媒:バイエル社製ブルカチッド576 (II)絶縁電線の作成 上記で得られた絶縁塗料を、直径0.35mmの丸銅線
よりなる導体に、横長電熱炉(炉長3m)にて、入口温
度430℃、出口温度450℃、フェルト7回、線速3
5m/minの条件下で塗布、焼き付け、片被膜厚が1
7〜18ミクロンとなるように絶縁電線を作成した。当
該電線について、JIS C−3003の試験方法に準
拠してその特性を測定した。その結果を、表2に示す。
尚、比較の為に、通常のポリウレタン系塗料であるTP
U5135(東特塗料社製商品名)「比較例1」および
ポリエステルイミドウレタン耐熱塗料であるTSF23
0−3(東特塗料社製商品名)「比較例2」を用いて同
様にして絶縁電線を作成し、その特性評価結果を表1に
併記した。
Examples 4 to 12 (I) Preparation of Insulating Paint An insulating paint was prepared according to the formulation shown in Table 1 using the stabilized masking isocyanate compound solution obtained above.
The materials in the table are as follows. Polyol 1: 60% solution of Desmohen 600 (manufactured by Bayer) diluted with cresylic acid / xylene = 7/3 Polyol 2: Polyurethane polyol production example described in JP-B-60-50389 Cresol 40% solution of A Polyol 3: Cresolic acid / xylene = 8 / of polyesterimide production example 3 described in JP-B-64-4527.
43% solution diluted in 2 Catalyst: Vuelcat 576 manufactured by Bayer AG (II) Preparation of insulated wire The insulating paint obtained above was applied to a conductor made of a round copper wire having a diameter of 0.35 mm in a horizontally elongated electric heating furnace (furnace length). 3m), inlet temperature 430 ° C, outlet temperature 450 ° C, felt 7 times, linear velocity 3
Coating and baking under conditions of 5 m / min.
Insulated wires were made to be 7 to 18 microns. The characteristics of the electric wire were measured in accordance with the test method of JIS C-3003. Table 2 shows the results.
In addition, for comparison, TP which is a usual polyurethane-based paint is used.
U5135 (trade name, manufactured by Toku Paint Co., Ltd.) “Comparative Example 1” and TSF23 which is a polyesterimide urethane heat-resistant paint
Insulated wires were similarly prepared using 0-3 (trade name, manufactured by Totoku Paint Co., Ltd.) “Comparative Example 2”, and the characteristics evaluation results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0024】表2に示す結果から、本発明例による絶縁
塗料は、比較例による絶縁塗料に比較して、耐熱性(破
壊電圧残存率)と軟化点温度が大幅に高く、それらに優
れていることが判る。また、半田付け特性にも優れてい
ることが判る。
From the results shown in Table 2, the insulating paint according to the present invention is significantly superior in heat resistance (residual breakdown voltage) and softening point temperature to the insulating paint according to the comparative example. You can see that. Further, it can be seen that the soldering characteristics are also excellent.

【0025】[0025]

【発明の効果】以上、本発明によれば、絶縁皮膜を剥離
することを必要とせずに直接半田付けが可能で、しか
も、耐熱性に優れたポリウレタン系電気絶縁塗料を提供
することができる。
As described above, according to the present invention, it is possible to provide a polyurethane-based electric insulating paint which can be directly soldered without having to peel off the insulating film and has excellent heat resistance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トリメリット酸無水物2モルとジフェニ
ルメタンジイソシアネ−ト2〜6.5モルとを沸点が1
35℃以上で25℃での誘電率が10以下の活性水素を
有しない有機溶剤の存在下で加熱反応させることにより
得られた前記トリメリット酸無水物の無水物基のみの反
応によるイミドイソシアネ−ト酸を含有してなり、且
つ、少なくとも、当該イミドイソシアネ−ト酸のイソシ
アネ−ト基および過剰に存在する前記ジフェニルメタン
ジイソシアネ−トまたはそのポリイソシアネ−ト体のイ
ソシアネ−ト基をマスキング剤にてマスキングしてなる
ことを特徴とするマスキングイソシアネ−ト化合物。
1. A mixture of 2 mol of trimellitic anhydride and 2 to 6.5 mol of diphenylmethane diisocyanate having a boiling point of 1 mol.
An imido isocyanate obtained by a reaction of only an anhydride group of the trimellitic anhydride obtained by performing a heating reaction in the presence of an organic solvent having no active hydrogen having a dielectric constant of 10 or less at 35 ° C. or more at 25 ° C. At least the isocyanate group of the imide isocyanate acid and the excess isocyanate group of the diphenylmethane diisocyanate or polyisocyanate thereof. A masking isocyanate compound characterized by being masked with an agent.
【請求項2】 請求項1に記載のマスキングイソシアネ
−ト化合物を含有してなることを特徴とするポリウレタ
ン系電気絶縁塗料。
2. A polyurethane-based electrically insulating paint comprising the masking isocyanate compound according to claim 1.
【請求項3】 請求項2に記載の電気絶縁塗料を導体上
に塗布焼付けしてなることを特徴とする電気絶縁電線。
3. An electrically insulated wire, wherein the electrically insulative paint according to claim 2 is applied and baked on a conductor.
JP20395697A 1997-07-15 1997-07-15 Polyurethane electrical insulating paint Expired - Fee Related JP3809535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20395697A JP3809535B2 (en) 1997-07-15 1997-07-15 Polyurethane electrical insulating paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20395697A JP3809535B2 (en) 1997-07-15 1997-07-15 Polyurethane electrical insulating paint

Publications (2)

Publication Number Publication Date
JPH1135884A true JPH1135884A (en) 1999-02-09
JP3809535B2 JP3809535B2 (en) 2006-08-16

Family

ID=16482454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20395697A Expired - Fee Related JP3809535B2 (en) 1997-07-15 1997-07-15 Polyurethane electrical insulating paint

Country Status (1)

Country Link
JP (1) JP3809535B2 (en)

Also Published As

Publication number Publication date
JP3809535B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
CN101481582B (en) Polyamide-imide resin insulating paint and insulation wire using same
US9484124B2 (en) Insulated electric wire and coil using same
US4505980A (en) Insulated wire
CA1321670C (en) Lacquer binders, their use in coating compositions and a process for the production of wire/enamels
JP4589471B2 (en) Polyimide precursor solution and production method thereof, coating film obtained therefrom and production method thereof
KR19980079256A (en) Polyimide precursor solution, preparation method thereof, film or film obtained from such solution and preparation method of film
JPH1135884A (en) Polyurehtane-based electrical insulating coating material
JPH05205538A (en) Solderable insulated wire
JP3816694B2 (en) Insulating paint
JP3336220B2 (en) Insulated wire
JP2943209B2 (en) Insulated wire
KR100644338B1 (en) The manufacture method of the polyamideimide resin solution for enamel copper wire clothing that the antiwear characteristic was strengthened
JPS6411656B2 (en)
JP3490895B2 (en) Insulated wire
JP3364372B2 (en) Insulated wire
JPH10265717A (en) Coating material for insulation
JPH0455209B2 (en)
JP3298768B2 (en) Insulated wire
JP2683416B2 (en) Insulated wire
JP3504859B2 (en) Insulating paint
JPH03233810A (en) Insulated cable
KR20010018933A (en) Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst
JPH0912973A (en) Electrically insulating coating
JP3764277B2 (en) Insulating paint
JPH03233812A (en) Insulated cable

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees