JPH11354423A - Method for correcting proximity effect - Google Patents

Method for correcting proximity effect

Info

Publication number
JPH11354423A
JPH11354423A JP10172114A JP17211498A JPH11354423A JP H11354423 A JPH11354423 A JP H11354423A JP 10172114 A JP10172114 A JP 10172114A JP 17211498 A JP17211498 A JP 17211498A JP H11354423 A JPH11354423 A JP H11354423A
Authority
JP
Japan
Prior art keywords
area
pattern
mask
proximity effect
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10172114A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10172114A priority Critical patent/JPH11354423A/en
Publication of JPH11354423A publication Critical patent/JPH11354423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently correcting a proximity effect caused when electron beam transfer exposure is performed on a substrate, where a base material layer has been already formed. SOLUTION: The region of a pattern transfer mask is subdivided into sections 51-57 of small dimensions, and for each section an area S1 of a region with no base material patterns 66 and 67 and an area S2 of current non-exposed region are calculated. In addition, the value K1S1+S2 (where K1 represents a factor) is calculated for all sections. Then, with the value in the section comprising a non-exposed part of minimum line thickness where this value is minimum is get as Smin , and expression (K1S1+S2)-Smin = correction reference area is calculated for each section. Using a proximity effect correcting mask provided with an opening of an area corresponding to that correction reference area, the mask is exposed for correction excessively, before or after an electron beam exposure process for the pattern transfer mask.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェーハに
電子ビームを用いて回路パターンを転写露光する際にお
ける近接効果の補正方法に関する。特には、各ウェーハ
毎の補正露光工程を省略でき、最小線幅が0.2μm 以
下の高密度パターンをも高スループットで形成できる近
接効果の補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting a proximity effect in transferring and exposing a circuit pattern on a semiconductor wafer by using an electron beam. In particular, the present invention relates to a proximity effect correction method capable of omitting a correction exposure step for each wafer and forming a high-density pattern having a minimum line width of 0.2 μm or less with high throughput.

【0002】[0002]

【従来の技術】電子ビームレジストが塗布されたマスク
基板又は半導体ウェハ等の感応基板に電子ビーム露光を
行うと、いわゆる近接効果により、パターンの線幅等が
設計値から外れる場合がある。近接効果の主な要因は、
電子ビームの加速電圧が50kV以上の場合は、感応基板
に入射した電子ビームの後方散乱である。このような場
合に近接効果を補正するには、後方散乱電子による基板
の露光量を基板の全面で実質的に等しくすればよく、従
来は例えばゴースト法により補正が行われていた。
2. Description of the Related Art When an electron beam exposure is performed on a sensitive substrate such as a mask substrate or a semiconductor wafer coated with an electron beam resist, the line width of a pattern may deviate from a design value due to a so-called proximity effect. The main cause of the proximity effect is
When the accelerating voltage of the electron beam is 50 kV or more, it is the back scattering of the electron beam incident on the sensitive substrate. In such a case, the proximity effect can be corrected by making the exposure amount of the substrate by the backscattered electrons substantially equal over the entire surface of the substrate. Conventionally, the correction has been performed by, for example, a ghost method.

【0003】ゴースト法においては、感応基板に描画又
は転写されたパターンの反転パターンの像を、ボケの大
きい電子ビームで同一の基板上に露光(補正露光)する
ことにより、電子の後方散乱による露光量が均一化され
る。このような補正露光のための機能は、従来の電子ビ
ーム描画装置にそれぞれ備えられており、その装置自体
で近接効果の補正が行われていた。
In the ghost method, an image of a reverse pattern of a pattern drawn or transferred on a sensitive substrate is exposed (corrected exposure) on the same substrate with an electron beam having a large blur, so that exposure by back scattering of electrons is performed. The amount is equalized. Such a function for the correction exposure is provided in each of the conventional electron beam writing apparatuses, and the apparatus itself corrects the proximity effect.

【0004】しかしながら、従来のように電子ビーム描
画装置自体で近接効果の補正を行う場合には、本来のパ
ターンの描画が終わってから、さらにマシンタイムを使
って反転パターンの補正描画を行う必要があり、スルー
プットが補正描画分だけ低下するという不都合がある。
さらに、本来のパターンが複雑なパターンである場合に
は、正確な反転パターンを描画することが困難である場
合もある。
However, when the correction of the proximity effect is performed by the electron beam writing apparatus itself as in the prior art, it is necessary to further perform the correction writing of the inverted pattern using the machine time after the writing of the original pattern is completed. There is an inconvenience that the throughput is reduced by the amount corresponding to the correction drawing.
Further, when the original pattern is a complicated pattern, it may be difficult to draw an accurate inverted pattern.

【0005】一方、電子ビームによるパターン転写を行
った場合に近接効果のためにパターン寸法が変化するの
で、近接効果があって転写パターンが正しい寸法になる
ように、予めマスクのパターンを変形させておくという
考え方(resize) が提案されている。しかし、この提案
による変化量の計算の方法では膨大な計算を要し、実用
的ではなく、実際のパターンでの補正は今まで行われて
いなかった。また、正しく補正するためには、変形させ
たパターンは任意傾斜の斜線を含むパターンとなり、マ
スクを作るのが困難であった。
On the other hand, when the pattern is transferred by the electron beam, the pattern size changes due to the proximity effect. Therefore, the mask pattern is deformed in advance so that the transfer pattern has the correct size due to the proximity effect. The idea of resizing has been proposed. However, the method of calculating the amount of change according to this proposal requires an enormous amount of calculation, is not practical, and has not been corrected with an actual pattern until now. Further, in order to correct correctly, the deformed pattern becomes a pattern including an oblique line having an arbitrary inclination, and it is difficult to form a mask.

【0006】本発明は、このような問題点に鑑みてなさ
れたもので、近接効果補正用の複雑な補正パターン計算
を行う必要がなく、転写する正規のパターンが斜線を含
まない場合にはマスクの作製時にも斜線パターンを形成
する必要のない近接効果補正方法を提供することを目的
とする。また、パターン形成時のパターン数の増加なし
に近接効果の補正を行え、しかも、パターン転写用マス
ク作製工程の電子ビーム露光時の近接効果と、そのパタ
ーン転写用マスクを使ったウェーハへの転写露光時の近
接効果とを一度に補正可能な近接効果補正方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and there is no need to perform a complicated correction pattern calculation for correcting the proximity effect, and a mask is used when a regular pattern to be transferred does not include oblique lines. It is an object of the present invention to provide a proximity effect correction method that does not require the formation of a diagonal line pattern at the time of manufacturing. In addition, the proximity effect can be corrected without increasing the number of patterns at the time of pattern formation. In addition, the proximity effect at the time of electron beam exposure in the pattern transfer mask manufacturing process and the transfer exposure to a wafer using the pattern transfer mask are performed. An object of the present invention is to provide a proximity effect correction method capable of correcting the proximity effect at a time.

【0007】さらに、後方散乱電子係数の大きい材料で
パターニングされている基板に電子ビーム転写露光を行
う場合に生じる近接効果を能率よく補正する方法を提供
することを目的とする。また、高加速電圧の電子ビーム
に特有の遠くのパターンの粗密による影響を受けた近接
効果を能率よく補正する方法を提供することを目的とす
る。
Another object of the present invention is to provide a method for efficiently correcting a proximity effect that occurs when an electron beam transfer exposure is performed on a substrate patterned with a material having a large backscattering electron coefficient. It is another object of the present invention to provide a method for efficiently correcting a proximity effect affected by the density of a distant pattern peculiar to a high acceleration voltage electron beam.

【0008】[0008]

【課題を解決するための手段及び発明の実施の形態】上
記課題を解決するため、本発明の第1態様の近接効果補
正方法は、 近接効果補正を過剰に行うことにより予め
近接効果補正を織り込んだパターン転写用マスクを用い
て電子ビーム転写露光を行う際に、 上記転写露光のビ
ーム分解能より悪い分解能、あるいは、より低加速電圧
のパターン描画装置で上記マスクのパターン形成を行う
ことを特徴とする。この態様の作用については後述す
る。
In order to solve the above problems, the proximity effect correction method according to the first aspect of the present invention incorporates the proximity effect correction in advance by excessively performing the proximity effect correction. When performing electron beam transfer exposure using a mask for pattern transfer, the pattern formation of the mask is performed by a pattern drawing apparatus having a resolution lower than the beam resolution of the transfer exposure or a lower acceleration voltage. . The operation of this embodiment will be described later.

【0009】本発明の第2態様の近接効果補正方法は、
基板材料と異なる後方散乱電子係数を有する材料から
なる下地パターンが既に形成されているウェーハ上に重
ねて今回パターンを形成する場合において、それ自身が
電子ビーム露光工程を経て作製されたパターン転写用マ
スクを用いてウェーハ上に電子ビーム縮小転写露光を行
う際の近接効果を補正する方法であって; 該パターン
転写用マスクの領域を、上記転写の縮小率倍に縮小した
時にパターン転写時の後方散乱電子の拡がり幅よりも十
分小さい寸法の区域に区分けし、 各区域で下地パター
ンの無い領域の面積S1 と今回の非露光部の面積S2
を算出し、 (K11 +S2 )の値を全区域について
算出し(K1 は係数)、 最小線幅の非露光部を含む区
域で且つ上記値が最小となる区域での上記値をSmin
し、 各区域で(K11 +S2)−Smin =補正基準
面積を算出し、 該補正基準面積に対応(例えば比例)
した面積の開口を設けた近接効果補正用マスクを作製
し、 該近接効果補正用マスクを用いて、上記パターン
転写用マスクの電子ビーム露光工程の前又は後に上記パ
ターン転写用マスクを過剰に補正露光することを特徴と
する。
A proximity effect correction method according to a second aspect of the present invention comprises:
In the case where a pattern is formed this time on a wafer on which an underlayer pattern made of a material having a different backscattering electron coefficient from the substrate material is already formed, the pattern transfer mask itself is manufactured through an electron beam exposure process A method for correcting a proximity effect when performing electron beam reduction transfer exposure on a wafer using: a backscatter at the time of pattern transfer when the area of the pattern transfer mask is reduced to the reduction rate of the transfer. It is divided into areas having dimensions sufficiently smaller than the electron spread width, and in each area, the area S 1 of the area without the underlying pattern and the area S 2 of the non-exposed part are calculated, and (K 1 S 1 + S 2 ) the values calculated for the whole area (K 1 is a coefficient), the value of and in the region where the value is minimized in the region and S min containing unexposed portion of the minimum line width in each zone (K 1 S 1 + S 2) -S min = calculates a correction reference area, corresponding to the correction reference area (e.g., proportional)
Producing a proximity effect correction mask provided with an opening having an area having a predetermined area, and using the proximity effect correction mask before or after the electron beam exposure step of the pattern transfer mask, excessively correcting and exposing the pattern transfer mask It is characterized by doing.

【0010】本発明の第2態様では、パターン転写用マ
スクを近接効果補正する方法として、近接効果補正用マ
スクを用いてパターン転写用マスクを補正露光してい
る。そして、その補正露光量は、該パターン転写用マス
クを用いてウェーハに転写露光を行った時にウェーハ上
で正規のパターンが得られるよう、該転写露光時の近接
効果を補正する分も予め織り込んでいる。また、上記補
正用マスクには、ウェーハ上に既に形成されている後方
散乱電子係数の異なる下地パターンの面積をも加味した
補正露光開口を設ける。
In the second aspect of the present invention, as a method of correcting the proximity effect of the pattern transfer mask, the pattern transfer mask is corrected and exposed using the proximity effect correction mask. Then, the amount of the correction exposure is adjusted in advance to compensate for the proximity effect at the time of the transfer exposure so that a normal pattern can be obtained on the wafer when the transfer exposure is performed on the wafer using the pattern transfer mask. I have. Further, the correction mask is provided with a correction exposure opening that also takes into account the areas of the underlying patterns having different backscattered electron coefficients already formed on the wafer.

【0011】ここで、上記K1 の値は、例えば0.1〜
0.7とすることができる。後方散乱電子係数の高いT
aやMo等の下地パターンと同係数の低いSiの下地パ
ターンとが共存している場合はK1 の値は約0.6、A
lのようにほぼSiと後方散乱電子係数の等しい材料の
下地パターンとSiの下地パターンとが共存している場
合はK1 の値は約0.1とする。また、加速電圧が高い
場合はK1 の値を0.5とした時、加速電圧が低い場合
はK1 の値は0.6とする。
Here, the value of K 1 is, for example, 0.1 to
It can be 0.7. T with high backscattered electron coefficient
When a base pattern such as a or Mo and a base pattern of Si having the same coefficient coexist, the value of K 1 is about 0.6,
The value of K 1 If the same material of the base pattern and the underlying Si pattern substantially Si and backscattered electron coefficient coexists as l is about 0.1. Further, if the acceleration voltage is high when 0.5 the value of K 1, when the acceleration voltage is low, the value of K 1 is 0.6.

【0012】本発明の第3態様の近接効果補正方法は、
基板材料と異なる後方散乱電子係数を有する材料から
なる下地パターンが既に形成されているウェーハ上に重
ねて今回パターンを形成する場合において、それ自身が
電子ビーム露光工程を経て作製されたパターン転写用マ
スクを用いてウェーハ上に電子ビーム縮小転写露光を行
う際の近接効果を補正する方法であって; 該パターン
転写用マスクの領域を、上記転写の縮小率倍に縮小した
時にパターン転写時の後方散乱電子の拡がり幅よりも十
分小さい寸法の区域に区分けするとともに、各区域の周
辺に同じく後方散乱電子の拡がり半径より小さい半径の
円内からその区域を除いた周辺領域を設定し、 各区域
で、下地パターンの無い領域の面積S1 と、今回の非露
光部の面積S2 と、周辺領域の下地パターンの無い領域
の面積比R3 と、周辺領域の非露光部の面積比R4 を算
出し、 (K21 +S2 +S033 +S04
4)の値を各区域で算出し(K2 、K3 、K4 は係数、
0 は上記区域の面積)、最小線幅の非露光部を含む区
域で且つ上記値が最小となる区域でのその値をS′min
とし、 各区域で(K21 +S2 +S033 +S
044 −S′min )(補正基準面積)を算出し、
該補正基準面積に比例(対応?)する面積の開口を設け
た近接効果補正用マスクを作製し、 該近接効果補正用
マスクを用いて上記パターン転写用マスクを過剰に補正
露光することを特徴とする。
[0012] A proximity effect correction method according to a third aspect of the present invention comprises:
In the case where a pattern is formed this time on a wafer on which an underlayer pattern made of a material having a different backscattering electron coefficient from the substrate material is already formed, the pattern transfer mask itself is manufactured through an electron beam exposure process A method for correcting a proximity effect when performing electron beam reduction transfer exposure on a wafer using: a backscatter at the time of pattern transfer when the area of the pattern transfer mask is reduced to the reduction rate of the transfer. In addition to dividing into areas with dimensions sufficiently smaller than the spread of the electrons, the surrounding area is set around each area by removing the area from a circle having a radius smaller than the spread radius of the backscattered electrons. the area S 1 of no base pattern area, and the area S 2 of this non-exposed portion, and the area ratio R 3 of the no base pattern of the peripheral region area, surrounding territory And of calculating the area ratio R 4 of the non-exposed portion, (K 2 S 1 + S 2 + S 0 R 3 K 3 + S 0 R 4 K
4 ) is calculated for each area (K 2 , K 3 and K 4 are coefficients,
S 0 is the area of the above-mentioned area), the area including the non-exposed portion having the minimum line width and the area where the above-mentioned value becomes the minimum is represented by S ′ min
And (K 2 S 1 + S 2 + S 0 R 3 K 3 + S
0 R 4 K 4 −S ′ min ) (correction reference area), and
Producing a proximity effect correction mask provided with an opening having an area proportional to (corresponding to) the correction reference area, and excessively correcting and exposing the pattern transfer mask using the proximity effect correction mask. I do.

【0013】この態様では、周辺領域から、計算対象の
ウェーハ区域に入る後方散乱電子の影響をも加味して補
正ドーズ量を決定する。すなわち、補正露光開口の計算
精度を向上させるため、上記区域のみではなく、その区
域の周辺部の影響を効率良く計算する。
In this aspect, the correction dose is determined in consideration of the influence of backscattered electrons entering the wafer area to be calculated from the peripheral region. That is, in order to improve the calculation accuracy of the correction exposure aperture, the influence of not only the above-mentioned area but also the peripheral part of the area is efficiently calculated.

【0014】ここで各定数の値の例として、K2 は0.
1〜0.7、K3 は0.05〜0.35、K4 は0.2
〜0.5である。この値の選定の考え方は次のとおりで
ある。 K2 :下地パターンの後方散乱係数がSiに近い時は小
さくし、下地パターンの後方散乱係数が大きい時は大き
くする。 K3 :下地パターンの後方散乱係数が大きい時あるいは
周辺領域を小さくした時は大きくし、下地パターンの後
方散乱係数がSiに近い時あるいは周辺領域を広くした
時は小さくする。 K4 :周辺領域を小さくした時は大きくし、周辺領域を
広くした時は小さくする。
Here, as an example of the value of each constant, K 2 is set to 0.
1 to 0.7, K 3 is 0.05 to 0.35, K 4 0.2
0.50.5. The concept of selecting this value is as follows. K 2 : Decrease when the backscattering coefficient of the underlying pattern is close to Si, and increase when the backscattering coefficient of the underlying pattern is large. K 3 : Increase when the backscattering coefficient of the underlying pattern is large or when the peripheral region is reduced, and decrease when the backscattering coefficient of the underlying pattern is close to Si or when the peripheral region is widened. K 4 : Increase when the peripheral area is reduced, and decrease when the peripheral area is wide.

【0015】なお、上記計算面積全体にさらに修正係数
あるいは関数をかけて補正用マスクの開口面積を決定す
る等の様々な数値処理をすることもできる。また、実際
にテスト補正露光をドーズを変えて実施し、どの程度の
補正ドーズの時最も適切に近接効果が補正されるかを実
測してもよい。さらに計算機シミュレーションにより補
正ドーズを決定してもよい。
Various numerical processes such as determining the opening area of the correction mask by multiplying the entire calculation area by a correction coefficient or a function can also be performed. Alternatively, the test correction exposure may be actually performed with a different dose, and the correction dose may be measured at what correction dose the proximity effect is most appropriately corrected. Further, the correction dose may be determined by computer simulation.

【0016】本発明の基本となる原理を図1を用いて説
明する。図1(a)は、ウェーハ上に形成すべきあるパ
ターン(正規のパターン)の平面図である。同パターン
は、露光される7本の線1−1〜7からなる。各線は同
じ長さ・幅で、等間隔で平行に配列されている。図1
(b)は、(a)のパターンを転写露光し近接効果補正
を行わなかった場合にレジストに与えられるドーズの分
布を、図1(a)のx軸に沿って見た模式的なグラフで
ある。レジスト中での電子の順方向スキャッタのため、
各パターンのドーズ分布2−1〜7は矩形ではなく、ガ
ウス型となる。バックグラウンドドーズ3は、線パター
ンの密度の高い中央部では高く、パターン密度の低い周
辺部では低い。
The basic principle of the present invention will be described with reference to FIG. FIG. 1A is a plan view of a certain pattern (regular pattern) to be formed on a wafer. The pattern consists of seven lines 1-1 to 7 to be exposed. Each line has the same length and width and is arranged in parallel at equal intervals. FIG.
FIG. 1B is a schematic graph showing the distribution of the dose given to the resist when the pattern of FIG. 1A is transferred and exposed and the proximity effect correction is not performed, as viewed along the x-axis in FIG. is there. Because of the forward scatter of electrons in the resist,
The dose distributions 2-1 to 7 of each pattern are not rectangular but Gaussian. The background dose 3 is high in the central part where the density of the line pattern is high, and low in the peripheral part where the pattern density is low.

【0017】図1(c)は、補正露光を行った場合のレ
ジストに与えられるドーズ分布を示すグラフである。実
線4が従来の近接効果補正露光ドーズを示し、このドー
ズ4が図1(b)のドーズに加わった合計ドーズを実線
5で示す。補正露光の結果の合計ドーズ5では、レジス
トのしきい値6における各パターン線7−1〜7の幅が
等しいので、等しい幅のパターンが形成される。
FIG. 1C is a graph showing a dose distribution given to the resist when the correction exposure is performed. A solid line 4 indicates a conventional proximity effect correction exposure dose, and the dose 4 indicates a total dose added to the dose of FIG. At the total dose 5 as a result of the correction exposure, the width of each of the pattern lines 7-1 to 7 at the threshold value 6 of the resist is equal, so that a pattern having the same width is formed.

【0018】図1(c)の点線は、1.5倍の過剰ドー
ズで補正露光を行った場合のレジストに与えられるドー
ズを示す。点線8が補正露光のドーズ分布を示し、点線
9がパターン転写露光ドーズとの合計ドーズを示す。過
剰補正露光の結果の合計ドーズ9(線パターン1の幅方
向の分布を示す)では、レジストのしきい値6における
各パターン線9−1〜7の幅が中央部ではほぼ正規の線
パターンに等しく、周辺部では線幅が太くなっている。
同様にパターンの長手方向についても周辺部の補正露光
ドーズが高いので、各パターンは、図1(d)に示すよ
うに、中央部では最小の寸法となり、端に近づくに従っ
て線幅が少しずつ大きくなる。
The dotted line in FIG. 1C shows the dose given to the resist when the correction exposure is performed with a 1.5 times excess dose. Dotted line 8 shows the dose distribution of the correction exposure, and dotted line 9 shows the total dose with the pattern transfer exposure dose. In the total dose 9 (showing the distribution of the line pattern 1 in the width direction) as a result of the overcorrection exposure, the width of each of the pattern lines 9-1 to 7 at the resist threshold value 6 becomes almost a regular line pattern at the center. Equally, the line width is large in the peripheral portion.
Similarly, in the longitudinal direction of the pattern, since the correction exposure dose at the peripheral portion is high, each pattern has the minimum size at the central portion as shown in FIG. 1D, and the line width gradually increases as approaching the edge. Become.

【0019】この図1(d)に示すパターンを有するパ
ターン転写用マスクを用いて電子ビームでウェーハ上へ
転写を行えば、(a)に示した等しい線幅のパターン
(正規のパターン)がウェーハ上に形成される。すなわ
ち、パターン転写用マスクを電子ビーム露光技術により
作成する際に、予め、後の転写時の近接効果の分の補正
も織り込んでおく(上乗せして過剰に補正しておく)の
である。
When a pattern transfer mask having the pattern shown in FIG. 1D is used to transfer a pattern onto the wafer with an electron beam, a pattern (regular pattern) having the same line width as shown in FIG. Formed on top. That is, when the pattern transfer mask is formed by the electron beam exposure technique, correction for the proximity effect at the time of the subsequent transfer is also incorporated in advance (additionally, excessive correction is performed).

【0020】ここでマスク作製時でのパターンの太り方
と、ウェーハ上への電子ビーム転写時でのパターンの細
り方が一致することが、適正な補正が行える必要条件で
ある。そのためには、マスクパターン描画時のドーズ分
布のパターンエッジでの傾斜Δθ(図1(b))が、パ
ターン転写時のドーズ分布の傾斜の(1/縮小率)倍で
あるのが望ましい。このドーズ分布の傾斜Δθは、パタ
ーン描画装置のビーム分解能とレジスト中での電子ビー
ムの散乱(前方散乱)によるビームの等価的なボケとの
2乗和の平方根で決まる。
Here, it is a necessary condition that proper correction can be performed so that the pattern thickness at the time of mask fabrication and the pattern narrowing at the time of electron beam transfer onto a wafer match. For this purpose, it is desirable that the slope Δθ (FIG. 1B) at the pattern edge of the dose distribution at the time of mask pattern drawing be (1 / reduction rate) times the slope of the dose distribution at the time of pattern transfer. The slope Δθ of the dose distribution is determined by the square root of the sum of squares of the beam resolution of the pattern drawing apparatus and the equivalent blur of the beam due to the scattering (forward scattering) of the electron beam in the resist.

【0021】一方、パターン転写時のドーズ分布の傾斜
は、一般に高加速電圧の電子ビームを用いれば前方散乱
はほとんどなく、ほぼビーム分解能で決まる。したがっ
て1/4縮小の場合、Δθの値が転写装置のΔθの4倍
であればよい。したがって、電子ビーム転写装置のビー
ム分解能をΔとした時、マスクパターン描画装置のビー
ム分解能をM・Δとすれば最も適切に補正ができる。た
だし、正確にM・Δでなくても、マスクパターン描画装
置のビーム分解能を転写装置の分解能より悪い値とし
て、過剰補正露光の程度で制御しても同様の補正は可能
である。
On the other hand, the slope of the dose distribution at the time of pattern transfer generally has almost no forward scattering when an electron beam having a high accelerating voltage is used, and is almost determined by the beam resolution. Therefore, in the case of 縮小 reduction, the value of Δθ may be four times as large as Δθ of the transfer device. Therefore, assuming that the beam resolution of the electron beam transfer device is Δ, the most appropriate correction can be made if the beam resolution of the mask pattern drawing device is M · Δ. However, even if it is not exactly M · Δ, the same correction can be performed by controlling the beam resolution of the mask pattern drawing apparatus to a value lower than the resolution of the transfer apparatus and controlling the degree of overcorrection exposure.

【0022】図2は、本発明の1実施例に係る近接効果
補正方法を組み込んだパターン転写用マスク作製と同マ
スクを用いるウェーハ転写露光のフローチャートであ
る。まず、レジスト塗布済のマスク基板を準備し(3
1)、この基板のレジスト上に電子ビーム描画によりマ
スクパターンを描く(32)。
FIG. 2 is a flow chart of a method of fabricating a pattern transfer mask incorporating the proximity effect correction method according to one embodiment of the present invention and a wafer transfer exposure using the same mask. First, a resist-coated mask substrate is prepared (3.
1) A mask pattern is drawn on the resist of this substrate by electron beam drawing (32).

【0023】次に、別途作成しておいた近接効果補正用
マスク(34、作成方法後述)を用いて(34)、パタ
ーン転写用マスクの補正露光を行う(33)。この際
に、マスク上に形成されるパターンが、後のウェーハへ
の電子ビーム転写時の近接効果の分も上乗せして補正さ
れた(過剰補正された)ものとなるように、補正マスク
のパターン及び露光量を決定する。その後、現像(3
5)、エッチング(36)を経て、近接効果補正織り込
み済のパターン転写用マスクが完成する(37)。そし
て、このパターン転写用マスクを用いてウェーハ上への
電子ビーム転写を行う(38)。この一回の転写露光
で、マスク描画時及び電子ビーム転写時の近接効果補正
をも含んだ露光を行うことができる。
Next, using a proximity effect correction mask (34, a preparation method described later) prepared separately (34), the pattern transfer mask is corrected and exposed (33). At this time, the pattern of the correction mask is corrected so that the pattern formed on the mask is corrected (excessively corrected) by adding the proximity effect at the time of electron beam transfer to the subsequent wafer. And the exposure amount. Then, develop (3
5) After etching (36), a pattern transfer mask incorporating the proximity effect correction weave is completed (37). Then, the electron beam is transferred onto the wafer using the pattern transfer mask (38). With this single transfer exposure, exposure including proximity effect correction during mask drawing and electron beam transfer can be performed.

【0024】図3は、本発明の1実施例で用いる近接効
果補正用マスクの作成方法を説明するための図である。
(a)はパターンの平面図であり、(b)は各区域の補
正基準面積を示す。転写を行う場合の電子ビームの加速
電圧を100kVと仮定して後方散乱電子の拡がり幅を6
0μm とした。そして、マスクを一点鎖線の区切りで示
す5μm ×5μm の区域に分割した。このパターン中に
は、右側に大きい長方形のパターン63があり、左側に
高密度の線状のパターン61がある。また、50nmのM
oの下地パターン65、67(上下に延びる帯状)が形
成されている。各区域で非露光部の面積は、51、54
で示した区域では非露光部の面積は0である。55、5
6、57で示した区域では、非露光部の面積は最大にな
っている。
FIG. 3 is a diagram for explaining a method of forming a proximity effect correction mask used in one embodiment of the present invention.
(A) is a plan view of a pattern, and (b) shows a correction reference area of each area. Assuming that the accelerating voltage of the electron beam at the time of transfer is 100 kV, the spread width of the backscattered electrons is 6
It was set to 0 μm. Then, the mask was divided into 5 μm × 5 μm areas indicated by dashed lines. In this pattern, there is a large rectangular pattern 63 on the right side, and a high-density linear pattern 61 on the left side. Also, the 50 nm M
The base patterns 65 and 67 of o (a strip extending vertically) are formed. The area of the non-exposed area in each area is 51, 54
In the area indicated by, the area of the non-exposed portion is 0. 55, 5
In the areas indicated by 6 and 57, the area of the non-exposed portion is the maximum.

【0025】各区域でS1 :下地パターンのない領域の
面積(例えば図で右下がりのハッチング部)、S2 :非
露光部分の面積(図で左下がりのハッチング部)を全区
域について計算し、(S11 +S2 )の値を算出し
た。ここでK1 は0.5とした。最小線幅のパターンを
含み且つ(S11 +S2 )の値が最小となる区域(図
で52と53)での値0.6を得た。各区域での(S1
1 +S2 )の値から0.6を引いた値を(b)に示し
た。例えば区域51、54では0.2となり0.6を引
くと−0.4となるが、負の領域では0とした。このよ
うな数字に比例した大きさの開口を各区域の中央に設け
た近接効果補正用マスクを作製し、このマスクを用いて
転写時の後方散乱電子の拡がり程度のボケを持つビーム
で転写用マスクに補正露光を行った。
In each area, S 1 : the area of a region without a base pattern (for example, a hatched portion falling to the lower right in the figure), and S 2 : the area of a non-exposed portion (a hatched portion to the lower left in the figure) are calculated for all the areas. , (S 1 K 1 + S 2 ) were calculated. Here K 1 is set to 0.5. A value of 0.6 was obtained in the area (52 and 53 in the figure) including the pattern of the minimum line width and having the minimum value of (S 1 K 1 + S 2 ). (S 1 in each area
The value obtained by subtracting 0.6 from the value of (K 1 + S 2 ) is shown in (b). For example, in the areas 51 and 54, it becomes 0.2, and when 0.6 is subtracted, it becomes -0.4. Producing a proximity effect correction mask in which an opening having a size proportional to such a number is provided in the center of each area, and using this mask, a beam having a blur that is about the extent of backscattered electrons spreading during transfer is used for transfer. Correction exposure was performed on the mask.

【0026】このようにして作成したパターン転写用マ
スクを用い、電子ビーム縮小転写装置を用いてウェーハ
へ転写露光すると、ウェーハ上で近接効果が適正に補正
されたパターンを得ることができる。上記の実測による
適正露光強さの決め方は次のとおりである。まず、特開
平5−175110号の方法で、図3(b)に示した値
に比例した面積を持つ穴を各区域に設けた補正用マスク
を作り、露光時間を5段階変えた値で補正露光を行い、
5種類のパターン転写用マスクを得た。この5種類のマ
スクを用いて電子ビーム転写を行い、得られた5種類の
パターンの近接効果の補正の程度から、パターン転写用
マスク作成時の補正露光の最適強度を求めた。
When the pattern transfer mask thus prepared is transferred and exposed to a wafer using an electron beam reduction transfer apparatus, a pattern on which the proximity effect has been properly corrected can be obtained. The method of determining the appropriate exposure intensity based on the above actual measurement is as follows. First, according to the method disclosed in Japanese Patent Application Laid-Open No. 5-175110, a correction mask in which holes having areas proportional to the values shown in FIG. Exposure,
Five types of pattern transfer masks were obtained. Electron beam transfer was performed using these five types of masks, and from the degree of correction of the proximity effect of the obtained five types of patterns, the optimum intensity of the correction exposure at the time of preparing the pattern transfer mask was obtained.

【0027】次に補正露光用マスクの開口を算出する際
に、各区域の周辺からの後方散乱電子の影響をも考慮す
る態様の実施例について述べる。図4は、区域の外部
に、転写時のビームの後方散乱電子の拡がりの半分程度
の拡がりを持つ周辺領域を考慮し、図3の場合より、よ
り高精度な近接効果補正用マスクの開口面積の求め方の
説明図である。
Next, a description will be given of an embodiment in which the influence of backscattered electrons from the periphery of each area is taken into account when calculating the opening of the correction exposure mask. FIG. 4 shows a peripheral area having a spread of about half the spread of the backscattered electrons of the beam at the time of transfer outside the area, and shows a more accurate opening area of the proximity effect correction mask than the case of FIG. FIG.

【0028】この半導体デバイスにおいては、右下がり
の密なハッチングで示すように、Siウェハ上に図の左
右に延びる2本のタングステン下地パターン85、87
が形成されている。タングステンパターンの厚さは10
0nmである。その他の部分はSi層である。その上に、
今回露光パターンである、左下がりの粗いハッチングで
示すように、図の上下に延びる2本のパターン81、8
3を形成する。
In this semiconductor device, two tungsten base patterns 85 and 87 extending on the left and right sides of the drawing on the Si wafer as shown by dense hatching downward to the right.
Are formed. Tungsten pattern thickness is 10
0 nm. Other parts are Si layers. in addition,
The two patterns 81 and 8 extending upward and downward in the figure, as shown by rough hatching in the lower left, which are the exposure patterns this time.
Form 3

【0029】以下に補正用マスクの補正露光開口の広さ
の決定方法について説明する。下地Wパターン85、8
7からの電子の後方散乱の広がりの半径を3Rbmとし、
本実施例ではその1/3までの半径Rbmの範囲を補正対
象とした。
Hereinafter, a method of determining the width of the correction exposure opening of the correction mask will be described. Base W pattern 85, 8
The radius of the backscattering spread of electrons from 7 is 3R bm ,
In the present embodiment, the range of the radius R bm up to 1/3 of the range is set as a correction target.

【0030】各区域での補正露光の開口の面積を、以下
の手法で計算する。区域acegの中心から上記Rbm
半径とする円を考え、その内部で、次に示す面積あるい
は面積比を求める。なお、アルファベットの連続符号は
図中に示されている該アルファベットの点で囲まれてい
る図面の面積を示す。 面積S1 :acdha(区域のうち、Wの下地パターン
が存在しない部分の面積) 面積S2 :bcefb(区域のうち、今回非露光部の面
積) 面積比R3 :前記円の内部でかつ区域外でのWの下地パ
ターンが存在しない部分の面積比=(ABCDA+OE
FGNO+MHIJKLM−abcdha)÷(πRbm
2−acega) 面積比R4 :前記円の内部でかつ区域外での非露光部の
面積比=(PLMNOP+BCJKB+FGHIF−b
cdefb) ÷(πRbm 2 −acega) S=K21 +S2 +K3 ×R3 ×acega+K4 ×
4 ×acegaを計算する。次に、最小線幅の非露光
部を含む区域中でSが最小値をとる区域での上記Sの値
をS′min とする。S−S′min を、補正用マスクの各
区域における補正露光開口の面積とした。
The area of the opening for correction exposure in each area is calculated by the following method. A circle having a radius of R bm is considered from the center of the area aceg, and the following area or area ratio is obtained inside the circle. Note that the consecutive letters of the alphabet indicate the area of the drawing surrounded by the dots of the alphabet shown in the drawing. Area S 1 : addha (Area of area where W base pattern does not exist in area) Area S 2 : bcefb (Area of non-exposed area in area) Area ratio R 3 : Inside and area of the circle Area ratio of the portion where the W base pattern does not exist outside = (ABCDA + OE)
FGNO + MHIJKLM-abcdha) ÷ (πR bm
2− acega) Area ratio R 4 : Area ratio of non-exposed portion inside the circle and outside the area = (PLMMNOP + BCJKB + FGHIF−b)
cdefb) ÷ (πR bm 2 −acega) S = K 2 S 1 + S 2 + K 3 × R 3 × acega + K 4 ×
Calculate R 4 × acega. Next, the value of S in an area where S has the minimum value in an area including the non-exposed portion having the minimum line width is defined as S ′ min . SS ′ min was defined as the area of the correction exposure opening in each area of the correction mask.

【0031】なお、転写すべきパターンをパターン転写
用マスク上で小領域(主視野・副視野)に分割し、各小
領域間に非パターン領域を設ける場合には、上記各区域
の周辺領域を、上記非パターン領域を取り除いた場合の
領域とする。それによって、適正な近接効果補正用マス
クの開口面積を設定できる。
When a pattern to be transferred is divided into small areas (main field and sub-field) on a pattern transfer mask, and a non-pattern area is provided between the small areas, the peripheral area of each of the above-mentioned areas must be divided. , A region when the non-pattern region is removed. As a result, an appropriate opening area of the proximity effect correction mask can be set.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
によれば、従来のパターン寸法を歪ませて近接効果補正
を行う方法に比べて次の効果が得られる。 パターン寸法を変えるための膨大な計算が不要とな
る。 パターン形成時の矩形数の増加(可変成形ビームの
場合)や斜線の発生を防ぐことができる。 パターン形成時と転写時のビーム分解能の差、パタ
ーン倍率の違いを補正することができる。 パターン形成時と転写時の後方散乱電子の拡がりの
差を考慮した補正を行うことができる。
As is apparent from the above description, according to the present invention, the following effects can be obtained as compared with the conventional method of correcting the proximity effect by distorting the pattern size. A huge calculation for changing the pattern size is not required. It is possible to prevent an increase in the number of rectangles during pattern formation (in the case of a variable shaped beam) and the occurrence of oblique lines. It is possible to correct a difference in beam resolution between pattern formation and transfer and a difference in pattern magnification. Correction can be performed in consideration of the difference in the spread of backscattered electrons during pattern formation and transfer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本となる原理を説明する図である。FIG. 1 is a diagram for explaining the basic principle of the present invention.

【図2】本発明の1実施例に係る近接効果補正方法を組
み込んだパターン転写用マスク作製と同マスクを用いる
ウェーハ転写露光のフローチャートである。
FIG. 2 is a flowchart of a process for producing a pattern transfer mask incorporating a proximity effect correction method according to an embodiment of the present invention and wafer transfer exposure using the same mask.

【図3】本発明の1実施例で用いる近接効果補正用マス
クの作成方法を説明するための図である。
FIG. 3 is a diagram for explaining a method of creating a proximity effect correction mask used in one embodiment of the present invention.

【図4】区域の外部に、転写時のビームの後方散乱電子
の拡がりの半分程度の拡がりを持つ周辺領域を考慮し、
図3の場合より、より高精度な開口面積の求め方の説明
図である。
FIG. 4 takes into account a peripheral area outside the area which has a spread of about half that of the backscattered electrons of the beam during transfer,
FIG. 4 is an explanatory diagram of a method of obtaining an opening area with higher accuracy than the case of FIG. 3.

【符号の説明】[Explanation of symbols]

1 線パターン 2 ドーズ 3 バックグラウンドドーズ 4 近接効果補正露
光ドーズ 5 合計ドーズ 6 しきい値 7 線パターンドーズ 8 過剰補正露光ド
ーズ 9 線パターンドーズ 10 パターン転写用マスク上の線パターン 51〜57 区域 61 線パターン 63 長方形のパタ
ーン 65,67 下地パターン 81,83 パターン 85,87 下地パ
ターン
1 Line Pattern 2 Dose 3 Background Dose 4 Proximity Effect Correction Exposure Dose 5 Total Dose 6 Threshold 7 Line Pattern Dose 8 Overcorrection Exposure Dose 9 Line Pattern Dose 10 Line Pattern on Pattern Transfer Mask 51-57 Area 61 Line Pattern 63 Rectangular pattern 65, 67 Base pattern 81, 83 Pattern 85, 87 Base pattern

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 近接効果補正を過剰に行うことにより予
め近接効果補正を織り込んだパターン転写用マスクを用
いて電子ビーム転写露光を行う際に、上記転写露光のビ
ーム分解能より悪い分解能、あるいは、より低加速電圧
のパターン描画装置で上記マスクのパターン形成を行う
ことを特徴とする近接効果補正方法。
When performing electron beam transfer exposure using a pattern transfer mask in which proximity effect correction has been incorporated in advance by excessively performing proximity effect correction, a resolution lower or better than the beam resolution of the transfer exposure. A proximity effect correction method, wherein a pattern of the mask is formed by a pattern writing apparatus having a low acceleration voltage.
【請求項2】 上記マスクのパターン形成時のビーム分
解能が、上記転写露光時にレジスト中で電子ビームが散
乱された結果レジスト下面でビーム分解能が悪化した程
度のビーム分解能であることを特徴とする請求項1記載
の近接効果補正方法。
2. The method according to claim 1, wherein the beam resolution at the time of pattern formation of the mask is such that the beam resolution is deteriorated on the lower surface of the resist as a result of scattering of the electron beam in the resist during the transfer exposure. Item 6. The proximity effect correction method according to Item 1.
【請求項3】 上記転写露光の縮小率を1/M、該露光
のビーム分解能をΔとしたとき、上記パターン転写用マ
スクのパターン形成時のビーム分解能をほぼM・Δとす
ることを特徴とする請求項1記載の近接効果補正方法。
3. The method according to claim 1, wherein the reduction ratio of the transfer exposure is 1 / M, and the beam resolution of the exposure is Δ, and the beam resolution at the time of pattern formation of the pattern transfer mask is approximately M · Δ. The proximity effect correction method according to claim 1.
【請求項4】 基板材料と異なる後方散乱電子係数を有
する材料からなる下地パターンが既に形成されているウ
ェーハ上に重ねて今回パターンを形成する場合におい
て、それ自身が電子ビーム露光工程を経て作製されたパ
ターン転写用マスクを用いてウェーハ上に電子ビーム縮
小転写露光を行う際の近接効果を補正する方法であっ
て;該パターン転写用マスクの領域を、上記転写の縮小
率倍に縮小した時にパターン転写時の後方散乱電子の拡
がり幅よりも十分小さい寸法の区域に区分けし、 各区域で下地パターンの無い領域の面積S1 と今回の非
露光部の面積S2 とを算出し、 (K11 +S2 )の値を全区域について算出し(K1
は係数)、 最小線幅の非露光部を含む区域で且つ上記値が最小とな
る区域での上記値をSmin とし、 各区域で(K11 +S2 )−Smin =補正基準面積を
算出し、 該補正基準面積に対応した面積の開口を設けた近接効果
補正用マスクを作製し、 該近接効果補正用マスクを用いて、上記パターン転写用
マスクの電子ビーム露光工程の前又は後に上記パターン
転写用マスクを過剰に補正露光することを特徴とする近
接効果補正方法。
4. When forming a pattern this time by superimposing a base pattern made of a material having a backscattering electron coefficient different from that of a substrate material on an already formed wafer, the pattern itself is manufactured through an electron beam exposure step. Correcting the proximity effect when performing electron beam reduction transfer exposure on a wafer using a pattern transfer mask; wherein the pattern transfer mask area is reduced when the transfer reduction ratio is doubled. The area is divided into areas having dimensions sufficiently smaller than the spread width of the backscattered electrons at the time of transfer, and in each area, the area S 1 of the area without the base pattern and the area S 2 of the non-exposed part this time are calculated, and (K 1 The value of (S 1 + S 2 ) is calculated for all areas (K 1
Is a coefficient), the above-mentioned value in the area including the non-exposed part having the minimum line width and the above-mentioned area where the above-mentioned value is the minimum is defined as S min, and (K 1 S 1 + S 2 ) −S min = correction reference area Calculating a proximity effect correction mask provided with an opening having an area corresponding to the correction reference area, and using the proximity effect correction mask before or after the electron beam exposure step of the pattern transfer mask. A proximity effect correction method, wherein the pattern transfer mask is subjected to excessive correction exposure.
【請求項5】 上記パターン転写用マスクの過剰補正露
光の程度を、補正露光時のドーズを可変にして実際に作
製したマスクを用いて転写実験を行うか、あるいは計算
機シュミレーションによって決めることを特徴とする請
求項4記載の近接効果補正方法。
5. The method according to claim 1, wherein the degree of overcorrection exposure of the pattern transfer mask is determined by performing a transfer experiment using an actually manufactured mask with a variable dose during correction exposure or by computer simulation. The proximity effect correction method according to claim 4, wherein
【請求項6】 基板材料と異なる後方散乱電子係数を有
する材料からなる下地パターンが既に形成されているウ
ェーハ上に重ねて今回パターンを形成する場合におい
て、それ自身が電子ビーム露光工程を経て作製されたパ
ターン転写用マスクを用いてウェーハ上に電子ビーム縮
小転写露光を行う際の近接効果を補正する方法であっ
て;該パターン転写用マスクの領域を、上記転写の縮小
率倍に縮小した時にパターン転写時の後方散乱電子の拡
がり幅よりも十分小さい寸法の区域に区分けするととも
に、各区域の周辺に同じく後方散乱電子の拡がり半径よ
り小さい半径の円内からその区域を除いた周辺領域を設
定し、 各区域で、下地パターンの無い領域の面積S1 と、今回
の非露光部の面積S2と、周辺領域の下地パターンの無
い領域の面積比R3 と、周辺領域の非露光部の面積比R
4 を算出し、 (K21 +S2 +S033 +S044 )の値
を各区域で算出し(K2 、K3 、K4 は係数、S0 は上
記区域の面積)、 最小線幅の非露光部を含む区域で且つ上記値が最小とな
る区域でのその値をS′min とし、 各区域で(K21 +S2 +S033 +S04
4 −S′min )(補正基準面積)を算出し、 該補正基準面積に対応する面積の開口を設けた近接効果
補正用マスクを作製し、 該近接効果補正用マスクを用いて上記パターン転写用マ
スクを過剰に補正露光することを特徴とする近接効果補
正方法。
6. When forming a pattern this time by superimposing a base pattern made of a material having a backscattering electron coefficient different from that of a substrate material on an already formed wafer, the pattern itself is produced through an electron beam exposure step. Correcting the proximity effect when performing electron beam reduction transfer exposure on a wafer using a pattern transfer mask; wherein the pattern transfer mask area is reduced when the transfer reduction ratio is doubled. In addition to dividing into areas with dimensions sufficiently smaller than the spread width of the backscattered electrons at the time of transfer, a surrounding area is set around each area except for a circle with a radius smaller than the spread radius of the backscattered electrons. in each zone, the area S 1 of the region with no underlying pattern, the area S 2 of this non-exposed portion, the area ratio of no base pattern in the peripheral region region R 3 and the area ratio R of the non-exposed portion in the peripheral region
4 is calculated, and the value of (K 2 S 1 + S 2 + S 0 R 3 K 3 + S 0 R 4 K 4 ) is calculated in each area (K 2 , K 3 , K 4 are coefficients, and S 0 is the above area) The value of the area including the non-exposed portion having the minimum line width and the area where the above value is minimum is defined as S ′ min, and (K 2 S 1 + S 2 + S 0 R 3 K 3 + S) 0 R 4 K
4- S ' min ) (correction reference area), and a proximity effect correction mask having an opening having an area corresponding to the correction reference area is manufactured. A proximity effect correction method, which comprises subjecting a mask to excessive correction exposure.
【請求項7】 転写すべきパターンをパターン転写用マ
スク上で小領域(主視野・副視野)に分割し、各小領域
間に非パターン領域を設ける場合において、上記各区域
の周辺領域を、上記非パターン領域を取り除いた場合の
領域とすることを特徴とする請求項6記載の近接効果補
正方法。
7. When a pattern to be transferred is divided into small areas (main field of view and sub-field of view) on a pattern transfer mask and a non-pattern area is provided between each of the small areas, a peripheral area of each of the areas is defined as 7. The proximity effect correction method according to claim 6, wherein the non-pattern area is set as an area obtained by removing the non-pattern area.
JP10172114A 1998-06-05 1998-06-05 Method for correcting proximity effect Pending JPH11354423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10172114A JPH11354423A (en) 1998-06-05 1998-06-05 Method for correcting proximity effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10172114A JPH11354423A (en) 1998-06-05 1998-06-05 Method for correcting proximity effect

Publications (1)

Publication Number Publication Date
JPH11354423A true JPH11354423A (en) 1999-12-24

Family

ID=15935823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10172114A Pending JPH11354423A (en) 1998-06-05 1998-06-05 Method for correcting proximity effect

Country Status (1)

Country Link
JP (1) JPH11354423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104193A1 (en) 2004-03-30 2005-11-03 Fujitsu Limited Method for correcting electron beam exposure data
KR100607426B1 (en) * 2003-02-28 2006-08-01 파이오니아 가부시키가이샤 Electron beam recording substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100607426B1 (en) * 2003-02-28 2006-08-01 파이오니아 가부시키가이샤 Electron beam recording substrate
WO2005104193A1 (en) 2004-03-30 2005-11-03 Fujitsu Limited Method for correcting electron beam exposure data
US7569842B2 (en) 2004-03-30 2009-08-04 Fujitsu Microelectronics Limited Method for correcting electron beam exposure data

Similar Documents

Publication Publication Date Title
JP3009923B2 (en) Improved mask for photolithography
US5667923A (en) Charged particle beam exposure compensating proximity effect
JP4218528B2 (en) Method for forming exposure mask pattern and method for manufacturing semiconductor device
US5208124A (en) Method of making a mask for proximity effect correction in projection lithography
US7939246B2 (en) Charged particle beam projection method
US5994009A (en) Interlayer method utilizing CAD for process-induced proximity effect correction
EP0496158A2 (en) Proximity correction method for E-beam lithography
KR100279034B1 (en) Dose-corrected Proximity Compensation Techniques for Electron Beam Lithography
JPS6219048B2 (en)
EP1246010B1 (en) Photomask manufacturing method
KR100374635B1 (en) Exposure method for Correction of dimension variation during etching of photo mask and recording medium in which the exposure method is recorded
JP4257088B2 (en) Method of correcting and exposing a change in line width that occurs in the development stage during photomask manufacture, and computer-readable recording medium having recorded a program therefor
US6783905B2 (en) Electron beam exposure method using variable backward scattering coefficient and computer-readable recording medium having thereof
JP3094927B2 (en) Electron beam exposure apparatus and its exposure method
JP2002313693A (en) Forming method for mask pattern
JP3874629B2 (en) Charged particle beam exposure method
JP3287333B2 (en) Electron beam exposure mask, method of manufacturing the same, and method of manufacturing a semiconductor device
JP3286225B2 (en) Pattern design method
JPH11354423A (en) Method for correcting proximity effect
US7897308B2 (en) Method for transferring a predetermined pattern reducing proximity effects
KR20020018280A (en) Method of electron beam lithography by double exposure and fabrication method of photomask using the same
JP2001093803A (en) Method of calculating blur value in lithography and method of lithography
JPS61284921A (en) Electron beam lithography
US5789119A (en) Image transfer mask for charged particle-beam
JP3462989B2 (en) Photomask and method of making the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040720