JPH11354361A - Rare earth magnet with good surface cleanliness and manufacture therefor - Google Patents

Rare earth magnet with good surface cleanliness and manufacture therefor

Info

Publication number
JPH11354361A
JPH11354361A JP10160069A JP16006998A JPH11354361A JP H11354361 A JPH11354361 A JP H11354361A JP 10160069 A JP10160069 A JP 10160069A JP 16006998 A JP16006998 A JP 16006998A JP H11354361 A JPH11354361 A JP H11354361A
Authority
JP
Japan
Prior art keywords
earth magnet
rare
rare earth
cleaning
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10160069A
Other languages
Japanese (ja)
Inventor
Masahiro Takahashi
昌弘 高橋
Takeshi Mizuhara
猛 水原
Katsuhei Abe
克平 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10160069A priority Critical patent/JPH11354361A/en
Publication of JPH11354361A publication Critical patent/JPH11354361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve surface cleanliness by washing, while rubbing, the surface of a rare earth magnet coated with a corrosion resistant coat. SOLUTION: Firstly, surfaces 10a and 10b of a rare earth magnet 10 such as an R-T-B group anisotropic baked magnet are coated with a corrosion resistant coat such as Ni plating by a method such as barrel electrolytic Ni plating. Then, a sponge 20 of a rubbing member 30 is rotated while the surface of the sponge 20 is pressed against the surface 10a of the rare earth magnet 10, so that the rare earth magnet surface 10a is rubbed with the sponge 20 surface. At rubbing, the surface 10a is wetted with a pure water or a washing liquid wherein the pure water is added with a washing agent comprising an interfacial active agent, or both. Then, the rare earth magnet 10 is turned upside-down so that the rear surface 10b faces up, and the rear surface 10b is contacted with the sponge 20 for rubbing in the same way. Thus, the particles sticking to the front surface 10a and the rear surface 10b are removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば磁気式、光
磁気式、光式等の記録/再生装置に搭載される記録再生
ヘッドの高精度の位置決め用駆動装置等に有用な表面清
浄度の良好な希土類磁石、およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface cleanness useful for a high-precision positioning drive of a recording / reproducing head mounted on a recording / reproducing apparatus of a magnetic type, a magneto-optical type, an optical type, etc. The present invention relates to a good rare earth magnet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】R−T−B系希土類永久磁石(RはYを
含む希土類元素の1種または2種以上、TはFeまたは
FeとCo)は優れた磁気特性を有しコストパフォーマ
ンスに優れるため、現在希土類磁石の主流となってい
る。このR−T−B系希土類永久磁石として一般的なR
−T−B系希土類焼結磁石は、溶解等により作製した合
金塊を粉砕、成形、焼結後に、熱処理、加工、表面処理
するかまたは加工、熱処理、表面処理して製造される
が、耐蝕性が悪いために表面に耐蝕性被膜を被覆する処
理が行われている。特にハ−ドディスクドライブ等の記
録/再生装置の用途には信頼性の高いNiメッキ等が必
須となっている。
2. Description of the Related Art R-T-B rare earth permanent magnets (R is one or more rare earth elements including Y, T is Fe or Fe and Co) have excellent magnetic properties and excellent cost performance. For this reason, rare earth magnets are currently the mainstream. A general R-T-B rare earth permanent magnet,
-T-B based rare earth sintered magnets are manufactured by pulverizing, shaping and sintering an alloy lump produced by melting or the like and then heat-treating, processing and surface-treating or processing, heat-treating and surface-treating. Due to the poor properties, a process of coating the surface with a corrosion-resistant film is performed. In particular, a highly reliable Ni plating or the like is essential for use in a recording / reproducing device such as a hard disk drive.

【0003】また、焼結法以外の鋳造・熱間加工(圧
延)法(例えば特開平6−302419号公報、特開昭
64−704号公報等)によるR−T−B系希土類磁石
や、超急冷法により得られた薄帯を用いてホットプレス
等で高密度化後、温間で塑性変形させて異方性化したR
−T−B系希土類磁石(例えば、特開昭64−7504
号公報等)においてもNiメッキ等は必須である。
[0003] Further, an RTB-based rare earth magnet obtained by a casting / hot working (rolling) method other than the sintering method (for example, JP-A-6-302419, JP-A-64-704, etc.), Using a ribbon obtained by the super-quenching method, the density is increased by hot pressing or the like, and then plastically deformed in the warm state to make R anisotropic.
-TB rare earth magnets (for example, see JP-A-64-7504).
Also, Ni plating and the like are indispensable.

【0004】しかし、Niメッキ等を被覆した希土類磁
石の表面には、多数の微粒子が付着しており、この付着
粒子により記録/再生装置において、記録/再生エラ−
が生じないように、ハ−ドディスクドライブのボイスコ
イルモ−タ(VCM)等の用途に使用されるR−T−B
系希土類磁石は、強磁性微粒子の付着を極力抑えた表面
清浄度の良好なものが望まれている。そして、表面清浄
度を良好とする手段は、例えば純水中での超音波洗浄等
によるのが一般的であった。
However, a large number of fine particles adhere to the surface of the rare earth magnet coated with Ni plating or the like, and the recording / reproducing error occurs in a recording / reproducing apparatus due to the adhered particles.
R-T-B used for applications such as voice coil motor (VCM) for hard disk drives
It is desired that the rare earth magnets have good surface cleanliness and minimize the attachment of ferromagnetic fine particles. The means for improving the surface cleanliness is generally, for example, ultrasonic cleaning in pure water.

【0005】[0005]

【発明が解決しようとする課題】記録/再生エラ−の問
題となる上記付着粒子は主にR−T−B系希土類磁石の
製造工程で生じる強磁性の微粉末が、例えばVCMを構
成するR−T−B系希土類磁石の表面に遊離状態で付着
したものである。
The adhered particles which cause a recording / reproducing error are mainly ferromagnetic fine powders produced in the process of manufacturing an RTB-based rare earth magnet. -It is one which is attached to the surface of the TB rare earth magnet in a free state.

【0006】具体的には、その付着状況を走査型電子顕
微鏡等により撮影した写真を画像処理して求めた面積近
似の円相当径で1〜50μmの強磁性付着粒子が問題と
なる。
More specifically, ferromagnetic particles having a circle-equivalent diameter of about 1 to 50 μm in area approximation obtained by image processing of a photograph taken of the state of adhesion by a scanning electron microscope or the like poses a problem.

【0007】例えば、耐蝕性被膜を被覆する前の磁石体
同士の衝突やNiメッキを被覆したもの同士の衝突等に
よって生成されるR−T−B系希土類磁石の微粉未粒
子、Niメッキに付随して生じるNi微粒子等である。
従来の脱気していない純水中での超音波洗浄により、表
面の付着粒子をある程度低減することは可能であるが、
高記録密度化に伴い要求される高い表面清浄度に対応す
ることは困難である。
For example, fine particles of RTB-based rare earth magnets generated by collision of magnets before coating with a corrosion-resistant coating or collision between coatings of Ni plating, etc., accompanying Ni plating Ni fine particles and the like that are generated as a result.
Although it is possible to reduce the amount of particles attached to the surface to some extent by conventional ultrasonic cleaning in pure water that has not been degassed,
It is difficult to cope with high surface cleanliness required with the increase in recording density.

【0008】特にR−T−B系希土類磁石の微粉末粒子
をはじめとした希土類磁石の微粉末粒子は、磁気的な吸
着力が強いため上記従来の純水中での洗浄により十分に
除去することは困難であった。
In particular, fine powder particles of rare earth magnets, such as fine powder particles of RTB-based rare earth magnets, have a strong magnetic attraction, so that they are sufficiently removed by the conventional washing in pure water. It was difficult.

【0009】また、Ni粒子はNiメッキ層から脱落す
る形で発生するため、Niメッキ層から完全に脱落して
いるものの他、脱落しかかっているものが混在する。そ
のためNi粒子の付着力は一様でなく、これらの粒子を
除去し、上記記録/再生エラーが問題とならない清浄な
表面状態にまですることは困難であった。
[0009] Further, since the Ni particles are generated in a form of falling off the Ni plating layer, some of the Ni particles are coming off in addition to those completely falling off the Ni plating layer. For this reason, the adhesion of the Ni particles is not uniform, and it has been difficult to remove these particles to obtain a clean surface state in which the recording / reproducing error is not a problem.

【0010】そして、これらの付着粒子を希土類磁石の
表面に付着させたまま使用するとハ−ドディスク等の記
録/再生エラ−を誘発させることが懸念され、記録/再
生部を汚染しないようにVCM等に用いる希土類磁石は
表面清浄度の良好なものでなければならない。
If these particles are used while being adhered to the surface of the rare earth magnet, there is a concern that recording / reproducing errors of a hard disk or the like may be induced. Rare earth magnets used for such purposes must have good surface cleanliness.

【0011】本発明の目的は、例えば磁気式、光磁気
式、光式のいずれかの記録/再生装置の記録/再生ヘッ
ドの高精度位置決め用駆動装置に組み込まれる表面清浄
度の高い希土類磁石およびその製造方法を提供すること
にある。
An object of the present invention is to provide a rare-earth magnet having a high surface cleanness incorporated in a high-precision positioning drive of a recording / reproducing head of a recording / reproducing apparatus of any of a magnetic type, a magneto-optical type and an optical type. It is to provide a manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】本発明者らは、耐蝕性被
膜を被覆した表面清浄度の高い希土類磁石を得るため、
付着粒子、特に吸着力の強いR−T−B系希土類磁石の
微粉末粒子をはじめとした希土類磁石の微粉末粒子、N
iメッキ層から脱落したNi粒子等の強磁性微粒子の付
着低減の方法を鋭意検討した結果、耐蝕性被膜を被覆
し、希土類磁石の表面を摺擦しながら洗浄するか、ある
いはこの希土類磁石を脱気した純水、または界面活性剤
を含有した洗浄液中で超音波洗浄するか、あるいは両洗
浄方法を併用することにより、耐蝕性被膜層の表面が洗
浄され、表面清浄度の高い希土類磁石が得られることを
見出し、本発明に至ったものである。
Means for Solving the Problems In order to obtain a rare earth magnet having a high surface cleanliness coated with a corrosion resistant film,
Attachment particles, especially fine powder particles of rare earth magnets, including fine powder particles of RTB based rare earth magnets having a strong attraction force, N
As a result of intensive studies on a method of reducing the adhesion of ferromagnetic fine particles such as Ni particles dropped from the i-plated layer, it was found that the rare-earth magnet was coated with a corrosion-resistant coating and washed while being rubbed, or the rare-earth magnet was removed. The surface of the corrosion-resistant coating layer is cleaned by ultrasonic cleaning in pure water or a cleaning solution containing a surfactant, or by using both cleaning methods in combination, to obtain a rare-earth magnet with high surface cleanliness. It has been found that the present invention has been achieved.

【0013】本発明では、耐蝕性被膜を被覆後の希土類
磁石表面をブラシ等の表面を擦ることができる摺擦部材
で摺擦させて洗浄する。摺擦部材を用いることにより、
脱気していない従来の純水中で超音波洗浄する場合に比
べて、表面の付着粒子の除去作用力を高めることが可能
で高い洗浄能力が得られる。
In the present invention, the surface of the rare earth magnet coated with the corrosion resistant coating is cleaned by rubbing with a rubbing member capable of rubbing the surface of a brush or the like. By using a rubbing member,
Compared to the case of conventional ultrasonic cleaning in pure water that has not been degassed, the ability to remove particles adhered to the surface can be increased, and a high cleaning ability can be obtained.

【0014】また、摺擦部材として高い弾性を有する弾
性体を使用することにより、洗浄時の希土類磁石表面へ
の摺擦力の調整が容易となる。特にブラシおよび/また
はスポンジを使用することにより、希土類磁石表面の凹
凸に対応した確実な接触および摺擦力を確保できるとと
もに、この摺擦動作により希土類磁石表面に傷がつくこ
とを回避できる。
Further, by using an elastic body having high elasticity as the rubbing member, it is easy to adjust the rubbing force on the rare earth magnet surface during cleaning. In particular, by using a brush and / or a sponge, it is possible to secure a reliable contact and rubbing force corresponding to the irregularities on the surface of the rare-earth magnet, and to prevent the surface of the rare-earth magnet from being damaged by this rubbing operation.

【0015】ブラシ、スポンジの材質、形状について
は、希土類磁石表面に傷をつけない材質、および摺擦の
際希土類磁石表面を汚染しない材質であればよく、例え
ばポリアミド、PVA製のもの等を使用することができ
る。また、摺擦させる動作は回転運動を用いることによ
り実質的な摺擦回数、摺擦時間を多くとることが可能と
なり、高い洗浄能力を得ることができる。
The material and shape of the brush and sponge may be any material that does not damage the surface of the rare earth magnet and that does not contaminate the surface of the rare earth magnet during rubbing. For example, polyamide and PVA materials are used. can do. In addition, by using a rotary motion for the rubbing operation, the number of rubs and the rubbing time can be substantially increased, and a high cleaning ability can be obtained.

【0016】摺擦部材の回転摺擦運動の機構は特に限定
するものではないが、例えば希土類磁石表面に垂直ある
いは平行な回転軸を有する機構を用いることができる。
希土類磁石の各面の洗浄手順も特に限定するものではな
いが、一面を洗浄した後反転・移動等の変位操作により
別の面を洗浄する方法、複数の摺擦部材で同時に各面を
洗浄する方法、摺擦部材の変位操作により各面を洗浄す
る方法等を適用することができる。
The mechanism of the rotary rubbing movement of the rubbing member is not particularly limited. For example, a mechanism having a rotation axis perpendicular or parallel to the surface of the rare earth magnet can be used.
The procedure for cleaning each surface of the rare-earth magnet is not particularly limited, but a method of cleaning one surface and then cleaning another surface by a displacement operation such as inversion and movement, and simultaneously cleaning each surface with a plurality of rubbing members. A method, a method of cleaning each surface by a displacement operation of the rubbing member, or the like can be applied.

【0017】また、ブラシ、スポンジ等の摺擦部材は1
種類でも、単数でも、1回でも使用することができる
が、洗浄能力を高めるために1種類または2種類以上、
1個または2個以上、1回または2回以上の組み合わせ
で接触・洗浄することにより洗浄能力を高めることが可
能である。
Further, a rubbing member such as a brush and a sponge
It can be used alone, singly or once, but one or more types can be used to enhance the cleaning ability.
It is possible to increase the cleaning ability by contacting and cleaning one or two or more, one or two or more times in combination.

【0018】洗浄時間、回転数等の洗浄条件は被洗浄物
である希土類磁石の所望の表面清浄度等に応じて決定さ
れる。洗浄は、適度な潤滑性を得るとともに付着粒子の
除去を促進するために液体で被洗浄物の表面が濡れた状
態で摺擦部材を摺擦させて行う必要がある。
The cleaning conditions, such as the cleaning time and the number of revolutions, are determined according to the desired surface cleanliness of the rare earth magnet to be cleaned. The cleaning needs to be performed by rubbing the rubbing member in a state where the surface of the object to be cleaned is wet with a liquid in order to obtain appropriate lubricity and promote removal of adhered particles.

【0019】また、洗浄には、環境、ハンドリングの問
題から純水を使用することが好ましい。また、界面活性
剤を含有した洗浄液がより好ましく、希土類磁石表面の
洗浄の濡れ性が改善されるとともに、付着粒子の遊離の
促進・再付着の防止が図られ洗浄能力が向上する。
For cleaning, it is preferable to use pure water from the viewpoint of environment and handling. Further, a cleaning liquid containing a surfactant is more preferable, and the wettability of cleaning the surface of the rare earth magnet is improved, and the release of adhered particles is prevented and reattachment is prevented, thereby improving the cleaning ability.

【0020】本発明によれば十分な洗浄能力が得られる
が、その前および/または後処理として、他の洗浄方
法、例えば超音波洗浄、ジェット水洗浄等を実施するこ
とも可能である。特に純水に界面活性剤を含む洗浄剤を
添加して洗浄した場合、洗浄部に残る洗浄剤を除去する
ために、本発明における洗浄の後に純水による超音波洗
浄および/またはジェット水洗浄等の洗浄工程を付加す
ることが好ましい。洗浄後の乾燥方法は特に限定するも
のではないが、例えば室温〜100℃の温風乾燥、加熱
・減圧乾燥等を適用することができる。
According to the present invention, a sufficient cleaning ability can be obtained, but other cleaning methods such as ultrasonic cleaning, jet water cleaning and the like can be performed as pre- and / or post-treatments. In particular, in the case where a cleaning agent containing a surfactant is added to pure water for cleaning, in order to remove the cleaning agent remaining in the cleaning section, ultrasonic cleaning with pure water and / or jet water cleaning after cleaning in the present invention, etc. It is preferable to add a washing step. The method of drying after washing is not particularly limited, and for example, drying with warm air at room temperature to 100 ° C, drying under heating and reduced pressure, and the like can be applied.

【0021】また、本発明では、耐蝕性被膜を被覆した
希土類磁石表面を脱気した純水中で超音波洗浄する。純
水を脱気することにより超音波洗浄の効果が高められ、
従来の脱気されていない純水を使用した超音波洗浄に比
べて、表面に付着する粒子の総数を、さらには強磁性付
着粒子の比率を低減することができる。
In the present invention, the surface of the rare earth magnet coated with the corrosion resistant film is ultrasonically cleaned in degassed pure water. By degassing the pure water, the effect of ultrasonic cleaning is enhanced,
Compared with conventional ultrasonic cleaning using pure water that has not been degassed, the total number of particles adhering to the surface and the ratio of ferromagnetic particles can be reduced.

【0022】脱気した純水としては溶存酸素量を飽和溶
存酸素量の50%以下としたものを用いることが、付着
粒子の洗浄による除去効果を高めるために好ましい。脱
気する方法は特に限定されないが、例えば減圧脱気、特
にアスピレ−ションによる減圧脱気を利用することによ
り本発明による洗浄装置を小型化できる。
As the degassed pure water, it is preferable to use one having a dissolved oxygen content of 50% or less of the saturated dissolved oxygen content in order to enhance the effect of removing adhered particles by washing. The method of degassing is not particularly limited. For example, the cleaning device according to the present invention can be miniaturized by utilizing degassing under reduced pressure, in particular, depressurized degassing by aspiration.

【0023】また、純水に界面活性剤を含有した洗浄剤
を添加してなる洗浄液を脱気した後超音波洗浄に供する
と、耐蝕性被膜を被覆した希土類磁石表面への洗浄液の
濡れ性が改善されるとともに、付着した粒子の遊離の促
進・再付着の防止が図られ洗浄能力が向上する。
When the cleaning liquid obtained by adding a cleaning agent containing a surfactant to pure water is degassed and then subjected to ultrasonic cleaning, the wettability of the cleaning liquid on the surface of the rare earth magnet coated with the corrosion resistant coating is reduced. In addition to the improvement, the release of the adhered particles is promoted and the re-adhesion is prevented, thereby improving the cleaning ability.

【0024】被洗浄物である耐蝕性被膜を被覆した希土
類磁石に対する超音波振動子の配置・数は特に限定する
ものではないが、例えば被洗浄物に対して下側および/
または上側に配置することができる。均一な表面清浄度
を得るためには、超音波振動子を上側および下側に対称
配置することがよい。
The arrangement and the number of the ultrasonic transducers with respect to the rare earth magnet coated with the corrosion-resistant coating as the object to be cleaned are not particularly limited.
Or it can be arranged on the upper side. In order to obtain uniform surface cleanliness, it is preferable to arrange the ultrasonic transducers symmetrically on the upper and lower sides.

【0025】超音波の強度等の洗浄条件は被洗浄物であ
る前記希土類磁石の表面清浄度によって選択される。本
発明によれば十分な洗浄能力が得られるが、その前およ
び/または後処理に他の洗浄方法を組み合わせることも
可能である。
The cleaning conditions, such as the intensity of the ultrasonic wave, are selected according to the surface cleanliness of the rare earth magnet to be cleaned. According to the present invention, a sufficient cleaning ability is obtained, but it is also possible to combine other cleaning methods with the pre-processing and / or post-processing.

【0026】なお界面活性剤を含む洗浄剤を純水に添加
してなる洗浄液を用いて洗浄した場合、洗浄部に残った
洗浄剤を除去するために、その後に純水による超音波洗
浄、ジェット水洗浄、シャワ−洗浄等の洗浄工程を付加
することが好ましい。洗浄後の乾燥方法は特に限定する
ものではないが、例えば温風乾燥、加熱・減圧乾燥等が
適用できる。
When cleaning is performed using a cleaning liquid obtained by adding a cleaning agent containing a surfactant to pure water, ultrasonic cleaning with pure water, jet cleaning, and jetting are performed to remove the cleaning agent remaining in the cleaning section. It is preferable to add washing steps such as water washing and shower washing. The drying method after the washing is not particularly limited, and for example, hot air drying, heating and drying under reduced pressure can be applied.

【0027】良好な洗浄作用を実現するために、本発明
で用いる界面活性剤を含む洗浄液は、純水または脱気し
た純水に対し、0.1〜10体積%の石鹸や各種合成洗剤
等の界面活性剤を主成分とした洗浄剤(洗剤)を添加す
ることにより作製できる。洗浄液に占める洗浄剤の含有
量が0.1体積%未満では洗浄の改善効果が認められず、
10体積%を越えると洗浄剤の除去に多大の後洗浄の工
数を要する他表面に残存する洗浄剤分によって、最終的
に得られる希土類磁石の接着強度が低下する場合があり
好ましくない。
In order to achieve a good washing action, the washing solution containing a surfactant used in the present invention is used in an amount of 0.1 to 10% by volume of soap or various synthetic detergents with respect to pure water or degassed pure water. It can be prepared by adding a detergent (detergent) containing the above surfactant as a main component. If the content of the cleaning agent in the cleaning liquid is less than 0.1% by volume, the cleaning improvement effect is not recognized,
If the content exceeds 10% by volume, the removal of the detergent requires a large number of post-cleaning steps, and the adhesive strength of the finally obtained rare earth magnet may undesirably decrease due to the detergent remaining on the surface.

【0028】前記合成洗剤としてはアルキルベンゼンス
ルホン酸ソーダ、アルファオレフィンスルホン酸ソーダ
等の合成によって製造された界面活性剤を主成分とする
洗浄剤を用いることができる。特に、りん酸系の中性の
界面活性剤を主成分とする洗浄剤を用いることが防錆の
ために好ましい。
As the synthetic detergent, a detergent containing a surfactant as a main component produced by the synthesis of sodium alkylbenzene sulfonate, sodium alpha olefin sulfonate and the like can be used. In particular, it is preferable to use a detergent containing a phosphoric acid-based neutral surfactant as a main component for rust prevention.

【0029】また、本発明の洗浄液は、前記の純水に対
して、下記の界面活性剤と化学清浄剤とを合計で0.1〜
10体積%複合添加することにより作製できる。界面活
性剤としては例えば陰イオン界面活性剤、陽イオン界面
活性剤、あるいは両性界面活性剤、さらには非イオン
(中性)の界面活性剤のいずれかを用いることができ
る。
Further, the cleaning solution of the present invention comprises the following surfactants and chemical detergents in a total amount of 0.1 to 0.1 with respect to the pure water.
It can be prepared by adding 10% by volume of a composite. As the surfactant, for example, any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic (neutral) surfactant can be used.

【0030】化学清浄剤としては例えばソーダ塩類、け
い酸塩類、りん酸塩類のいずれかを用いることができ
る。特に、りん酸塩類の化学清浄剤である第一りん酸ソ
ーダ(NaH2 PO4 )、第二りん酸ソーダ(Na2
PO4 )、第三りん酸ソーダ(Na3 PO4 )、トリポ
リりん酸ソーダ(Na5 3 10)、ピロりん酸ソーダ
(Na4 2 7 )、ヘキサメタりん酸ソーダ(NaP
3 2 のいずれかが洗浄時の防錆(酸化防止)、表面
清浄化の向上のために好ましい。
As the chemical detergent, for example, any of soda salts, silicates and phosphates can be used. In particular, sodium phosphates (NaH 2 PO 4 ) and sodium phosphates (Na 2 H), which are chemical detergents for phosphates, are used.
PO 4 ), sodium tertiary phosphate (Na 3 PO 4 ), sodium tripolyphosphate (Na 5 P 3 O 10 ), sodium pyrophosphate (Na 4 P 2 O 7 ), sodium hexametaphosphate (NaP
Any of O 3 ) 2 is preferable for rust prevention (anti-oxidation) at the time of cleaning and improvement of surface cleaning.

【0031】前記の界面活性剤と化学清浄剤との組合せ
において、特に中性の界面活性剤と前記りん酸塩類系の
化学清浄剤のいずれかとを合計で0.1〜10体積%前記
純水に対して添加してなる洗浄液が好ましい。
In the combination of the surfactant and the chemical detergent, the neutral surfactant and any one of the phosphate-based chemical detergents are combined in a total amount of 0.1 to 10% by volume with the pure water. The washing solution added to the above is preferable.

【0032】なお、洗浄液に占める前記の界面活性剤と
化学清浄剤との体積比率を30〜70:70〜30の範
囲とすることが防錆と表面清浄度の向上のために好まし
い。
The volume ratio of the surfactant and the chemical detergent in the cleaning solution is preferably in the range of 30 to 70:70 to 30 in order to prevent rust and improve surface cleanliness.

【0033】本発明で用いる界面活性剤には、従来より
一般に使用されている陰イオン活性剤、陽イオン活性
剤、あるいは両性界面活性剤、さらには非イオン界面活
性剤のいずれかを使用すればよい。
As the surfactant used in the present invention, any of conventionally used anionic surfactants, cationic surfactants, amphoteric surfactants and nonionic surfactants can be used. Good.

【0034】本発明は、特にR2 14B型金属間化合物
を主相とするR−T−B系希土類磁石体(RはYを含め
た希土類元素の1種または2種以上、TはFeまたはF
eとCo)の表面を、電解メッキおよび/または無電解
メッキで被覆したR−T−B系磁石の表面清浄化に有効
である。
The present invention is particularly directed to an RTB-based rare earth magnet body having an R 2 T 14 B type intermetallic compound as a main phase (R is one or more rare earth elements including Y, and T is Fe or F
e and Co) are effective for cleaning the surface of an RTB-based magnet whose surface is coated with electrolytic plating and / or electroless plating.

【0035】電解メッキおよび/または無電解メッキの
前に、希土類磁石体の加工変質層の除去およびメッキ前
活性化を図る上で硫酸や塩酸等の強酸を用いた酸性溶液
により希土類磁石体を処理することがよい。特に、2〜
10体積%の硝酸による第1エッチング、その後過酸化
水素5〜10体積%、硝酸10〜30体積%、残部純水
からなる混酸による第2エッチングが好ましい。
Before electrolytic plating and / or electroless plating, the rare-earth magnet is treated with an acidic solution using a strong acid such as sulfuric acid or hydrochloric acid in order to remove the deteriorated layer of the rare-earth magnet and activate it before plating. It is better to do. In particular,
The first etching with 10% by volume of nitric acid, followed by the second etching with a mixed acid composed of 5 to 10% by volume of hydrogen peroxide, 10 to 30% by volume of nitric acid and the balance of pure water is preferable.

【0036】続いて電解メッキとして例えばワット浴に
よる単層Niメッキを採用できる。また、希土類磁石体
表面に順次形成された無光沢Ni層と光沢Ni層とから
なるNiメッキ層(例えば特許第2599753号参
照)を採用できる。
Subsequently, as the electrolytic plating, for example, single-layer Ni plating using a Watt bath can be adopted. Further, a Ni plating layer composed of a matte Ni layer and a glossy Ni layer sequentially formed on the surface of the rare earth magnet body (for example, see Japanese Patent No. 2599753) can be adopted.

【0037】また、希土類磁石体表面に順次形成された
ワット浴による電解Niストライクメッキ、ピロリン酸
Cu浴により電解Cuメッキ、ワット浴による電解Ni
メッキからなる3層メッキ(例えば特開平5−2059
26号参照)を用いてもよい。
Electrolytic Ni strike plating using a Watt bath formed sequentially on the surface of the rare earth magnet body, electrolytic Cu plating using a Cu pyrophosphate bath, electrolytic Ni plating using a Watt bath
Three-layer plating consisting of plating (for example,
26) may be used.

【0038】これらの耐蝕性被膜の平均総厚は10〜2
5μmが好ましい。10μm未満では十分な耐蝕性を付
与することが困難であり、25μmを越えるとフラック
スロスやヨーク等へのギャップ増大による磁力低下を招
来する。
The average total thickness of these corrosion resistant coatings is 10 to 2
5 μm is preferred. If it is less than 10 μm, it is difficult to impart sufficient corrosion resistance, and if it exceeds 25 μm, flux loss and magnetic force decrease due to an increase in the gap to the yoke or the like are caused.

【0039】無電解メッキにより、上記単層Niメッ
キ、無光沢Niメッキ層と光沢Niメッキ層とからなる
Niメッキ層、Niメッキ/Cuメッキ/Niメッキの
3層メッキのいずれかを被覆することができる。また、
無電解によるNi−Pメッキを採用できる。上記と同様
に無電解メッキの平均総厚は10〜25μmが好まし
い。
Either one of the above-described single-layer Ni plating, a Ni plating layer composed of a matte Ni plating layer and a glossy Ni plating layer, and three-layer plating of Ni plating / Cu plating / Ni plating by electroless plating. Can be. Also,
Ni-P plating by electroless can be adopted. Similar to the above, the average total thickness of the electroless plating is preferably 10 to 25 μm.

【0040】なお、多層メッキの構成とする場合には電
解メッキと無電解メッキとを併用ししてもよい。また、
メッキしたものをクロム酸塩の水溶液中に浸漬後乾燥さ
せるクロメート処理や、このクロメート処理したものを
NaOHやKOH等の溶液中に浸漬後水洗、乾燥させる
アルカリ処理を行うこともできる。
In the case of a multilayer plating structure, electrolytic plating and electroless plating may be used in combination. Also,
A chromate treatment in which the plated material is immersed in an aqueous solution of chromate and then dried, or an alkali treatment in which the chromated material is immersed in a solution of NaOH or KOH, washed with water, and dried, can also be performed.

【0041】また、本発明は上記以外の公知の耐蝕性被
膜を被覆した希土類磁石にも勿論適用可能である。
The present invention can of course be applied to a rare earth magnet coated with a known corrosion-resistant coating other than the above.

【0042】次に、本発明において、前記ブラシ等の摺
擦部材の摺擦により表面を洗浄する方法と、脱気した純
水または界面活性剤を含む洗浄液を使用した超音波洗浄
とを組み合わせると両洗浄方法の相乗効果により、格段
に表面清浄度が向上することがわかった。
Next, in the present invention, the method of cleaning the surface by rubbing the rubbing member such as the brush and the ultrasonic cleaning using a deaerated water or a cleaning liquid containing a surfactant are combined. It was found that the synergistic effect of both cleaning methods significantly improved the surface cleanliness.

【0043】上記本発明の表面清浄度の良好な希土類磁
石の製造方法によれば、付着粒子の総数、Nd−Fe−
B系磁石の微粉末粒子をはじめとした希土類磁石の微粉
末粒子、Ni粒子等の強磁性微粒子の付着数をともに大
幅に低減することができる。
According to the method for producing a rare earth magnet having good surface cleanliness of the present invention, the total number of adhered particles, Nd-Fe-
Both the fine powder particles of rare earth magnets, such as the fine powder particles of B-based magnets, and the number of adhered ferromagnetic fine particles such as Ni particles can be greatly reduced.

【0044】記録/再生エラ−を抑えるためには、付着
粒子の総数を先ず低減することが必要で、本発明の希土
類磁石表面10cm2 あたり250個以下が好ましい。
より好ましくは、200個/10cm2 以下である。
In order to suppress recording / reproducing errors, it is necessary to first reduce the total number of adhered particles, and it is preferable that the total number be 250 or less per 10 cm 2 of the rare earth magnet surface of the present invention.
More preferably, it is 200 pieces / 10 cm 2 or less.

【0045】Nd−Fe−B系磁石粉末粒子をはじめと
した永久磁石微粉末粒子(上述の円相当径で1〜50μ
mのもの)は、付着粒子の総数を250個/10cm2
以下に抑えた上で、かつこの付着粒子総数に対する割合
が1.0%以下であることが好ましい。
Permanent magnet fine powder particles such as Nd-Fe-B magnet powder particles (1 to 50 μm in the circle equivalent diameter described above)
m), the total number of adhered particles is 250 particles / 10 cm 2
It is preferable that the ratio to the total number of the adhered particles is 1.0% or less after being suppressed to the following.

【0046】また、Ni粒子を含めた強磁性粒子数(上
述の円相当径で1〜50μmのもの)は付着粒子の総数
に対する割合が70%以下、好ましくは50%以下とす
ることが望ましい。特に、永久磁石の微粉末粒子の付着
を10cm2 あたり1個以下とすることがよい。
It is desirable that the number of ferromagnetic particles including Ni particles (the above-described one having a circle equivalent diameter of 1 to 50 μm) is 70% or less, preferably 50% or less, based on the total number of adhered particles. In particular, it is preferable that the number of fine powder particles attached to the permanent magnet is 1 or less per 10 cm 2 .

【0047】[0047]

【発明の実施の形態】以下、本発明の実施の形態を、実
施例とともに具体的に説明するが、本発明はこれらに限
定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below with examples, but the present invention is not limited to these embodiments.

【0048】(実施の形態1)本実施の形態では、耐蝕
性被膜で表面が被覆された希土類磁石の表面を、回転ブ
ラシ等の摺擦部材で摺擦し、摺擦部材の摺擦により表面
に付着した付着粒子を除去し、その希土類磁石の表面清
浄度を向上させた表面清浄度の良好な希土類磁石、およ
びその製造方法について説明する。
(Embodiment 1) In this embodiment, the surface of a rare earth magnet whose surface is covered with a corrosion-resistant coating is rubbed with a rubbing member such as a rotary brush, and the surface is rubbed with the rubbing member. A rare-earth magnet having good surface cleanliness by removing particles adhered to the surface of the rare-earth magnet and improving the surface cleanliness of the rare-earth magnet will be described.

【0049】本実施の形態で対象とする希土類磁石は、
焼結磁石でも、あるいは焼結磁石以外の形態の磁石でも
よい。例えば、R2 14B型金属間化合物を主相とする
R−T−B系異方性焼結磁石のようなVCM用に好適な
ものが挙げられる。
The rare earth magnet of the present embodiment is:
It may be a sintered magnet or a magnet other than a sintered magnet. For example, a material suitable for VCM, such as an RTB-based anisotropic sintered magnet having an R 2 T 14 B type intermetallic compound as a main phase, may be mentioned.

【0050】例えば、かかるR−T−B系異方性焼結磁
石では、先ず、所要組成に合わせて金属原料を混合して
溶解、鋳造し、R−T−B系磁石用合金の鋳塊を得る。
かかる鋳塊の製造は従来より既知の製法により行えばよ
く、例えば、ストリップキャスト法等で薄帯状の合金片
を製造すればよい。
For example, in such an RTB-based anisotropic sintered magnet, first, a metal raw material is mixed, melted and cast in accordance with a required composition, and then an ingot of an RTB-based magnet alloy is cast. Get.
The production of such an ingot may be performed by a conventionally known production method, for example, by producing a strip-shaped alloy piece by a strip casting method or the like.

【0051】その後上記磁石用合金片を適当な条件下で
水素吸蔵後自然崩壊させて粗粉化し、さらに32メッシ
ュアンダー程度に篩分する。その後、得られた粗粉を不
活性ガス中でジエットミルで微粉砕し、その後磁場中成
形し、得られた所定形状の成形品を所定温度で焼結す
る。
Thereafter, the magnet alloy piece is spontaneously disintegrated after absorbing hydrogen under appropriate conditions to coarsen powder, and then sieved to about 32 mesh under. Thereafter, the obtained coarse powder is finely pulverized in an inert gas by a jet mill, and then molded in a magnetic field, and the obtained molded article having a predetermined shape is sintered at a predetermined temperature.

【0052】焼結後、順次機械加工、熱処理または熱処
理、機械加工を経たものをバレル加工(面取り加工)
後、メッキ前処理を行った後、バレル電解Niメッキ等
の方法で磁石体表面にNiメッキを耐蝕性被膜として被
覆する。被覆後、Niメッキ表面に付着しているR−T
−B系磁石の微粉末粒子、Ni微粒子等の強磁性粒子を
含む付着粒子を、その表面を摺擦することにより除去し
て、表面清浄度の良好な希土類磁石を製造する。
After sintering, machine processing, heat treatment or heat treatment, and machine processing are performed on barrel processing (chamfering processing).
Then, after performing a plating pretreatment, the surface of the magnet body is coated with Ni plating as a corrosion-resistant coating by a method such as barrel electrolytic Ni plating. After coating, the RT attached to the Ni plating surface
-Attaching particles including ferromagnetic particles such as fine powder particles and Ni fine particles of a B-based magnet are removed by rubbing the surface to produce a rare-earth magnet having good surface cleanliness.

【0053】本実施の形態では、図1に示すように、希
土類磁石10の表面を摺擦するに際しては、スポンジ2
0を回転可能に構成した摺擦部材30を使用して行っ
た。スポンジ20(例えば、PVA製)は、希土類磁石
10の厚さより十分に大きな厚みを有し、中央に中空部
21を設けて略中空円筒状(ディスク状)に形成され、
その略中空円筒面中央にスポンジ支持部22を介して回
転軸23が設けられて回転自在になっている。
In this embodiment, as shown in FIG. 1, when the surface of the rare earth magnet 10 is rubbed,
0 was performed using a rubbing member 30 configured to be rotatable. The sponge 20 (for example, made of PVA) has a thickness sufficiently larger than the thickness of the rare-earth magnet 10, is formed in a substantially hollow cylindrical shape (disk shape) with a hollow portion 21 provided in the center,
A rotation shaft 23 is provided at the center of the substantially hollow cylindrical surface via a sponge support portion 22 and is rotatable.

【0054】回転軸23は、従来既知の機構(図示せ
ず)で回転数を調節可能にモータ回転できるように構成
しておけばよい。
The rotating shaft 23 may be configured so that the motor can be rotated by a conventionally known mechanism (not shown) so that the number of rotations can be adjusted.

【0055】かかる構成の摺擦部材30のスポンジ20
を回転させながら、図1に示すように、スポンジ20の
表面を希土類磁石10の表面10aに押し当てて、表面
10aをスポンジ20面で摺擦する。摺擦に際しては、
表面10aに純水、あるいは純水に界面活性剤入りの洗
浄剤を添加した洗浄液(界面活性剤を含有した洗浄剤の
純水による希釈液)、あるいは両者を併用して、表面1
0aを濡らした状態で行うのが好ましい。
The sponge 20 of the rubbing member 30 having such a configuration
As shown in FIG. 1, the surface of the sponge 20 is pressed against the surface 10a of the rare-earth magnet 10 while the surface is rotated, and the surface 10a is rubbed with the sponge 20 surface. When rubbing,
The surface 10a is pure water, or a cleaning liquid containing a detergent containing a surfactant added to the pure water (a diluted solution of a detergent containing a surfactant in pure water), or a combination of the two,
0a is preferably performed in a wet state.

【0056】このようにして、表面10aに付着してい
た粒子は、このスポンジ20の摺擦により除去される。
表面10aを上記要領で摺擦したのち、希土類磁石10
を裏返して裏面10bを表に向け、この裏面10bにス
ポンジ20面を当てて摺擦すれば、両面の付着粒子の除
去が行える。
Thus, the particles adhering to the surface 10a are removed by the rubbing of the sponge 20.
After rubbing the surface 10a as described above, the rare-earth magnet 10
Is turned upside down, the back surface 10b is turned to the front side, and the sponge 20 is brought into contact with the back surface 10b and rubbed, whereby the adhered particles on both surfaces can be removed.

【0057】また、希土類磁石10の周縁部端面10
c、内/外周面10dは、図1に示すように、スポンジ
20を表面10aまたは裏面10bに押し当てると、軟
らかいスポンジ20は適当に歪んで周縁部端面10c、
内/外周面10dにも接触するので、これら10c面、
10d面は同時に摺擦されて10c面、10d面の付着
粒子の除去も行われる。
The peripheral end face 10 of the rare earth magnet 10
c, as shown in FIG. 1, when the sponge 20 is pressed against the front surface 10a or the back surface 10b, the soft / sponge 20 is appropriately distorted, and the inner / outer peripheral surface 10d is appropriately distorted.
Since it also contacts the inner / outer peripheral surface 10d, these 10c surfaces,
The 10d surface is simultaneously rubbed to remove the adhered particles on the 10c surface and the 10d surface.

【0058】なお、摺擦に際して洗浄剤を使用した場合
には、別途付着粒子の除去後純水で洗浄して洗浄剤を表
面から除去し、温風乾燥させておく。
When a cleaning agent is used for the rubbing, the cleaning agent is removed from the surface by removing pure particles after removing the adhered particles, and dried with warm air.

【0059】摺擦部材には、上記スポンジ20以外の摺
擦部材を使用しても構わない。例えば、図2に示すよう
に、略中空円筒状に形成したブラシ31の中央にブラシ
支持部32を介して回転軸33を設けて回転ブラシ40
に構成して希土類磁石50を摺擦するようにしても構わ
ない。ブラシ31の素材には、例えばポリアミド、ある
いはPVA等の合成樹脂製素材を使用すればよい。
As the rubbing member, a rubbing member other than the sponge 20 may be used. For example, as shown in FIG. 2, a rotating shaft 33 is provided at a center of a brush 31 formed in a substantially hollow cylindrical shape via a brush supporting portion 32 to form a rotating brush 40.
And the rare earth magnet 50 may be rubbed. The brush 31 may be made of, for example, a synthetic resin material such as polyamide or PVA.

【0060】スポンジ20やブラシ31の素材、摺擦時
の回転数、押圧力等は、Niメッキ等の耐蝕性被膜に傷
が付かないように適宜設定すればよい。さらに、希土類
磁石面が平らな場合には、上記スポンジやブラシ以外で
も、例えば回転可能に構成した円板面に不織布を張っ
て、不織布で付着粒子の除去を行うようにしても構わな
い。
The material of the sponge 20 and the brush 31, the number of rotations during rubbing, the pressing force, and the like may be appropriately set so as not to damage the corrosion-resistant coating such as Ni plating. Further, when the surface of the rare earth magnet is flat, other than the sponge or brush, for example, a nonwoven fabric may be provided on a rotatable disk surface to remove adhered particles with the nonwoven fabric.

【0061】上記説明では、希土類磁石に施した耐蝕性
被膜としてNiメッキの場合について説明したが、勿論
例えば上述のNiメッキ以外の耐蝕性被膜を被覆した場
合にも有効である。
In the above description, the case of Ni plating as the corrosion-resistant coating applied to the rare-earth magnet has been described. However, it is needless to say that the present invention is also effective when a corrosion-resistant coating other than the above-described Ni plating is coated.

【0062】また、上記説明ではスポンジ20あるいは
ブラシ31をモータ回転させる摺擦手段を示したが、場
合によっては手にブラシを持って希土類磁石表面を摺擦
するようにしても一向に構わない。さらに、工場等で
は、ベルトコンベア等を用いたライン途中に、複数の回
転する摺擦部材を設けて、複数の希土類磁石がラインを
流れて行くうちに、摺擦部材により付着粒子が除去され
るように構成することもできる。
In the above description, the rubbing means for rotating the sponge 20 or the brush 31 by the motor has been described. However, in some cases, the brush may be held in hand to rub the surface of the rare-earth magnet. Further, in a factory or the like, a plurality of rotating rubbing members are provided in the middle of a line using a belt conveyor or the like, and while the plurality of rare earth magnets flow through the line, the adhered particles are removed by the rubbing members. It can also be configured as follows.

【0063】また、上記説明では摺擦部材としてスポン
ジ20、ブラシ31を各個別に使用する場合について説
明したが、それぞれを組み合わせて使用するようにして
も構わない。
In the above description, the case where the sponge 20 and the brush 31 are individually used as the rubbing members has been described. However, the sponge 20 and the brush 31 may be used in combination.

【0064】例えば、当初は、スポンジ20より比較的
硬い素材のブラシ31を使用して、大きめの付着粒子を
除去し、その後ブラシ31に比べて柔らかく表面への密
着度の高いスポンジ20を使用して細かな付着粒子を除
去するようにしてもよい。
For example, initially, a brush 31 made of a material relatively harder than the sponge 20 is used to remove large adhered particles, and then the sponge 20 which is softer than the brush 31 and has a higher degree of adhesion to the surface is used. Alternatively, finely adhered particles may be removed.

【0065】ブラシ31を使用して比較的大きな付着粒
子を当初から除去しておけば、その後にスポンジ20を
使用しても、密着度の高いスポンジ20に大きな付着粒
子を保持させた状態で必要以上に表面を摺擦せずに済
み、耐蝕性被膜の傷付け防止に効果がある。
If the relatively large adhered particles are removed from the beginning using the brush 31, even if the sponge 20 is used thereafter, it is necessary to keep the large adhered particles in the sponge 20 having high adhesion. As described above, the surface does not need to be rubbed, which is effective in preventing the corrosion-resistant coating from being damaged.

【0066】本実施の形態を以下の実施例によりさらに
具体的に説明する。
The present embodiment will be described more specifically with reference to the following examples.

【0067】(実施例1)耐蝕性被膜として電解Niメ
ッキ(平均膜厚20μm)を被覆した偏平形状のVCM
用のNd−Fe−B系焼結磁石を、図2に示すのとほぼ
同様の要領で、純水を滴下しながらナイロン製ブラシ3
1を回転させて洗浄した。ブラシ31は洗浄面に対して
垂直な回転軸で回転させ、回転数200rpm、洗浄時
間10秒の条件で洗浄を行った。洗浄後、純水ですすい
だ後温風にて乾燥した。
(Example 1) Flat VCM coated with electrolytic Ni plating (average film thickness: 20 μm) as a corrosion resistant film
Nd-Fe-B based sintered magnet for nylon brush 3 while dropping pure water in substantially the same manner as shown in FIG.
1 was rotated to wash. The brush 31 was rotated on a rotation axis perpendicular to the cleaning surface, and cleaning was performed under the conditions of a rotation speed of 200 rpm and a cleaning time of 10 seconds. After washing, it was rinsed with pure water and dried with warm air.

【0068】この乾燥したNd−Fe−B系焼結磁石の
洗浄した面に導電性粘着テ−プを貼り、付着している粒
子を導電性粘着テ−プに転写した。
A conductive adhesive tape was stuck on the washed surface of the dried Nd-Fe-B sintered magnet, and the attached particles were transferred to the conductive adhesive tape.

【0069】この転写作業は、上記洗浄した任意面に所
定サイズの導電性粘着テープを貼り付けて付着粒子をこ
の導電性粘着テープに転写する操作を1回として、続い
てこの導電性粘着テープを未転写の任意の洗浄面に貼り
付けて第2回目の転写を行い、引き続いて最終的に上記
の洗浄した未転写の任意の洗浄面に対してこの所定サイ
ズの同一の導電性粘着テープにて合計10回の転写を行
った。
In this transfer operation, an operation of attaching a conductive adhesive tape of a predetermined size to the washed arbitrary surface and transferring the adhered particles to the conductive adhesive tape is performed once, and then the conductive adhesive tape is removed. The second transfer is performed by attaching to an untransferred arbitrary cleaning surface, and then finally using the same conductive adhesive tape of the predetermined size to the above-mentioned cleaned untransferred arbitrary cleaning surface. A total of 10 transfers were performed.

【0070】次に、この10回転写後の導電性粘着テー
プの1cm×1cmの範囲における円相当径で1μm以
上の粒子(付着粒子は円相当径で全て1〜50μmの範
囲のものだった)をSEM/EDXにより計数、分析し
た。
Next, particles having a circle equivalent diameter of 1 μm or more in the area of 1 cm × 1 cm of the conductive pressure-sensitive adhesive tape after the tenth transfer (all the adhered particles had a circle equivalent diameter of 1 to 50 μm). Was counted and analyzed by SEM / EDX.

【0071】すなわち、この転写後の導電性粘着テープ
の1cm×1cmの範囲には上記の洗浄したNd−Fe
−B系焼結磁石の表面10cm2 に付着している粒子が
転写されていることを意味する。
That is, the above-mentioned washed Nd-Fe
Particles adhering to the surface 10 cm 2 of -B based sintered magnet means that it is transferring.

【0072】表1に示すように、この実施例1のものの
表面10cm2 あたりに相当する付着粒子の総数、Nd
−Fe−B系磁石の粒子数、Ni粒子数とも非常に少な
く、表面清浄度の良好な希土類磁石が得られた。
As shown in Table 1, the total number of adhered particles per 10 cm 2 of the surface
-Both the number of particles of the Fe-B based magnet and the number of Ni particles were very small, and a rare earth magnet having good surface cleanliness was obtained.

【0073】(実施例2)実施例1と同様に図2に示す
のとほぼ同様の要領で電解無光沢Niメッキ層と電解光
沢Niメッキ層(平均総厚20μm)とからなるNiメ
ッキ被覆Nd−Fe−B系焼結磁石に、純水に1体積%
の界面活性剤入りの洗浄剤を添加した洗浄液を滴下しな
がらナイロン製ブラシ31を回転させて洗浄した。
(Example 2) In the same manner as in Example 1, as shown in FIG. 2, a Ni plating coating Nd composed of an electrolytic matte Ni plating layer and an electrolytic gloss Ni plating layer (average total thickness 20 μm) 1% by volume in pure water for Fe-B based sintered magnet
The nylon brush 31 was rotated while the cleaning solution to which the detergent containing the surfactant was added was added dropwise to perform cleaning.

【0074】ブラシ31は洗浄面に対して垂直な回転軸
で回転させ、回転数200rpm、洗浄時間10秒の条
件で洗浄を行った。洗浄後、純水で5分超音波洗浄した
後温風にて乾燥した。
The brush 31 was rotated on a rotation axis perpendicular to the cleaning surface, and the cleaning was performed under the conditions of a rotation speed of 200 rpm and a cleaning time of 10 seconds. After the cleaning, the substrate was subjected to ultrasonic cleaning with pure water for 5 minutes and then dried with warm air.

【0075】この乾燥したNd−Fe−B系焼結磁石の
洗浄した任意面における付着粒子の状況を実施例1と同
様にしてSEM/EDXにより計数、分析した結果を、
表1に示す。表1より、この実施例のものも良好な表面
清浄度を有する希土類磁石であることがわかる。
The state of the adhered particles on the washed arbitrary surface of the dried Nd—Fe—B sintered magnet was counted and analyzed by SEM / EDX in the same manner as in Example 1, and the results were as follows:
It is shown in Table 1. Table 1 shows that this example is also a rare earth magnet having good surface cleanliness.

【0076】(実施例3)電解によるストライクNiメ
ッキ/Cuメッキ/Niメッキ(平均総厚20μm)
を、Nd−Fe−B系焼結磁石体の表面側から順次被覆
してなる3層メッキ被覆Nd−Fe−B系焼結磁石に、
純水に1体積%の界面活性剤入りの洗浄剤をを添加した
洗浄液を滴下しながら、図1に示すとほぼ同様の要領
で、PVAスポンジ20を回転させて洗浄した。
(Example 3) Strike Ni plating / Cu plating / Ni plating by electrolysis (average total thickness 20 μm)
Into a three-layer plated Nd-Fe-B sintered magnet, which is sequentially coated from the surface side of the Nd-Fe-B based sintered magnet body,
The washing was performed by rotating the PVA sponge 20 in substantially the same manner as shown in FIG. 1 while dropping a washing solution obtained by adding a washing agent containing 1% by volume of a surfactant to pure water.

【0077】スポンジ20は洗浄面に対して垂直な回転
軸で回転させ、回転数200rpm、洗浄時間10秒の
条件で洗浄を行った。洗浄後、純水で5分超音波洗浄し
た後温風にて乾燥した。
The sponge 20 was rotated on a rotation axis perpendicular to the cleaning surface, and the cleaning was performed under the conditions of a rotation speed of 200 rpm and a cleaning time of 10 seconds. After the cleaning, the substrate was subjected to ultrasonic cleaning with pure water for 5 minutes and then dried with warm air.

【0078】洗浄後乾燥させたこのNd−Fe−B系焼
結磁石の洗浄した任意面における付着粒子の状況を実施
例1と同様にしてSEM/EDXにより計数、分析し
た。結果は、表1に示すように上記実施例と略同様の表
面清浄度の良好な希土類磁石が得られた。
The state of the adhered particles on the washed arbitrary surface of the Nd—Fe—B sintered magnet dried after washing was counted and analyzed by SEM / EDX in the same manner as in Example 1. As a result, as shown in Table 1, a rare-earth magnet having good surface cleanliness substantially similar to that of the above example was obtained.

【0079】次に、上記実施例1〜3と対比するため
に、比較例1、2として下記の比較実験を行った。
Next, the following comparative experiments were performed as Comparative Examples 1 and 2 in order to compare with Examples 1 to 3 described above.

【0080】(比較例1)比較例1では、実施例1と同
様のNiメッキ被覆Nd−Fe−B系焼結磁石を用いて
洗浄工程を経ることなく、未洗浄のままの任意面におけ
る付着粒子の状況を実施例1と同様にしてSEM/ED
Xにより計数、分析した。その結果を、表1に示す。表
1より、この比較例1のものは、付着粒子総数、Nd−
Fe−B系磁石の粒子数、Ni粒子数は表1に示すよう
な値となり表面清浄度が非常に悪いことがわかった。
(Comparative Example 1) In Comparative Example 1, using the same Ni-plated Nd-Fe-B-based sintered magnet as in Example 1, adhesion was performed on an uncleaned arbitrary surface without going through a cleaning step. The state of the particles was changed to SEM / ED in the same manner as in Example 1.
It was counted and analyzed by X. Table 1 shows the results. As shown in Table 1, Comparative Example 1 shows that the total number of adhered particles and Nd-
The number of particles and the number of Ni particles of the Fe-B-based magnet were as shown in Table 1, indicating that the surface cleanliness was very poor.

【0081】(比較例2)比較例2では、実施例2と同
様の無光沢Niメッキと光沢Niメッキとからなる電解
Niメッキ被覆Nd−Fe−B系焼結磁石を用いて、脱
気していない純水中(溶存酸素量は飽和溶存酸素量の9
0%)で20分超音波洗浄を行った後、温風乾燥した。
その乾燥したものの任意面における付着粒子の状況を実
施例1と同様にしてSEM/EDXにより計数、分析し
た。
(Comparative Example 2) In Comparative Example 2, degassing was performed using an electrolytic Ni-plated Nd-Fe-B-based sintered magnet made of the same matte Ni plating and bright Ni plating as in Example 2. Not pure water (dissolved oxygen content is 9% of saturated dissolved oxygen content)
(0%) for 20 minutes, followed by hot air drying.
The state of the adhered particles on an arbitrary surface of the dried product was counted and analyzed by SEM / EDX in the same manner as in Example 1.

【0082】結果は、表1に示すように付着粒子総数、
Nd−Fe−B系磁石の粒子数、Ni粒子数とも実施例
2に比較して非常に多く、表面清浄度が非常に劣るもの
だった。
The results are as shown in Table 1 below.
Both the number of particles and the number of Ni particles of the Nd—Fe—B-based magnet were much larger than in Example 2, and the surface cleanliness was very poor.

【0083】[0083]

【表1】 [Table 1]

【0084】(実施の形態2)本実施の形態では、耐蝕
性被膜で表面が被覆された希土類磁石を脱気した純水ま
たは純水に界面活性剤入りの洗浄剤を添加してなる洗浄
液を用いて超音波洗浄した表面清浄度の良好な希土類磁
石、およびその製造方法について説明する。
(Embodiment 2) In this embodiment, a cleaning solution containing a detergent containing a surfactant added to pure water or pure water obtained by degassing a rare earth magnet whose surface is covered with a corrosion resistant film is used. A rare-earth magnet with good surface cleanliness that has been ultrasonically cleaned using the method and a method for manufacturing the same will be described.

【0085】本実施の形態の対象とする希土類磁石も、
前記実施の形態1と同様の希土類磁石である。
The rare earth magnet of the embodiment is also
This is a rare earth magnet similar to that of the first embodiment.

【0086】かかる希土類磁石の例えばNiメッキ表面
には、R−T−B系磁石粉末粒子、Ni粒子等の強磁性
粒子を含む粒子が付着しているが、本実施の形態では、
溶存酸素量を飽和溶存酸素量の50%以下に脱気した純
水または界面活性剤を含む洗浄液を使用して超音波洗浄
することにより、希土類磁石の表面清浄度を高めてい
る。
Particles containing ferromagnetic particles such as RTB-based magnet powder particles and Ni particles adhere to, for example, the Ni-plated surface of such a rare-earth magnet.
Ultrasonic cleaning is performed using a cleaning solution containing pure water or a surfactant that is degassed to a dissolved oxygen content of 50% or less of the saturated dissolved oxygen content, thereby increasing the surface cleanliness of the rare earth magnet.

【0087】かかる洗浄に使用する超音波洗浄器は、従
来型の洗浄器を使用すればよい。アスピレーション等の
減圧脱気により溶存酸素量が飽和溶存酸素量の50%以
下に抑えられた脱気した純水または上記洗浄液を洗浄槽
に入れる。洗浄槽内の脱気した純水中または上記洗浄液
中に、表面に粒子が付着した状態の希土類磁石を入れて
超音波により洗浄を行う。洗浄後は、温風乾燥しておけ
ばよい。
As the ultrasonic cleaning device used for such cleaning, a conventional cleaning device may be used. Degassed pure water or the above-mentioned cleaning liquid in which the dissolved oxygen amount is suppressed to 50% or less of the saturated dissolved oxygen amount by degassing under reduced pressure such as aspiration is put into the washing tank. A rare earth magnet with particles adhered to the surface is put into deaerated pure water in the cleaning tank or the above-mentioned cleaning liquid, and cleaning is performed by ultrasonic waves. After washing, it may be dried with warm air.

【0088】上記脱気した洗浄液として、純水に界面活
性剤入りの洗浄剤を添加して脱気処理後使用しても構わ
ない。あるいは、希土類磁石表面を適当な濃度に希釈し
た界面活性剤入りの洗浄剤で濡らしておき、続いてこれ
を脱気した純水中に入れて超音波洗浄を行っても構わな
い。
As the degassed cleaning liquid, a cleaning agent containing a surfactant may be added to pure water and used after degassing. Alternatively, the surface of the rare earth magnet may be wetted with a detergent containing a surfactant diluted to an appropriate concentration, and then placed in degassed pure water for ultrasonic cleaning.

【0089】さらには、純水に界面活性剤入りの洗浄剤
を添加後、脱気した洗浄液中に、上記要領で希釈した界
面活性剤入りの洗浄剤により表面を濡らした希土類磁石
を入れて、超音波洗浄するようにしても構わない。
Further, after adding a detergent containing a surfactant to pure water, a rare earth magnet whose surface has been wetted with the detergent containing a surfactant diluted as described above is added to the degassed washing solution. Ultrasonic cleaning may be used.

【0090】なお、上記いずれの場合でも、界面活性剤
入りの洗浄剤を使用した場合には、超音波洗浄後さら
に、洗浄剤を添加していない通常の純水で超音波清浄等
してすすいで、洗浄剤分を除去しておく必要がある。す
すぎ後は、温風乾燥しておけばよい。すすぎに際して
は、ジェット水洗浄、シャワー洗浄等の手段を使用して
もよく、さらにはブラシを使用した摺擦洗浄手段を併用
してもよく、要は洗浄剤分が十分に除去できる手段であ
ればよい。
In any of the above cases, when a detergent containing a surfactant is used, after the ultrasonic cleaning, the substrate is rinsed by ultrasonic cleaning with ordinary pure water to which no detergent is added. Therefore, it is necessary to remove the detergent. After rinsing, it may be dried with warm air. At the time of rinsing, means such as jet water washing, shower washing, etc. may be used, and further, rubbing and washing means using a brush may be used in combination, and it is essential that the washing agent can be sufficiently removed. I just need.

【0091】また、洗浄槽内での超音波の印加に際して
は、超音波を発生させる超音波振動子の設置箇所は、希
土類磁石の下側でも、あるいは上側でも、あるいは上下
の両方の側でも構わないが、均一な清浄度を得るために
は、上側および下側に対称に配置することが好ましい。
When applying ultrasonic waves in the cleaning tank, the ultrasonic vibrator for generating ultrasonic waves may be installed on the lower side of the rare earth magnet, on the upper side, or on both the upper and lower sides. However, in order to obtain uniform cleanliness, it is preferable to arrange them symmetrically on the upper and lower sides.

【0092】(実施例4)耐蝕性被膜としてNd−Fe
−B系焼結磁石体に実施例3と同様の電解によるストラ
イクNiメッキ/Cuメッキ/Niメッキ(平均総厚2
0μm)を順次被覆してなる3層メッキを施した偏平形
状のVCM用のNd−Fe−B系焼結磁石をステンレス
のネット上に置き、脱気した純水中で3分超音波洗浄し
た。この脱気した純水中の溶存酸素量は27℃で1.8m
g/l(飽和溶存酸素量の23%)であった。
(Example 4) Nd-Fe as a corrosion resistant film
Strike Ni plating / Cu plating / Ni plating (average total thickness 2
(0 μm) and a flat-shaped Nd—Fe—B-based sintered magnet for VCM coated with three layers and sequentially coated on a stainless steel net, and subjected to ultrasonic cleaning in degassed pure water for 3 minutes. . The amount of dissolved oxygen in the degassed pure water is 1.8 m at 27 ° C.
g / l (23% of the amount of saturated dissolved oxygen).

【0093】洗浄後さらに純水ですすいだ後温風にて乾
燥した。乾燥後のNd−Fe−B系焼結磁石の任意面に
おける付着粒子の状況を実施例1として同様にしてSE
M/EDXにより計数、分析した。
After the washing, the substrate was further rinsed with pure water and dried with warm air. The condition of the adhered particles on an arbitrary surface of the dried Nd—Fe—B based sintered magnet was set to SE in the same manner as Example 1.
It was counted and analyzed by M / EDX.

【0094】結果は、表2に示すように、付着粒子総
数、Nd−Fe−B系磁石粉末の粒子数、Ni粒子数と
も非常に少なく、表面清浄度の良好なNd−Fe−B系
焼結磁石が得られた。
As shown in Table 2, the total number of adhered particles, the number of particles of the Nd-Fe-B-based magnet powder, and the number of Ni particles were very small, and the Nd-Fe-B-based baked material having a good surface cleanliness was obtained. A magnet was obtained.

【0095】(実施例5)1体積%の界面活性剤を含む
洗浄剤(ダイヤフロック(株)製、ダイヤカイトPD・
M3)と残部純水とからなる洗浄液を脱気し、実施例2
と同様の電解による無光沢メッキNiメッキ層と光沢メ
ッキ層(平均総厚20μm)からなるNiメッキ被覆の
Nd−Fe−B系焼結磁石をステンレスのネット上に置
き、3分間超音波洗浄した。この脱気処理した洗浄液の
溶存酸素量は28℃で2.0mg/l(飽和溶存酸素量の
26%)であった。洗浄後さらに脱気処理していない純
水(溶存酸素量は飽和溶存酸素量の90%)で3分超音
波洗浄した後温風にて乾燥した。
(Example 5) A detergent containing 1% by volume of a surfactant (Dia Kite PD.
Example 2 The cleaning solution consisting of M3) and the remaining pure water was degassed, and
A Nd-Fe-B-based sintered magnet coated with Ni plating, consisting of a non-glossy plating Ni plating layer and a gloss plating layer (average total thickness 20 µm) by the same electrolysis as above, was placed on a stainless steel net and subjected to ultrasonic cleaning for 3 minutes. . The dissolved oxygen content of the degassed cleaning solution was 2.0 mg / l at 28 ° C. (26% of the saturated dissolved oxygen content). After the cleaning, the substrate was subjected to ultrasonic cleaning for 3 minutes with pure water (dissolved oxygen content is 90% of saturated dissolved oxygen content) which had not been degassed, and then dried with warm air.

【0096】乾燥後のものの任意面における付着粒子の
状況を実施例1と同様にして、SEM/EDXにより計
数、分析した。
The state of the adhered particles on an arbitrary surface of the dried product was counted and analyzed by SEM / EDX in the same manner as in Example 1.

【0097】結果は、表2に示すように、実施例4に比
較してもさらに汚染粒子が低減しており、本発明におけ
る洗浄方法が高い洗浄能力を有することがわかる。
As shown in Table 2, the contaminant particles were further reduced as compared with Example 4, indicating that the cleaning method of the present invention has a high cleaning ability.

【0098】また、上記実施例4、5と対照させるため
に比較例3、4として下記の比較実験を行った。
Further, the following comparative experiments were performed as Comparative Examples 3 and 4 in order to compare with the above Examples 4 and 5.

【0099】(比較例3)比較例3では、実施例4にお
ける超音波洗浄に供する前の未洗浄の3層メッキ被覆V
CM用Nd−Fe−B系焼結磁石の任意面における付着
粒子の状況を実施例1と同様にしてSEM/EDXによ
り計数、分析した。
(Comparative Example 3) In Comparative Example 3, the uncleaned three-layer plating coating V before being subjected to the ultrasonic cleaning in Example 4 was used.
The state of the adhered particles on an arbitrary surface of the Nd—Fe—B sintered magnet for CM was counted and analyzed by SEM / EDX in the same manner as in Example 1.

【0100】付着粒子総数、Nd−Fe−B系磁石の粒
子数、Ni粒子数は表2に示すように実施例5、6に比
べて非常に多かった。
As shown in Table 2, the total number of adhered particles, the number of particles of the Nd-Fe-B magnet, and the number of Ni particles were much larger than those of Examples 5 and 6.

【0101】(比較例4)比較例4では、実施例4と同
様の3層メッキ被覆Nd−Fe−B系焼結磁石を脱気し
てない純水中(溶存酸素量は飽和溶存酸素量の92%)
で6分超音波洗浄を行った後、温風乾燥した。乾燥した
ものの任意面における付着粒子の状況を実施例1と同様
にしてSEM/EDXにより計数、分析した。
Comparative Example 4 In Comparative Example 4, the same three-layer plating-coated Nd—Fe—B sintered magnet as in Example 4 was used in pure water without degassing (dissolved oxygen content is saturated dissolved oxygen content). 92%)
After performing ultrasonic cleaning for 6 minutes, hot air drying was performed. The state of the adhered particles on an arbitrary surface of the dried product was counted and analyzed by SEM / EDX in the same manner as in Example 1.

【0102】結果は、表2に示すように付着粒子総数、
Nd−Fe−B系磁石の粒子数、Ni粒子数とも実施例
4あるいは5に比較して非常に多く、表面清浄度が非常
に悪いことがわかる。
The results are as shown in Table 2 below.
Both the number of particles and the number of Ni particles of the Nd—Fe—B-based magnet were much larger than those of Example 4 or 5, indicating that the surface cleanliness was very poor.

【0103】[0103]

【表2】 [Table 2]

【0104】(実施の形態3)本実施の形態では、前記
実施の形態1で説明した摺擦部材による表面の摺擦によ
る洗浄方法と、上記実施の形態2で説明した脱気した純
水または洗浄液を使用する超音波洗浄による洗浄方法と
を組み合わて、表面清浄度の良好な希土類磁石を製造し
た。
(Embodiment 3) In the present embodiment, the cleaning method by rubbing the surface with the rubbing member described in the first embodiment and the deaerated pure water or the deaerated water described in the second embodiment will be described. A rare earth magnet with good surface cleanliness was manufactured by combining the cleaning method with ultrasonic cleaning using a cleaning liquid.

【0105】スポンジを使用した摺擦部材で洗浄後、脱
気した純水または洗浄液を使用した超音波清浄を行って
も良いし、あるいはブラシを使用した摺擦部材による洗
浄と、この超音波洗浄とを組み合わせても、それぞれの
洗浄方法を単独で使用した場合よりも良好な結果が得ら
れた。
After cleaning with a rubbing member using a sponge, ultrasonic cleaning using deaerated pure water or a cleaning liquid may be performed, or cleaning with a rubbing member using a brush and this ultrasonic cleaning may be used. Even with the combination of the above, better results were obtained than when each of the washing methods was used alone.

【0106】さらに、本発明者らは、ブラシからなる摺
擦部材を使用した洗浄方法と、スポンジからなる摺擦部
材を使用した洗浄方法と、脱気した純水また洗浄液を使
用した超音波清浄方法とを組み合わせることにより、よ
り効果的に付着粒子の低減が図れることを知見した。以
下、その詳細を具体的に実施例6により説明する。
Further, the present inventors have proposed a cleaning method using a rubbing member composed of a brush, a cleaning method using a rubbing member composed of a sponge, and an ultrasonic cleaning method using deaerated pure water or a cleaning liquid. It has been found that the combination of the method and the method can more effectively reduce the attached particles. Hereinafter, the details thereof will be specifically described with reference to the sixth embodiment.

【0107】(実施例6)耐蝕性被膜としてNiメッキ
を被覆した偏平形状のVCM用のNd−Fe−B系焼結
磁石を用いて、実施例1と同様に、純水を滴下しながら
ナイロン製ブラシを使用して、回転数200rpm、洗
浄時間10秒の条件で洗浄を行った。ナイロン製ブラシ
は、希土類磁石の表面の洗浄面に対して垂直方向に回転
軸を設けて、ナイロン製ブラシ面で洗浄面を摺擦するよ
うにして行った。
(Example 6) Using a flat Nd-Fe-B sintered magnet for VCM coated with Ni plating as a corrosion-resistant film, nylon The cleaning was performed using a brush made under the conditions of a rotation speed of 200 rpm and a cleaning time of 10 seconds. The nylon brush was provided such that a rotating shaft was provided in a direction perpendicular to the cleaning surface on the surface of the rare earth magnet, and the cleaning surface was rubbed against the nylon brush surface.

【0108】その後、実施例3と同様の要領で、スポン
ジを用いて、回転数200rpm、洗浄時間10秒の条
件で洗浄を行った。このスポンジ面が希土類磁石表面の
洗浄面と摺擦するようにして行った。
Thereafter, in the same manner as in Example 3, cleaning was performed using a sponge under the conditions of a rotation speed of 200 rpm and a cleaning time of 10 seconds. The sponge surface was rubbed against the cleaning surface of the rare earth magnet surface.

【0109】このようにしてブラシ、スポンジの両者に
より摺擦して洗浄した希土類磁石を用いて、次に、実施
例5と同様に、純水に1体積%の界面活性剤入りの洗浄
剤をを添加してなる洗浄液を脱気して、この脱気した洗
浄液を満たした洗浄槽内のステンレス製のネット上に置
いた。脱気した洗浄液の溶存酸素量は、飽和溶存酸素量
の30%であった。
Using the rare-earth magnet thus cleaned by rubbing with both the brush and the sponge, a cleaning agent containing 1% by volume of a surfactant was added to pure water in the same manner as in Example 5. The cleaning solution obtained by adding was degassed and placed on a stainless steel net in a cleaning tank filled with the degassed cleaning solution. The dissolved oxygen content of the degassed washing liquid was 30% of the saturated dissolved oxygen content.

【0110】かかる条件で、超音波洗浄を3分間行っ
た。その後、脱気しない純水を使用して、3分間超音波
洗浄を行い、界面活性剤をすすぎ、その後温風乾燥し
た。
Under such conditions, ultrasonic cleaning was performed for 3 minutes. Thereafter, ultrasonic cleaning was performed for 3 minutes using pure water that was not degassed, and the surfactant was rinsed, and then dried with warm air.

【0111】洗浄後乾燥したかかるNd−Fe−B系希
土類焼結磁石の任意面における付着粒子の状況を実施例
1と同様にしてSEM/EDXにより計数、分析した。
その結果を表2に示す。
The condition of the adhered particles on an arbitrary surface of the Nd-Fe-B-based rare earth sintered magnet dried after washing was counted and analyzed by SEM / EDX in the same manner as in Example 1.
Table 2 shows the results.

【0112】本実施例6による結果は、付着粒子総数で
も、Ni粒子数でも、他の実施例1〜5の場合に比べて
格段に少なくなっていることがわかる。強磁性粒子数の
付着粒子総数に占める割合も50%以下となり、上記実
施例1〜5で示した洗浄方法を各々単独で使用した場合
よりも、組み合わせた本実施の形態の方法が格段に洗浄
効果が優れていることを示している。
It is understood from the results of Example 6 that both the total number of adhered particles and the number of Ni particles are significantly smaller than those of the other Examples 1 to 5. The ratio of the number of ferromagnetic particles to the total number of adhered particles is also 50% or less, and the method of the present embodiment in which the cleaning methods shown in Examples 1 to 5 are combined is significantly more effective than the case where each of the cleaning methods is used alone. It shows that the effect is excellent.

【0113】[0113]

【発明の効果】本発明によれば、希土類磁石の耐蝕性被
膜の表面を摺擦することにより、表面に付着した強磁性
粒子等の付着粒子を、従来よりも著しく少なくすること
ができる。
According to the present invention, by rubbing the surface of the corrosion-resistant coating of the rare-earth magnet, the amount of adhered particles such as ferromagnetic particles adhered to the surface can be significantly reduced as compared with the prior art.

【0114】本発明では、スポンジおよび/またはブラ
シを使用して摺擦できるので、スポンジ等は希土類磁石
面の凹凸に適当に馴染みながら変形等して摺擦すること
ができるので、変形が起きにくい固い物で摺擦する場合
に比べて、磁石表面の凹凸がある場合でも付着粒子を効
果的に除去することができる。
In the present invention, the sponge and / or the brush can be rubbed, so that the sponge or the like can be rubbed by being deformed or the like while being appropriately adapted to the irregularities of the rare earth magnet surface, so that deformation is less likely to occur. Adhered particles can be removed more effectively even when there is unevenness on the magnet surface than when rubbing with a hard object.

【0115】本発明では、純水または界面活性剤を含む
洗浄液により希土類磁石の耐蝕性被膜の表面を濡らした
状態で、摺擦することができるので、摺擦時に適度の潤
滑性が得られるとともに、付着粒子の除去が促進され
る。特に、界面活性剤を含む洗浄液を使用した場合に
は、表面の濡れ性が非常によく改善されて、付着粒子の
遊離促進、再付着の防止が図れる。
In the present invention, since the surface of the corrosion-resistant coating of the rare earth magnet can be rubbed with the cleaning liquid containing pure water or a surfactant, appropriate lubricity can be obtained at the time of rubbing. In addition, the removal of attached particles is promoted. In particular, when a cleaning solution containing a surfactant is used, the wettability of the surface is significantly improved, and the release of adhered particles can be promoted and re-adhesion can be prevented.

【0116】本発明では、溶存酸素量を飽和溶存酸素量
の50%以下に脱気した純水または界面活性剤を含む洗
浄液で超音波洗浄することにより、希土類磁石の耐蝕性
被膜表面に付着した強磁性粒子等の付着粒子を従来より
も少なくすることができる。
In the present invention, the surface of the rare earth magnet is adhered to the surface of the corrosion-resistant coating by ultrasonic cleaning with a cleaning solution containing pure water or a surfactant degassed to a dissolved oxygen content of 50% or less of the saturated dissolved oxygen content. Adhered particles such as ferromagnetic particles can be reduced as compared with the conventional case.

【0117】本発明では、溶存酸素量を飽和溶存酸素量
の50%以下に脱気した純水または界面活性剤を含む洗
浄液で超音洗浄するに際して、さらに界面活性剤を含む
洗浄剤を希土類磁石表面に付着させることができるの
で、界面活性剤を使用しない場合に比べて、付着粒子の
除去をより効果的に行うことができる。
In the present invention, when the ultrasonic cleaning is performed with pure water or a cleaning liquid containing a surfactant degassed to a dissolved oxygen content of 50% or less of the saturated dissolved oxygen content, a cleaning agent containing a surfactant is further added to the rare earth magnet. Since the particles can be adhered to the surface, the adhered particles can be more effectively removed than when no surfactant is used.

【0118】本発明では、希土類磁石の耐蝕性被膜の表
面を摺擦して洗浄する方法と、溶存酸素量を飽和溶存酸
素量の50%以下に脱気した純水または界面活性剤を含
む洗浄液で超音洗浄する方法とを組み合わせて行うこと
により、それぞれ単独で洗浄を行う場合よりもより付着
粒子の低減を図ることができる。
In the present invention, a method of rubbing the surface of a corrosion-resistant coating of a rare-earth magnet for cleaning, and a cleaning solution containing pure water or a surfactant deaerated to a dissolved oxygen content of 50% or less of a saturated dissolved oxygen content. By performing the method in combination with the ultrasonic cleaning method, the amount of adhered particles can be further reduced as compared with the case where the cleaning is performed independently.

【0119】本発明の希土類磁石は、従来に比べて良好
な表面清浄度を有する湿式の電解メッキおよび/または
無電解メッキ等の耐酸化性被膜が被覆されているので、
この希土類磁石を磁気式、光磁気式、光式のいずれかの
方式の記録/再生装置における記録/再生ヘッドの高精
度の位置決め用駆動装置に搭載すれば、記録/再生エラ
−を誘発させる可能性を非常に低く抑えることができ
る。
Since the rare earth magnet of the present invention is covered with an oxidation-resistant film such as wet electrolytic plating and / or electroless plating having better surface cleanliness than the conventional one,
If this rare earth magnet is mounted on a high-precision drive for positioning the recording / reproducing head in a magnetic, magneto-optical or optical type recording / reproducing apparatus, a recording / reproducing error can be induced. Sex can be kept very low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明の一実施の形態の摺擦による
希土類磁石の表面の洗浄状況を示す斜視図である。
(b)は、(a)の状況を示す断面図である。
FIG. 1A is a perspective view showing a state of cleaning the surface of a rare earth magnet by rubbing according to an embodiment of the present invention.
(B) is a sectional view showing the situation of (a).

【図2】本発明の摺擦による希土類磁石の表面の他の洗
浄方法を示す斜視図である。
FIG. 2 is a perspective view showing another method of cleaning the surface of a rare earth magnet by rubbing according to the present invention.

【符合の説明】[Description of sign]

10 希土類磁石 10a 表面 10b 裏面 20 スポンジ 21 中空部 22 回転支持部 23 回転軸 30 摺擦部材 31 ブラシ 32 回転支持部 33 回転軸 40 回転ブラシ 50 希土類磁石 DESCRIPTION OF SYMBOLS 10 Rare earth magnet 10a Front surface 10b Back surface 20 Sponge 21 Hollow part 22 Rotation support part 23 Rotation axis 30 Sliding member 31 Brush 32 Rotation support part 33 Rotation axis 40 Rotation brush 50 Rare earth magnet

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石体の表面を耐蝕性被膜で被覆
してなる希土類磁石の表面を摺擦して洗浄することを特
徴とする表面清浄度の良好な希土類磁石の製造方法。
1. A method for manufacturing a rare-earth magnet having good surface cleanliness, wherein the surface of the rare-earth magnet is coated with a corrosion-resistant coating and the surface of the rare-earth magnet is rubbed and washed.
【請求項2】 請求項1記載の表面清浄度の良好な希土
類磁石の製造方法において、 前記希土類磁石の表面を摺擦するに際しては、ブラシお
よび/またはスポンジを使用して摺擦することを特徴と
する表面清浄度の良好な希土類磁石の製造方法。
2. The method for manufacturing a rare-earth magnet having good surface cleanliness according to claim 1, wherein the surface of the rare-earth magnet is rubbed using a brush and / or a sponge. A method for producing a rare earth magnet having good surface cleanliness.
【請求項3】 請求項1または2記載の表面清浄度の良
好な希土類磁石の製造方法において、 摺擦するに際しては、前記希土類磁石の表面を純水また
は界面活性剤を含む洗浄液で濡らした状態で行うことを
特徴とする表面清浄度の良好な希土類磁石の製造方法。
3. The method for producing a rare earth magnet having good surface cleanliness according to claim 1 or 2, wherein the surface of the rare earth magnet is wetted with pure water or a cleaning liquid containing a surfactant when rubbing. A method for producing a rare-earth magnet having a good surface cleanliness.
【請求項4】 希土類磁石体の表面を耐蝕性被膜で被覆
してなる希土類磁石を、溶存酸素量を飽和溶存酸素量の
50%以下に脱気した純水中で超音波洗浄することを特
徴とする表面清浄度の良好な希土類磁石の製造方法。
4. A method for ultrasonically cleaning a rare earth magnet having a surface of a rare earth magnet covered with a corrosion resistant film in pure water in which the amount of dissolved oxygen is degassed to 50% or less of the amount of saturated dissolved oxygen. A method for producing a rare earth magnet having good surface cleanliness.
【請求項5】 希土類磁石体の表面を耐蝕性被膜で被覆
してなる希土類磁石を、溶存酸素量を飽和溶存酸素量の
50%以下に脱気した界面活性剤を含む洗浄液中で超音
波洗浄することを特徴とする表面清浄度の良好な希土類
磁石の製造方法。
5. Ultrasonic cleaning of a rare earth magnet having the surface of a rare earth magnet body coated with a corrosion resistant film in a cleaning solution containing a surfactant deaerated to a dissolved oxygen content of 50% or less of a saturated dissolved oxygen content. A method for producing a rare earth magnet having good surface cleanliness.
【請求項6】 請求項1乃至3のいずれか1項に記載の
表面清浄度の良好な希土類磁石の製造方法、あるいは請
求項4または5記載の表面清浄度の良好な希土類磁石の
製造方法のいずれか一方を前工程とし、他方を後工程と
して組み合わせてなることを特徴とする表面清浄度の良
好な希土類磁石の製造方法。
6. The method for producing a rare-earth magnet having good surface cleanliness according to any one of claims 1 to 3, or the method for producing a rare-earth magnet having good surface cleanliness according to claim 4 or 5. A method for producing a rare-earth magnet having good surface cleanliness, characterized in that one of them is a pre-process and the other is a post-process.
【請求項7】 請求項1乃至6のいずれか1項に記載の
表面清浄度の良好な希土類磁石の製造方法において、 前記耐蝕性被膜が電解メッキおよび/または無電解メッ
キであることを特徴とする表面清浄度の良好な希土類磁
石の製造方法。
7. The method for producing a rare-earth magnet having good surface cleanliness according to claim 1, wherein the corrosion-resistant coating is electrolytic plating and / or electroless plating. Of manufacturing rare earth magnets with good surface cleanliness.
【請求項8】 請求項7に記載の表面清浄度の良好な希
土類磁石の製造方法において、 前記希土類磁石がR2 14B型金属間化合物を主相とす
るR−T−B系永久磁石(RはYを含めた希土類元素の
1種または2種以上、TはFeまたはFeとCo)であ
ることを特徴とする表面清浄度の良好な希土類磁石の製
造方法。
8. The method according to claim 7, wherein the rare-earth magnet is an R-T-B-based permanent magnet whose main phase is an R 2 T 14 B-type intermetallic compound. (R is one or two or more rare earth elements including Y, and T is Fe or Fe and Co). A method for producing a rare earth magnet having good surface cleanliness.
【請求項9】 耐蝕性被膜で被覆された希土類磁石の表
面に付着している粒子の総数がこの磁石表面10cm2
あたり250以下であることを特徴とする表面清浄度の
良好な希土類磁石。
9. The total number of particles adhering to the surface of a rare earth magnet covered with a corrosion resistant film is 10 cm 2
A rare earth magnet having good surface cleanliness, wherein the magnet is 250 or less.
【請求項10】 耐蝕性被膜で被覆された希土類磁石の
表面に付着している粒子の総数に占める強磁性粒子の数
が70%以下であることを特徴とする表面清浄度の良好
な希土類磁石。
10. A rare-earth magnet having good surface cleanliness, wherein the number of ferromagnetic particles in the total number of particles adhering to the surface of the rare-earth magnet coated with the corrosion-resistant coating is 70% or less. .
【請求項11】 請求項9または10記載の表面清浄度
の良好な希土類磁石において、 前記付着粒子の総数に占める磁石粉末粒子の数が1%以
下であることを特徴とする表面清浄度の良好な希土類磁
石。
11. The rare-earth magnet with good surface cleanliness according to claim 9, wherein the number of magnet powder particles in the total number of the attached particles is 1% or less. Rare earth magnet.
【請求項12】 請求項9乃至11のいずれか1項に記
載の表面清浄度の良好な希土類磁石において、 前記希土類磁石体がR2 14B型金属間化合物を主相と
するR−T−B系永久磁石(RはYを含めた希土類元素
の1種または2種以上、TはFeまたはFeとCo)で
あり、かつ前記耐蝕性被膜が電解メッキおよび/または
無電解メッキであることを特徴とする表面清浄度の良好
な希土類磁石。
12. The rare earth magnet according to any one of claims 9 to 11, wherein the rare earth magnet body has an R 2 T 14 B type intermetallic compound as a main phase. A B-based permanent magnet (R is one or more rare earth elements including Y, T is Fe or Fe and Co), and the corrosion-resistant coating is electrolytic plating and / or electroless plating Rare earth magnet with good surface cleanliness characterized by:
JP10160069A 1998-06-09 1998-06-09 Rare earth magnet with good surface cleanliness and manufacture therefor Pending JPH11354361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10160069A JPH11354361A (en) 1998-06-09 1998-06-09 Rare earth magnet with good surface cleanliness and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10160069A JPH11354361A (en) 1998-06-09 1998-06-09 Rare earth magnet with good surface cleanliness and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH11354361A true JPH11354361A (en) 1999-12-24

Family

ID=15707225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10160069A Pending JPH11354361A (en) 1998-06-09 1998-06-09 Rare earth magnet with good surface cleanliness and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH11354361A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220420A1 (en) * 2000-12-28 2002-07-03 Valeo Equipements Electriques Moteur Manufacturing method of an exciter of an electric machine
JP2007273825A (en) * 2006-03-31 2007-10-18 Tdk Corp Rare-earth magnet
JP4600627B2 (en) * 2001-06-14 2010-12-15 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP2011009618A (en) * 2009-06-29 2011-01-13 Yoshizumi Fukui Method of manufacturing winding-integrated mold coil
CN103208342A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 NdFeB (neodymium iron boron) surface modified permanent magnetic material and preparation method thereof
CN103370446A (en) * 2011-02-15 2013-10-23 日立金属株式会社 Production method for R-Fe-B sintered magnet having plating film on surface thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220420A1 (en) * 2000-12-28 2002-07-03 Valeo Equipements Electriques Moteur Manufacturing method of an exciter of an electric machine
JP4600627B2 (en) * 2001-06-14 2010-12-15 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP2007273825A (en) * 2006-03-31 2007-10-18 Tdk Corp Rare-earth magnet
JP2011009618A (en) * 2009-06-29 2011-01-13 Yoshizumi Fukui Method of manufacturing winding-integrated mold coil
CN103370446A (en) * 2011-02-15 2013-10-23 日立金属株式会社 Production method for R-Fe-B sintered magnet having plating film on surface thereof
US9267217B2 (en) 2011-02-15 2016-02-23 Hitachi Metals, Ltd. Production method for R—Fe—B based sintered magnet having plating film on surface thereof
CN103208342A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 NdFeB (neodymium iron boron) surface modified permanent magnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7175511B2 (en) Method of manufacturing substrate for magnetic disk, apparatus for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP2520450B2 (en) Method for manufacturing corrosion resistant rare earth magnet
JP4970429B2 (en) Litho strip conditioning
JP5280774B2 (en) Aqueous detergent composition for substrates for perpendicular magnetic recording hard disks
JPH11354361A (en) Rare earth magnet with good surface cleanliness and manufacture therefor
JP2006291270A (en) Plating method for glass substrate, method for manufacturing disk substrate for perpendicular magnetic recording medium, disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP2006338837A (en) Plating method on glass substrate, method for manufacturing disk substrate for vertical magnetic recording medium, disk substrate for vertical magnetic recording medium, and the vertical magnetic recording medium
JP3698308B2 (en) Magnet and manufacturing method thereof
JP4506965B2 (en) R-T-M-B rare earth permanent magnet and method for producing the same
JP4770553B2 (en) Magnet and manufacturing method thereof
JP2004304968A (en) Permanent magnet member for voice coil motor, and voice coil motor
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2012252773A (en) Particle-sticking prevention liquid for electronic material-manufacturing process
WO1999023676A1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP2012142049A (en) Permanent magnet member for voice coil motor, and voice coil motor
WO2016208412A1 (en) Cleaning agent composition for glass hard disk substrate
JP4228902B2 (en) Magnetic recording medium and method for manufacturing the same
JPH0756849B2 (en) Method for manufacturing corrosion resistant rare earth magnet
US9029308B1 (en) Low foam media cleaning detergent
JP2004253742A (en) Rare earth magnet and its manufacturing method
JP4770556B2 (en) magnet
JP2003100537A (en) Method for manufacturing rare-earth permanent magnet
JPH11283816A (en) Rear earth magnet having high surface cleanliness and its manufacture
JP2001230106A (en) Permanent magnet material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040608