JPH11354100A - Battery - Google Patents

Battery

Info

Publication number
JPH11354100A
JPH11354100A JP10173881A JP17388198A JPH11354100A JP H11354100 A JPH11354100 A JP H11354100A JP 10173881 A JP10173881 A JP 10173881A JP 17388198 A JP17388198 A JP 17388198A JP H11354100 A JPH11354100 A JP H11354100A
Authority
JP
Japan
Prior art keywords
battery
shape memory
hole
memory element
conductive ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10173881A
Other languages
Japanese (ja)
Inventor
Mitsumune Kataoka
光宗 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10173881A priority Critical patent/JPH11354100A/en
Publication of JPH11354100A publication Critical patent/JPH11354100A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery equipped with a protective mechanism, that can remove the cause of heat generation by cutting off current when abnormal temperature rise occurs inside, including the case of passing of overcurrent and can prevent a rupture and the scattering of an inside filler in conjunction with it in advance, regardless of whether or not temperature rise occurs when internal pressure abnormally increases. SOLUTION: This battery is provided with a plate-like shape memory element 1 that has a through-hole and is formed from a Ti-Ni alloy, a conductive ball 3 that has a diameter larger than that of the hole and is so positioned as to plug the hole, and a plate-like bias spring 2 pressing the conductive ball 3 against the shape memory element 1 at all times. In addition, the battery has a protective mechanism that can prevent abnormal inside temperature rise due to the passage of an overcurrent and a rupture due to the increase of internal pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池に関し、とく
に過電流等による内部の異常な温度上昇を絶ち、内部の
圧力上昇による破裂等を回避する機能を有する電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, and more particularly, to a battery having a function of preventing abnormal internal temperature rise due to overcurrent or the like and avoiding rupture due to internal pressure rise.

【0002】[0002]

【従来の技術】電池には、過電流、あるいは他の原因に
よって内部温度が異常に上昇した場合、あるいは、内部
圧力が上昇した場合に備えた保護機構が、従来から備え
られている。
2. Description of the Related Art A battery has conventionally been provided with a protection mechanism for an abnormal rise in internal temperature or an increase in internal pressure due to an overcurrent or other causes.

【0003】図2は、従来の電池の構造の説明図であ
る。図2において、内部温度の上昇や、内部圧力上昇等
の異常事態に対処する保護機構は、PTC素子からなる
過電流保護素子5、防爆弁6、排気孔8からなってい
る。常温においては、防爆弁6および排気孔8は閉じた
状態なっている。
FIG. 2 is an explanatory view of the structure of a conventional battery. In FIG. 2, a protection mechanism for dealing with an abnormal situation such as a rise in internal temperature or a rise in internal pressure includes an overcurrent protection element 5 composed of a PTC element, an explosion-proof valve 6, and an exhaust hole 8. At normal temperature, the explosion-proof valve 6 and the exhaust hole 8 are closed.

【0004】電池内部の正極物質中に、微量の炭酸塩を
あらかじめ混在させておき、電池内部が一定以上の温度
に上昇する異常に対して、二酸化炭素からなる分解ガス
が発生するようになっている。つまり、外部回路の短絡
等による電池の異常発熱や、一定以上の過電流に対して
は、分解ガス発生によって内部圧力を上昇させ、防爆弁
6、排気孔8を開き、分解ガスを排出して、電池の破裂
と、これに伴う内部充填材の飛散を防ぐようにされてい
る。外部回路の短絡等による電池の異常発熱や、一定以
上の過電流に対しては、このほかに、過電流保護素子の
抵抗率が上昇し、電流を遮断する構造となっている。
[0004] A trace amount of carbonate is mixed in the cathode material inside the battery in advance, and a decomposition gas composed of carbon dioxide is generated in response to an abnormality in which the temperature inside the battery rises to a certain temperature or more. I have. That is, for abnormal heat generation of the battery due to a short circuit of the external circuit or the like, or overcurrent exceeding a certain level, the internal pressure is increased by generating the decomposition gas, the explosion-proof valve 6 and the exhaust hole 8 are opened, and the decomposition gas is discharged. In addition, the battery is prevented from being ruptured, and the internal filler accompanying the rupture is prevented. In addition to abnormal heat generation of the battery due to short-circuiting of an external circuit and the like, and overcurrent exceeding a certain level, the resistance of the overcurrent protection element increases and the current is cut off.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の電池に
おいては、防爆弁6および過電流保護素子5からなる保
護機構の部品点数が多く、かつ、それぞれの接合の信頼
性が高くないところに問題があった。
However, in the conventional battery, there is a problem in that the number of components of the protection mechanism including the explosion-proof valve 6 and the overcurrent protection element 5 is large and the reliability of the respective connections is not high. was there.

【0006】また、過電流保護素子5は、樹脂と炭素粉
末からなり、樹脂の融点を動作温度とする。しかし、樹
脂の融点を動作温度とすること自体が原因で、動作温度
の誤差を小さくして機能させることが実質的に困難であ
った。そのため、それぞれの種類の電池に対応して、あ
るいは使用環境に対応して必要にして十分な保護的機能
を設定することができないのが実状であった。
The overcurrent protection element 5 is made of resin and carbon powder, and the melting point of the resin is set as the operating temperature. However, since the melting point of the resin is used as the operating temperature itself, it has been substantially difficult to reduce the error of the operating temperature to function. For this reason, in reality, it has not been possible to set a necessary and sufficient protective function corresponding to each type of battery or corresponding to the use environment.

【0007】従来の電池においては、さらに、内部圧力
の上昇は内部温度上昇に伴って起きることのみを想定し
て防爆弁6が設けられており、このため、通常の温度で
内部圧力が上昇する異常には、防爆弁6は動作しないよ
うな構造となっていた。
[0007] In the conventional battery, the explosion-proof valve 6 is provided on the assumption that the internal pressure rises only with the rise of the internal temperature. Therefore, the internal pressure rises at a normal temperature. In an abnormal case, the explosion-proof valve 6 was configured not to operate.

【0008】本発明の目的は、過電流が通過する場合を
含み、内部で異常な温度上昇が生じた場合には、電流を
遮断して発熱の原因を除去し、内部の圧力が異常に上昇
した場合には、温度上昇の有無にかかわらず、破裂やこ
れに伴う内部充填材の飛散を未然に防ぐ保護機構を具備
した電池を提供することである。
An object of the present invention is to include a case where an overcurrent passes, and in a case where an abnormal temperature rise occurs in the inside, the current is cut off to eliminate a cause of heat generation and an internal pressure rises abnormally. In this case, it is an object of the present invention to provide a battery provided with a protection mechanism for preventing rupture and scattering of the internal filler accompanying the rupture irrespective of the presence or absence of a temperature rise.

【0009】[0009]

【課題を解決するための手段】本発明は、貫通した孔を
有する板状で、Ti−Ni系合金からなる形状記憶素子
と、孔よりも大きい直径をもち、孔を塞ぐように位置す
る導電性ボールと、その導電性ボールを形状記憶素子に
向けて常に押し付けている板状のバイアスばねを具備
し、過電流の通過による内部の異常な温度上昇、また
は、内部圧力の上昇による破裂を防止する保護機構を有
する電池である。
SUMMARY OF THE INVENTION The present invention relates to a plate-shaped shape memory element made of a Ti-Ni alloy having a through hole, and a conductive material having a diameter larger than the hole and positioned to close the hole. And a plate-shaped bias spring that constantly presses the conductive ball against the shape memory element to prevent abnormal internal temperature rise due to passage of overcurrent or rupture due to internal pressure rise The battery has a protection mechanism.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態につい
て、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、本発明による電池の保護機構の動
作の説明図である。図1(a)は正常動作していると
き、図1(b)は温度が異常に上昇したとき、および図
1(c)は内部圧力が異常に上昇したときに、保護機構
がそれぞれ動作している状態の説明図である。
FIG. 1 is a diagram illustrating the operation of the battery protection mechanism according to the present invention. 1A shows a normal operation, FIG. 1B shows an abnormal rise in temperature, and FIG. 1C shows an abnormal rise in internal pressure. FIG.

【0012】図1において、電池の保護機構部には、板
状の形状記憶素子1、導電性ボール3、およびバイアス
ばね2が組合せて用いられている。形状記憶素子1とバ
イアスばね2の間に導電性ボール3が配置され、導電性
ボール3は、バイアスばね2によって形状記憶素子1側
に常に押さえられている。形状記憶素子1には、100
℃で相変態し、その温度を通過して変化することによっ
て形状回復するTi−Ni系形状記憶合金が用いられて
いる。
In FIG. 1, a plate-shaped shape memory element 1, a conductive ball 3, and a bias spring 2 are used in combination for a protection mechanism of a battery. A conductive ball 3 is arranged between the shape memory element 1 and the bias spring 2, and the conductive ball 3 is constantly pressed toward the shape memory element 1 by the bias spring 2. The shape memory element 1 has 100
A Ti—Ni-based shape memory alloy that undergoes a phase transformation at a temperature of ° C. and changes its shape by passing through the temperature is used.

【0013】板状の形状記憶素子1には導電性ボール3
よりも小さい直径で、貫通した孔が設けられ、導電性ボ
ール3は、この孔に位置している。導電性ボール3は、
バイアスばね2によって常に押さえられているため、通
常は、形状記憶素子1の孔は導電性ボール3によって塞
がれ、気密が保たれている。
The plate-shaped shape memory element 1 has conductive balls 3
A smaller diameter is provided with a through hole, and the conductive ball 3 is located in this hole. The conductive balls 3
Since the hole is always held down by the bias spring 2, the hole of the shape memory element 1 is normally closed by the conductive ball 3, and airtightness is maintained.

【0014】通常、正極リード9は、導電性ボール3に
接触しており、さらにバイアスばね2に順次通じてい
る。図1に示す電池では、バイアスばね2が、そのまま
正極端子となっている。バイアスばね2には、排気孔8
が設けられている。
Normally, the positive electrode lead 9 is in contact with the conductive ball 3 and is further connected to the bias spring 2 sequentially. In the battery shown in FIG. 1, the bias spring 2 serves as a positive electrode terminal as it is. The bias spring 2 has an exhaust hole 8
Is provided.

【0015】電池が正常に機能している場合には、導電
性ボール3は、バイアスばね2によって、正極リード9
に押し付けられ、バイアスばね2は、導電性ボール3を
介して正極リード9と導通が保たれている[図1
(a)]。
When the battery is functioning normally, the conductive ball 3 is biased by the bias spring 2 to the positive lead 9.
And the bias spring 2 is kept in conduction with the positive electrode lead 9 via the conductive ball 3 [FIG.
(A)].

【0016】しかし、過電流発生等の異常を原因とする
電池の内部発熱によって、形状記憶素子が100℃以上
の温度に上昇すると、電流が遮断される[図1
(b)]。すなわち、形状記憶素子1では、相変態によ
る形状回復が生じ、導電性ボール3を介してバイアスば
ね2を押し上げ、導電性ボール3は正極リード9から離
れ導通が遮断され、この時点で過電流がなくなる。この
現象は、内部圧力変化の有無に依存しない。ちなみに、
Ti−Ni系合金は、80−100μΩ・cmの比抵抗
を有することから、電流値に応じてその断面積を選び、
過電流保護の設計をすることができる。
However, when the temperature of the shape memory element rises to 100 ° C. or more due to internal heat generation of the battery due to an abnormality such as occurrence of an overcurrent, the current is interrupted [FIG.
(B)]. That is, in the shape memory element 1, the shape recovery due to the phase transformation occurs, the bias spring 2 is pushed up through the conductive ball 3, the conductive ball 3 separates from the positive electrode lead 9, and the conduction is interrupted. Disappears. This phenomenon does not depend on the presence or absence of an internal pressure change. By the way,
Since the Ti-Ni-based alloy has a specific resistance of 80-100 μΩ · cm, its cross-sectional area is selected according to the current value.
Overcurrent protection can be designed.

【0017】電池が、外部から加熱されて形状記憶素子
1が100℃以上の温度に上昇した場合でも、形状記憶
素子1が形状回復により、導電性ボール3を押し上げる
[図1(b)]。その結果、内部の圧力上昇が予め防止
されることになる。
Even when the battery is heated from the outside and the temperature of the shape memory element 1 rises to 100 ° C. or higher, the shape memory element 1 pushes up the conductive ball 3 due to shape recovery [FIG. 1 (b)]. As a result, an increase in internal pressure is prevented in advance.

【0018】また、電池の内部圧力が上昇した場合に
は、形状記憶素子1の孔を塞ぎ、いわゆる防爆弁の機能
をなしている導電性ボール3が、温度上昇の有無にかか
わらず、内部圧力によって押し上げられる。そして、分
解ガスは、バイアスばね2に設けられた排気孔8をとお
して排出される。その結果、電池の破裂や内部充填材の
飛散等が防止される。
When the internal pressure of the battery rises, the conductive ball 3 which closes the hole of the shape memory element 1 and functions as a so-called explosion-proof valve, regardless of the temperature rise, Pushed up by. Then, the decomposed gas is discharged through an exhaust hole 8 provided in the bias spring 2. As a result, rupture of the battery, scattering of the internal filler, and the like are prevented.

【0019】導電性ボール3は、形状記憶素子1に形成
された孔を塞ぎ、前述のように、いわゆる防爆弁の機能
を果たせばよい。したがって、導電性ボール3は、その
機能を果たす限りにおいて、形状が球形である必然性は
ない。形状記憶素子に形成された孔の形状と導電性ボー
ルの断面の形状が一致し、その孔を気密に塞ぎ、必要に
応じてその気密を解放することができれば、導電性ボー
ルは、たとえば円錐形や角錐形でもよい。また、導電性
ボール3は、その機能から、バイアスばね2に接合して
一体としてもよい。
The conductive ball 3 only has to close the hole formed in the shape memory element 1 and perform the function of a so-called explosion-proof valve as described above. Therefore, the conductive ball 3 does not have to be spherical in shape as long as it performs its function. If the shape of the hole formed in the shape memory element matches the cross-sectional shape of the conductive ball, the hole can be closed air-tightly, and if necessary, the air-tightness can be released, the conductive ball will have a conical shape, for example. Or a pyramid shape. In addition, the conductive ball 3 may be joined to the bias spring 2 to form an integral part due to its function.

【0020】形状記憶素子1と、バイアスばね2のばね
力を適切に組み合わせることによって、異常な温度上昇
はもとより、温度変化とは独立した内部圧力の異常な上
昇に対して、破裂等を回避するに有効である。
By appropriately combining the shape memory element 1 and the spring force of the bias spring 2, rupture or the like can be avoided not only for an abnormal temperature rise but also for an abnormal rise in internal pressure independent of a temperature change. It is effective for

【0021】本発明による電池は、形状記憶素子1、導
電性ボール3、およびバイアスばね2の、少ない部品数
で単純な構成をなし、組成を制御し、相変態温度を任意
に設定可能で、かつ信頼性の高い形状変化の動作を実現
する。本発明により、それぞれの種類の電池に対応し
て、あるいは使用環境に対応して適切な保護的機能を設
定することも可能である。
The battery according to the present invention has a simple structure with a small number of parts of the shape memory element 1, the conductive ball 3, and the bias spring 2, can control the composition, and can arbitrarily set the phase transformation temperature. A highly reliable shape change operation is realized. According to the present invention, it is also possible to set an appropriate protective function in accordance with each type of battery or in accordance with the use environment.

【0022】[0022]

【発明の効果】以上説明したように、本発明により、過
電流が通過した場合を含み、内部で異常な温度上昇が生
じた場合には、電流を遮断し、内部の圧力が異常に上昇
した場合には、いわゆる防爆弁の機能を動作させて、破
裂やこれに伴う内部充填材の飛散を未然に防ぐ保護機構
を具備した電池を得ることができる。
As described above, according to the present invention, when an abnormal temperature rise occurs inside, including the case where an overcurrent passes, the current is cut off and the internal pressure rises abnormally. In this case, a battery having a protection mechanism for preventing the explosion and the scattering of the internal filler due to the explosion can be obtained by operating the function of a so-called explosion-proof valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電池の保護機構の動作の説明図。
図1(a)は正常動作しているとき、図1(b)は温度
が異常に上昇したとき、および図1(c)は内部圧力が
異常に上昇したときに、保護機構がそれぞれ動作してい
る状態の説明図。
FIG. 1 is an explanatory view of the operation of a battery protection mechanism according to the present invention.
1A shows a normal operation, FIG. 1B shows an abnormal rise in temperature, and FIG. 1C shows an abnormal rise in internal pressure. FIG.

【図2】従来の電池の構造の説明図。FIG. 2 is an explanatory view of the structure of a conventional battery.

【符号の説明】[Explanation of symbols]

1 形状記憶素子 2 バイアスばね 3 電導性ボール 5 過電流保護素子 6 防爆弁 7 ガスケット 8 排気孔 9 正極リード 11 正極端子 12 正極板 13 負極板 14 セパレータ 15 絶縁板 16 ケース DESCRIPTION OF SYMBOLS 1 Shape memory element 2 Bias spring 3 Conductive ball 5 Overcurrent protection element 6 Explosion-proof valve 7 Gasket 8 Exhaust hole 9 Positive electrode lead 11 Positive electrode terminal 12 Positive electrode plate 13 Negative electrode plate 14 Separator 15 Insulating plate 16 Case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 過電流の通過による異常な温度上昇、お
よび、内部圧力の異常な上昇の、少なくとも一方の事象
を防止する保護機構を有する電池において、貫通した孔
を有する板状の形状記憶素子と、該孔よりも大きい直径
をもち、前記孔を塞ぐように位置する導電性ボールと、
該導電性ボールを前記形状記憶素子に向けて常に押し付
けている板状のバイアスばねから構成される保護機構を
具備したことを特徴とする電池。
1. A battery having a protection mechanism for preventing at least one of an abnormal temperature rise due to the passage of an overcurrent and an abnormal rise in an internal pressure, wherein a plate-shaped shape memory element having a through hole is provided. And a conductive ball having a diameter larger than the hole and positioned to close the hole,
A battery comprising a protection mechanism including a plate-shaped bias spring that constantly presses the conductive ball toward the shape memory element.
【請求項2】 前記形状記憶素子は、Ti−Ni系合金
からなることを特徴とする請求項1記載の電池。
2. The battery according to claim 1, wherein the shape memory element is made of a Ti—Ni alloy.
JP10173881A 1998-06-05 1998-06-05 Battery Pending JPH11354100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173881A JPH11354100A (en) 1998-06-05 1998-06-05 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173881A JPH11354100A (en) 1998-06-05 1998-06-05 Battery

Publications (1)

Publication Number Publication Date
JPH11354100A true JPH11354100A (en) 1999-12-24

Family

ID=15968854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173881A Pending JPH11354100A (en) 1998-06-05 1998-06-05 Battery

Country Status (1)

Country Link
JP (1) JPH11354100A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079941A (en) * 2004-09-09 2006-03-23 Sanyo Electric Co Ltd Pack battery
WO2007139879A2 (en) * 2006-05-24 2007-12-06 Eveready Battery Company, Inc. Current interrupt device for batteries
CN100388530C (en) * 2004-09-07 2008-05-14 三星Sdi株式会社 Lithium ion secondary battery having shape memory safety vent
WO2009096188A1 (en) * 2008-01-31 2009-08-06 Panasonic Corporation Secondary battery
WO2015040471A1 (en) 2013-09-19 2015-03-26 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN104993079A (en) * 2015-05-29 2015-10-21 周虎 Cylindrical lithium ion battery with secondary sealing valve
US11581600B2 (en) 2019-02-25 2023-02-14 Lg Energy Solution, Ltd. Venting device
US11881591B2 (en) 2018-06-18 2024-01-23 Lg Energy Solution, Ltd. Venting device and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388530C (en) * 2004-09-07 2008-05-14 三星Sdi株式会社 Lithium ion secondary battery having shape memory safety vent
JP2006079941A (en) * 2004-09-09 2006-03-23 Sanyo Electric Co Ltd Pack battery
US7763375B2 (en) * 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
WO2007139879A3 (en) * 2006-05-24 2008-03-13 Eveready Battery Inc Current interrupt device for batteries
JP2009538505A (en) * 2006-05-24 2009-11-05 エバレデイ バツテリ カンパニー インコーポレーテツド Battery current interrupting device
WO2007139879A2 (en) * 2006-05-24 2007-12-06 Eveready Battery Company, Inc. Current interrupt device for batteries
AU2007267959B2 (en) * 2006-05-24 2011-12-22 Eveready Battery Company, Inc. Current interrupt device for batteries
KR101364408B1 (en) * 2006-05-24 2014-02-21 에버레디 배터리 컴퍼니, 인크. Current interrupt device for batteries
WO2009096188A1 (en) * 2008-01-31 2009-08-06 Panasonic Corporation Secondary battery
US7998612B2 (en) 2008-01-31 2011-08-16 Panasonic Corporation Secondary battery
WO2015040471A1 (en) 2013-09-19 2015-03-26 Toyota Jidosha Kabushiki Kaisha Secondary battery
US10707543B2 (en) 2013-09-19 2020-07-07 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN104993079A (en) * 2015-05-29 2015-10-21 周虎 Cylindrical lithium ion battery with secondary sealing valve
US11881591B2 (en) 2018-06-18 2024-01-23 Lg Energy Solution, Ltd. Venting device and method for manufacturing the same
US11581600B2 (en) 2019-02-25 2023-02-14 Lg Energy Solution, Ltd. Venting device

Similar Documents

Publication Publication Date Title
JP4872034B2 (en) Sealed battery
KR100351608B1 (en) Explosion-proof nonaqueous electrolyte secondary cell and rupture pressure setting method therefor
JP6162899B2 (en) Battery cell with overvoltage protection device
TWI567773B (en) Protection device and electronic device having the same
JP2001135301A (en) Sealed battery
KR20180018279A (en) Cap assembly of excellent electrical safety for a secondary battery and the battery inclusive of the same
JPH11354100A (en) Battery
JPH0562664A (en) Explosion proof type nonaqueous secondary battery
KR101902625B1 (en) Actuating structure of battery safety valve
JPH10154530A (en) Lithium secondary battery
JP2003051304A (en) Nonaqueous electrolyte secondary battery
KR100814879B1 (en) Non-aqueous liquid electrolyte secondary cell
JP5315742B2 (en) battery
JPH08236102A (en) Electrochemical element
US8268467B2 (en) Battery safety features
JPH06349480A (en) Composite protective element and battery pack with composite protective element
JPH10334883A (en) Safety structure for sealed battery
JPH05205727A (en) Safety device for sealed battery
WO2018090180A1 (en) Secondary battery
JP3143176B2 (en) Battery sealing body
JPH10188945A (en) Lithium secondary battery
WO2018090179A1 (en) Secondary battery
JP2003323877A (en) Battery
JP2001195970A (en) Fuse and cell using the same
JPH11329402A (en) Circuit breaking part of battery