JPH11351767A - Heat exchanger and production of high purity powder and grain - Google Patents

Heat exchanger and production of high purity powder and grain

Info

Publication number
JPH11351767A
JPH11351767A JP15580498A JP15580498A JPH11351767A JP H11351767 A JPH11351767 A JP H11351767A JP 15580498 A JP15580498 A JP 15580498A JP 15580498 A JP15580498 A JP 15580498A JP H11351767 A JPH11351767 A JP H11351767A
Authority
JP
Japan
Prior art keywords
cylindrical tube
tube
gap
cylindrical
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15580498A
Other languages
Japanese (ja)
Inventor
Daizo Kunii
大藏 國井
Yuji Maeda
裕司 前田
Tokifumi Yoshikawa
時文 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15580498A priority Critical patent/JPH11351767A/en
Publication of JPH11351767A publication Critical patent/JPH11351767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform heat exchange of high purity material to be processed efficiently by passing fluid through the air gap between an outer tube and a tubular pipe and exchanging with the material to be processed. SOLUTION: A material being subjected to heat exchange is fed from one end of a tubular pipe 1. The material rolls through rotation of the tubular pipe 1 to move easily in the direction of the other end from the supply end. The tubular pipe 1 is secured at two or a plurality of supporting parts 2. An outer tube 3 is arranged to surround the tubular pipe 1 and cooling gas flows through a gap defined by the outer circumference of the tubular pipe 1 and the outer tube 3 made of a heat resistant heat insulating material. The outer tube 3 is constructed independently from the tubular pipe 1. Since a driving force for turning the tubular pipe 1 is not transmitted externally through the outer tube 3 surrounding the tubular pipe 1 through a gap passing a fluid for heat exchange, interlocked rotation of the outer tube 3 and the tubular pipe 1 is not required.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度粉粒体の製
造方法並びに斯かる製造方法に適した熱交換装置に関す
るものであり、高温に加熱された高純度粉体又は粉粒体
を高能率で冷却してその熱エネルギーを有効に回収する
方法を提供しうるものであり、特にセラミック、ガラス
等の無機材料の製造に適した方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity powders and granules, and a heat exchanger suitable for such a production method. The present invention can provide a method of efficiently collecting heat energy by cooling efficiently, and particularly relates to a method suitable for producing an inorganic material such as ceramic or glass.

【0002】[0002]

【従来の技術】従来より、粉状もしくは粒状の被処理物
を連続的に焼成や乾燥するに際しては、ロータリーキル
ン方式の加熱装置を用いるのが一般的となっている。こ
の加熱装置は一定の速度で回転している円筒状の炉心管
を備え、片側端部入口より投入された被焼成物もしくは
被乾燥物は回転によって反対端部出口に移送される。外
熱式のロータリーキルンでは、この移送の間に炉心管外
面に配された加熱体からの熱伝達により被処理物が所定
の温度まで加熱される。特に高純度が要求されるセラミ
ック原料粉の焼成や乾燥においては、セラミック原料粉
から発生した重金属蒸気との反応による生成物やセラミ
ック原料粉と接することにより発生する炉心管材料の磨
耗粉のコンタミネーションの問題から、直接セラミック
粉と接する炉心管の材質としても高純度かつ高密度のセ
ラミック材料が要求される。
2. Description of the Related Art Conventionally, a rotary kiln type heating device has been generally used for continuously firing and drying powdery or granular objects to be processed. This heating device includes a cylindrical furnace tube rotating at a constant speed, and the material to be fired or dried from one end inlet is transferred to the opposite end outlet by rotation. In the externally heated rotary kiln, the workpiece is heated to a predetermined temperature by heat transfer from a heating body disposed on the outer surface of the furnace tube during this transfer. In particular, in the firing and drying of ceramic raw material powder, which requires high purity, contamination of abrasion powder of furnace tube material generated by contact with ceramic raw material powder due to reaction with heavy metal vapor generated from ceramic raw material powder. Therefore, a high-purity and high-density ceramic material is also required as a material of the furnace tube directly in contact with the ceramic powder.

【0003】このように加熱処理された被処理物は、高
温の状態でロータリーキルンより連続的に排出されるた
め、後処理の工程として実質的に被処理物の連続的な冷
却が必要となる。このロータリーキルンから排出される
被処理物を連続的に冷却するための装置としては、図1
0〜12に示すようにシャフト式、ロータリー式、グレ
ート式などが知られている。これらの方式では、被処理
物の冷却のために冷却用気体を冷却装置内へ吹き込み、
冷却媒体である気体と被処理物である固体との直接接触
により熱交換を行い、被処理物を冷却する形式である。
図中、41はロータリーキルン、42は冷却装置本体、
43は揺動格子、44は冷却空気、45は被処理物の流
れ、46は冷却空気の流れである。
[0003] Since the heat-treated object is continuously discharged from the rotary kiln at a high temperature, substantially continuous cooling of the object is required as a post-treatment step. FIG. 1 shows an apparatus for continuously cooling the object discharged from the rotary kiln.
As shown in 0 to 12, a shaft type, a rotary type, a great type, and the like are known. In these systems, a cooling gas is blown into the cooling device to cool the workpiece,
This is a type in which heat exchange is performed by direct contact between a gas as a cooling medium and a solid as an object to be processed, thereby cooling the object to be processed.
In the figure, 41 is a rotary kiln, 42 is a cooling device main body,
43 is an oscillating grid, 44 is cooling air, 45 is a flow of the object to be processed, and 46 is a flow of cooling air.

【0004】[0004]

【発明が解決しようとする課題】高純度が要求されるセ
ラミック原料粉の冷却においても、焼成や乾燥における
場合と同様に、被冷却粉と接することにより発生する冷
却部材料の磨耗粉のコンタミネーション等の問題から、
直接セラミック粉と接する部分の材質に高純度かつ高密
度の材料が要求される。ところが、図10及び図11に
示したグレート式やシャフト式では、直接セラミック粉
と接する部分に製品の品質を保持するのに適切な材質を
用いての製作が非常に困難であるため、このような目的
には高純度かつ高密度のセラミック材料を炉心管に用い
たロータリー式が望ましい。
In the cooling of ceramic raw material powder requiring high purity, the contamination of the abrasion powder of the cooling part material generated by coming into contact with the powder to be cooled, as in the case of firing and drying. From problems such as
A high-purity and high-density material is required for the material of the portion directly in contact with the ceramic powder. However, in the case of the great type and the shaft type shown in FIGS. 10 and 11, it is extremely difficult to manufacture a portion directly in contact with the ceramic powder using a material suitable for maintaining the quality of the product. For this purpose, a rotary type using a high purity and high density ceramic material for the furnace tube is desirable.

【0005】図12に示したロータリー式では、被処理
物の冷却は回転円筒管内に供給された冷却気体との直接
接触によりなされる。ところが、被処理物の伝熱を考慮
した場合、被処理物の冷却においては冷却気体との直接
接触に加えて、回転円筒管外表面からの放熱が支配的で
ある。従って、回転円筒管を積極的に冷却することによ
って被処理物を効果的に冷却することが可能であると考
えられる。また、被処理物への不純物のコンタミネーシ
ョンを最小限にするためは、高純度且つ高密度材料を内
筒として被挿入した二重構造を持つ冷却装置の構造が考
えられる。さらに、被処理物と冷却媒体が直接接触しな
いほうが望ましい。
In the rotary type shown in FIG. 12, the object to be processed is cooled by direct contact with a cooling gas supplied into a rotating cylindrical tube. However, when heat transfer of the object to be treated is taken into consideration, heat radiation from the outer surface of the rotary cylindrical tube is dominant in cooling the object to be treated, in addition to direct contact with the cooling gas. Therefore, it is considered that the object to be processed can be effectively cooled by actively cooling the rotating cylindrical tube. In order to minimize contamination of impurities to be processed, a cooling device having a double structure in which a high-purity and high-density material is inserted as an inner cylinder may be considered. Further, it is desirable that the object to be processed and the cooling medium do not directly contact each other.

【0006】ここで、高純度且つ高密度のセラミック材
料からなる円筒管を使用し、かつ大型もしくは運転温度
が高温であるような条件では、円筒管内の被処理物の荷
重や自重に対して十分な機械的強度が得られないおそれ
がある。特開平6−191825号公報においては金属
板の外筒と断熱材料とで構成された筒状体の内部に、そ
の内径よりも小さい外径を有する石英ガラス製の筒状体
を収め、外筒に回転駆動力を加えて全体を一体として中
心軸の回りに回転する装置であって、内筒である石英ガ
ラス製筒状体と、外筒を構成する筒状体との間に環状の
空気通路を設けて被処理物である石英粉粒の移動と実質
的に向流に空気を流すことにより熱交換を行うことので
きる装置が提案されている。この装置では内筒の外表面
から空気の流通による冷却を図っているものの、高温の
被処理物を処理しようとした場合には、熱伝導により内
筒が高温となることは避けられず、このため内筒の強度
が十分ではなく、その強度確保が難しい。このため、内
筒の支持方法や支持間隔などによっては内筒の変形や破
損を導く虞れがある。
Here, when a cylindrical tube made of a high-purity and high-density ceramic material is used, and the condition is large or the operating temperature is high, the load or the weight of the object to be processed in the cylindrical tube is insufficient. High mechanical strength may not be obtained. In JP-A-6-191825, a quartz glass tubular body having an outer diameter smaller than its inner diameter is placed inside a tubular body composed of an outer cylinder of a metal plate and a heat insulating material. Is a device that applies a rotational driving force to the entire body and rotates about the central axis as a whole, and annular air is formed between a quartz glass tubular body that is an inner cylinder and a tubular body that constitutes an outer cylinder. There has been proposed an apparatus capable of performing heat exchange by providing a passage and moving air substantially countercurrent to the movement of quartz powder particles as an object to be processed. In this apparatus, cooling is performed by the flow of air from the outer surface of the inner cylinder.However, when processing a high-temperature workpiece, it is unavoidable that the inner cylinder becomes hot due to heat conduction. Therefore, the strength of the inner cylinder is not sufficient, and it is difficult to secure the strength. For this reason, there is a possibility that the inner cylinder may be deformed or damaged depending on the method of supporting the inner cylinder, the supporting interval, and the like.

【0007】これらの問題に対しては例えば図4に示す
ように、高純度且つ高密度セラミックスからなる内筒を
保護管である耐熱金属からなる外筒に挿入した二重構造
として内筒を支持できるような構造とし、内筒の強度が
確保できる支持間隔で支持することが考えられる。とこ
ろが、このような二重構造の冷却装置においては、図4
に示すように、内筒である円筒管1と外筒である保護管
31との間には間隙33が発生することになる。この間
隙は、円筒管1と保護管31の材質の違いによって発生
する熱膨張の差による円筒管1と保護管31とのずれを
吸収する構造・機構の設置や、回転駆動装置4から保護
管31に伝達される回転力を円筒管1へ効率よく伝達す
るための滑り止め32等の設置・調整のために大きく取
らざるを得ない。特に工業用として大型で軸方向に非常
に長い装置を考えた場合、前記の滑り止め32の設置・
調整は円筒管の両端面である被処理物18の送入口13
もしくは排出口14からのみでは十分ではない。さらに
間隙33のために、冷却媒体から被処理物18への熱伝
達の効率が低下してしまう。
To solve these problems, for example, as shown in FIG. 4, the inner cylinder made of a high-purity and high-density ceramic is inserted into an outer cylinder made of a heat-resistant metal, which is a protective tube, to support the inner cylinder. It is conceivable to adopt a structure that allows the inner cylinder to be supported at a support interval that ensures the strength of the inner cylinder. However, in such a cooling device having a double structure, FIG.
As shown in (1), a gap 33 is generated between the cylindrical tube 1 as the inner tube and the protective tube 31 as the outer tube. This gap is provided by the installation of a structure / mechanism for absorbing a displacement between the cylindrical tube 1 and the protective tube 31 due to a difference in thermal expansion caused by a difference in the material of the cylindrical tube 1 and the protective tube 31, The installation and adjustment of the non-slip 32 and the like for efficiently transmitting the rotational force transmitted to the cylindrical tube 1 to the cylindrical tube 1 have to be largely taken. In particular, when considering a large-sized and very long device in the axial direction for industrial use, the installation of the anti-slip 32
The adjustment is performed at the inlet 13 of the workpiece 18 which is the both end surfaces of the cylindrical tube.
Or, it is not enough just from the outlet 14. Further, due to the gap 33, the efficiency of heat transfer from the cooling medium to the processing object 18 is reduced.

【0008】本発明は、これら従来技術の問題に鑑みて
なされたものであって、効率的に高純度被処理物の熱交
換を行う熱交換装置の提供を目的としている。
[0008] The present invention has been made in view of the problems of the prior art, and has as its object to provide a heat exchange apparatus for efficiently exchanging heat of a high-purity object.

【0009】[0009]

【課題を解決するための手段】本発明の熱交換装置は、
このような目的を達成するために成されたものであり、
(1)中心軸の回りに回転することにより内部の被処理
物を転動させつつ一端より他端に移動せしめうる円筒管
と、該円筒管を囲い該円筒管とは独立した外筒とを有
し、外筒と円筒管との間の空隙に流体を通じて被処理物
と熱交換を行わしめ得る熱交換装置、(2)空隙を介し
て外筒に囲われた円筒管の一端から円筒管内に粉粒体を
導入しつつ円筒管外部より駆動力を加えて円筒管を回転
させ、該空隙に流体を通じて粉粒体と熱交換を行わしめ
粉粒体を加熱する粉粒体の加熱方法であって、該外筒が
該円筒管とは独立していることを特徴とする粉粒体の加
熱方法、(3)空隙を介して外筒に囲われた円筒管の一
端から円筒管内に粉粒体を導入しつつ円筒管外部より駆
動力を加えて円筒管を回転させ、該空隙に流体を通じて
粉粒体と熱交換を行わしめ粉粒体を冷却する粉粒体の冷
却方法であって、該外筒が該円筒管とは独立しているこ
とを特徴とする粉粒体の冷却方法、及び(4)空隙を介
して外筒に囲われた円筒管の一端から円筒管内に粉粒体
を導入しつつ円筒管外部より駆動力を加えて円筒管を回
転させ、該空隙に流体を通じて粉流体を熱処理する高純
度粉粒体の製造方法であって、該外筒が該円筒管とは独
立していることを特徴とする高純度粉粒体の製造方法に
存する。
The heat exchange device of the present invention comprises:
This was done to achieve these goals,
(1) A cylindrical tube that can be moved from one end to the other while rotating the object to be processed by rotating about a central axis, and an outer tube surrounding the cylindrical tube and independent of the cylindrical tube. A heat exchange device having a heat exchanger capable of exchanging heat with an object to be processed through a fluid in a space between the outer tube and the cylindrical tube, and (2) an inside of the cylindrical tube from one end of the cylindrical tube surrounded by the outer tube via the space. A method of heating the granular material by applying a driving force from the outside of the cylindrical tube while introducing the granular material into the cylindrical tube, rotating the cylindrical tube, exchanging heat with the granular material through the fluid through the gap, and heating the granular material. A method of heating the granular material, wherein the outer tube is independent of the cylindrical tube; (3) powder is introduced into the cylindrical tube from one end of the cylindrical tube surrounded by the outer tube via a gap; A driving force is applied from the outside of the cylindrical tube while introducing the granular material to rotate the cylindrical tube, and heat exchange with the granular material is performed through the fluid through the gap. A method of cooling a granular material for cooling a squeezed granular material, wherein the outer cylinder is independent of the cylindrical tube, and (4) a method of cooling the granular material through a gap. A high-purity powder that heat-treats the powder fluid through a fluid through the void while applying a driving force from the outside of the cylindrical pipe while introducing the powder into the cylindrical pipe from one end of the cylindrical pipe surrounded by the outer cylinder and rotating the cylindrical pipe. A method for producing a body, wherein the outer cylinder is independent of the cylindrical tube.

【0010】本発明の熱交換装置を用いれば、円筒管を
回転させ、円筒管の一端から被処理物を円筒管内に供給
して円筒管の内部を転動しながら他端方向へ移動させ、
この円筒管を囲う外筒と円筒管との間の空隙に流体を通
ずることによって、被処理物の間接的な冷却処理及びこ
れに引き続く装置からの排出を、実質的に連続して行う
ことができる。特に円筒管を固定する支持部を円筒管の
軸方向に複数に分割することにより、円筒管の熱膨張時
の支持部の自由な移動が可能となり円筒管の強度保持が
容易である。このような熱交換装置を用いることによ
り、高純度の被処理物であっても、不純物の混入を最小
限に押さえて高能率に冷却することが可能である。
According to the heat exchange apparatus of the present invention, the cylindrical tube is rotated, the object to be processed is supplied from one end of the cylindrical tube into the cylindrical tube, and the inside of the cylindrical tube is rolled and moved in the other end direction.
By passing the fluid through the gap between the outer tube surrounding the cylindrical tube and the cylindrical tube, the indirect cooling of the object to be processed and the subsequent discharge from the device can be performed substantially continuously. it can. In particular, by dividing the supporting portion for fixing the cylindrical tube into a plurality of portions in the axial direction of the cylindrical tube, the supporting portion can be freely moved at the time of thermal expansion of the cylindrical tube, and the strength of the cylindrical tube can be easily maintained. By using such a heat exchanger, even a high-purity object to be processed can be cooled with high efficiency while minimizing contamination of impurities.

【0011】また、上記の装置において円筒管とこれを
囲う外筒との間の空隙に高温の流体を通じることによ
り、円筒管の一端から低温度の被処理物を供給して円筒
管の内部を転動させながら加熱し、他端から実質的に連
続的に排出することもできる。
Further, in the above apparatus, a high-temperature fluid is passed through a gap between the cylindrical tube and the outer tube surrounding the cylindrical tube, so that a low-temperature workpiece is supplied from one end of the cylindrical tube, and the inside of the cylindrical tube is supplied. Can be heated while rolling, and can be discharged substantially continuously from the other end.

【0012】[0012]

【発明の実施の形態】本発明においては熱交換を受ける
べき被処理物は円筒管の一方の端から供給される。被処
理物は円筒管の回転によって転動し、供給端から容易に
他端の方向に移動する。円筒管は筒状の外筒に覆われて
いる。また、転動する被処理物と円筒管内表面間の熱伝
達係数は極めて大きいので、熱エネルギーの交換に必要
な伝熱面積が少なくて済み、従って装置の建設費は小さ
くて済む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, an object to be subjected to heat exchange is supplied from one end of a cylindrical tube. The object is rolled by the rotation of the cylindrical tube, and easily moves from the supply end to the other end. The cylindrical tube is covered with a cylindrical outer cylinder. Further, since the heat transfer coefficient between the rolling object and the inner surface of the cylindrical tube is extremely large, the heat transfer area required for exchanging heat energy is small, and the construction cost of the apparatus is small.

【0013】以下、本発明につき、図1〜3、5〜9を
用いて詳細に説明する。 <第1実施例>図1は本発明の熱交換装置の一例の全体
図を示す側面図である。図2は図1におけるX−X’線
に沿う断面図である。図3は図1におけるY−Y’に沿
う断面図である。
Hereinafter, the present invention will be described in detail with reference to FIGS. <First Embodiment> FIG. 1 is a side view showing an overall view of an example of a heat exchange device of the present invention. FIG. 2 is a sectional view taken along line XX ′ in FIG. FIG. 3 is a sectional view taken along the line YY 'in FIG.

【0014】図1に示すように、円筒管1が2カ所もし
くはそれ以上の複数の支持部2で固定されている。円筒
管1の外周を取り囲むように外筒3が配設されており、
冷却用の気体は円筒管1の外周と耐熱性・断熱性の材料
により構成された外筒3で囲まれた間隙を流れている。
図4に示す装置とは異なり本発明においては外筒は、円
筒管とは独立した構成となっている。つまり、円筒管を
回転するための駆動力は、熱交換のための流体の通過す
る間隙を介して円筒管を囲っている外筒を介して外部よ
り伝達されるものではないので、外筒は円筒管と連動し
て回転することは要さないことを意味する。従って、外
筒は円筒管と連結される必要はなく、図4に示すような
ずれ吸収・調整機構、駆動力伝達装置、滑り止め等を要
さず、円筒管と外筒との間隙は熱交換効率を鑑みて設定
すればよいので、装置全体が非常にコンパクトとなる
他、コンタミネーション防止のためにこれらの部材の材
質の選択の余地が制限されることもない。外筒の保持
は、例えば装置のベース上に固定することにより容易に
達成することができる。
As shown in FIG. 1, a cylindrical tube 1 is fixed by two or more support portions 2 at two or more positions. An outer cylinder 3 is disposed so as to surround the outer periphery of the cylindrical tube 1,
The cooling gas flows through a gap surrounded by the outer circumference of the cylindrical tube 1 and the outer cylinder 3 made of a heat-resistant and heat-insulating material.
Unlike the device shown in FIG. 4, in the present invention, the outer cylinder has a configuration independent of the cylindrical tube. In other words, the driving force for rotating the cylindrical tube is not transmitted from the outside via the outer tube surrounding the cylindrical tube via the gap through which the fluid for heat exchange passes, so that the outer tube is This means that there is no need to rotate in conjunction with the cylindrical tube. Therefore, the outer tube does not need to be connected to the cylindrical tube, does not require a displacement absorbing / adjusting mechanism, a driving force transmission device, a non-slip, etc. as shown in FIG. 4, and the gap between the cylindrical tube and the outer tube is heat. Since the setting can be made in consideration of the exchange efficiency, the whole apparatus becomes very compact, and there is no limit to the choice of materials for these members in order to prevent contamination. Retaining the outer cylinder can be easily achieved, for example, by fixing it on the base of the device.

【0015】支持部2は円筒管を支持するものであり回
転伝動装置4上に設置されている。円筒管1と支持部2
への回転伝達機構としては回転伝動装置4から支持部2
へ回転を伝達するために歯車などの一般的な伝達機構で
取り合っている。各々の支持部2が同期して駆動できる
ように回転伝動装置4は同軸シャフト5で連結され、同
軸シャフト5と回転伝動装置4はチェーン6を介して回
転駆動手段としての電動機7と連結されている。なお、
円筒管の端部は図1の8に示すように絞った形状でもよ
く、また図9に示すように板によって作られる部品22
を用いてもよく、その形状は任意である。
The support 2 supports the cylindrical tube and is installed on the rotary transmission 4. Cylindrical tube 1 and support 2
The rotation transmission mechanism from the rotation transmission device 4 to the support 2
In order to transmit the rotation to, it is engaged with a general transmission mechanism such as a gear. The rotation transmission device 4 is connected by a coaxial shaft 5 so that the respective support portions 2 can be driven synchronously, and the coaxial shaft 5 and the rotation transmission device 4 are connected via a chain 6 to an electric motor 7 as rotation driving means. I have. In addition,
The end of the cylindrical tube may have a squeezed shape as shown at 8 in FIG. 1 and a part 22 made of a plate as shown in FIG.
May be used, and the shape is arbitrary.

【0016】12は中心軸であり、水平でも水平に対し
て適宜傾斜してもよく、支持部2に回転の駆動力を加え
て円筒管1と一体として中心軸12の回りに回転する。
被処理物である高温の粉粒体は円筒管1の一端による送
入口13から実質的に連続的に送入され、円筒管1の中
を転動しながら他端の方向に移動し、冷却されて排出口
14より装置の外に排出される。
Reference numeral 12 denotes a central axis, which may be horizontal or inclined with respect to the horizontal, and rotates about the central axis 12 integrally with the cylindrical tube 1 by applying a rotational driving force to the support 2.
The high-temperature granular material to be processed is substantially continuously fed from the inlet 13 formed by one end of the cylindrical tube 1, moves in the direction of the other end while rolling in the cylindrical tube 1, and cools. Then, the paper is discharged from the discharge port 14 to the outside of the apparatus.

【0017】外筒3内の空隙へ供給された気体は円筒管
1と熱交換して円筒管1を冷却し、円筒管1内へ供給さ
れた被処理物は円筒管1と熱交換して冷却される。従っ
て、円筒管1内へ供給された被処理物は外筒3内へ供給
された気体により間接的に冷却されるためコンタミネー
ションを防止できる。被処理物は、円筒管1の回転によ
って供給側より排出側へ搬送され、その間に所定の温度
まで冷却されることとなる。一方低温の気体はダクト1
5より外筒3内面に入り、円筒管1の外表面と外筒3の
内面の間に構成されている空隙である環状の通路17を
通って円筒管1を冷却する。すなわち実質的には被処理
物の流れと向流の状態でこれを冷却してその熱エネルギ
ーを回収し、気体は高温になって他のダクト16に導入
される。
The gas supplied to the space in the outer tube 3 exchanges heat with the cylindrical tube 1 to cool the cylindrical tube 1, and the object supplied into the cylindrical tube 1 exchanges heat with the cylindrical tube 1. Cooled. Therefore, the processing object supplied into the cylindrical tube 1 is indirectly cooled by the gas supplied into the outer tube 3, so that contamination can be prevented. The workpiece is conveyed from the supply side to the discharge side by the rotation of the cylindrical tube 1, and is cooled to a predetermined temperature during that time. On the other hand, the low temperature gas is in duct 1
5 and enters the inner surface of the outer tube 3 and cools the cylindrical tube 1 through an annular passage 17 which is a gap formed between the outer surface of the cylindrical tube 1 and the inner surface of the outer tube 3. That is, the heat is cooled in a state in which the flow is substantially countercurrent to the flow of the processing object, and the heat energy is recovered. The gas becomes high temperature and is introduced into another duct 16.

【0018】高温の処理物などが供給されることによ
り、円筒管1の熱膨張が発生した場合に伴う支持部2の
軸方向への移動は、回転伝動装置4での歯車接触面で滑
りによって逃がすことができる。ところで、円筒管1を
支持固定する支持部2の詳細は、図2に示すよう周方向
に4分割され、かつ円筒管1の固定強さおよび回転管の
芯出し調整ができるように半径方向の距離の調整が可能
な調整機構9を持つ。また、支持棒10と円筒管1との
間隙には、セラミックスファイバーなどの詰め物11が
取り付けられる。
The axial movement of the supporting portion 2 caused by the thermal expansion of the cylindrical tube 1 caused by the supply of a high-temperature treated material or the like is caused by slipping on the gear contact surface of the rotary transmission 4. You can escape. By the way, the details of the support portion 2 for supporting and fixing the cylindrical tube 1 are divided into four parts in the circumferential direction as shown in FIG. 2, and the radial direction is adjusted so that the fixing strength of the cylindrical tube 1 and the centering of the rotary tube can be adjusted. It has an adjustment mechanism 9 that can adjust the distance. In addition, a filler 11 such as a ceramic fiber is attached to a gap between the support rod 10 and the cylindrical tube 1.

【0019】これら分割された支持部は、冷却条件、円
筒管の機械的強度などに応じて適当な間隔で間欠配置す
ることができる。これにより円筒管の熱膨張時の支持部
の自由な移動が容易となり、支持間隔の調整も容易とな
る。間欠の有無及び間欠の程度は目的に応じて適宜選択
すればよい。なお、円筒管1の素材としては、被処理物
の温度に対する耐熱性の面から、1000〜1400℃
という高温条件下ではセラミック材料を、また、100
0℃以下の低温条件下では耐熱金属を用いればよい。特
に被処理物による摩耗や化学反応などによる製品へのコ
ンタミネーションが問題となる条件下では高純度セラミ
ックスなどが選択できる。
These divided support portions can be intermittently arranged at appropriate intervals according to the cooling conditions, the mechanical strength of the cylindrical tube, and the like. This facilitates free movement of the support portion during thermal expansion of the cylindrical tube, and facilitates adjustment of the support interval. The presence or absence of the intermittent and the degree of the intermittent may be appropriately selected depending on the purpose. The material of the cylindrical tube 1 is 1000 to 1400 ° C. in terms of heat resistance to the temperature of the object to be processed.
Under high temperature conditions, ceramic material
Under a low temperature condition of 0 ° C. or less, a heat-resistant metal may be used. In particular, high-purity ceramics and the like can be selected under conditions where there is a problem of contamination of the product due to abrasion due to an object to be processed or a chemical reaction.

【0020】特に好ましい材質としては、高純度かつ高
密度のセラミックス材料が挙げられる。このような材質
を用いることにより、特に高純度を要求される被処理物
に対してもコンタミネーションを防止できるので好適で
ある。高純度かつ高密度のセラミックスとしては、被処
理物へのコンタミネーションが実質的に問題とならない
程度に高純度であればよく、また冷却中に被処理物との
反応により重金属蒸気等の反応生成物が発生して品質上
問題となることがない程度に高密度であれば足りる。目
的とする高純度材料と共材とすることも、より望ましい
態様として挙げられる。具体的には純度99.5%以上
のアルミナ結晶体、ジルコニア結晶体、炭化珪素、窒化
珪素、高純度の石英ガラス、等が挙げられるがこれらに
限定されるものではない。いずれにしても目的及び使用
条件に応じて適宜選択すればよい。
Particularly preferred materials include high-purity and high-density ceramic materials. The use of such a material is preferable because contamination can be prevented even with respect to an object to be processed which requires particularly high purity. As high-purity and high-density ceramics, high-purity ceramics may be used as long as contamination to the object does not substantially cause a problem. It suffices if the density is high enough not to cause a problem in quality due to the generation of an object. The use of a desired high-purity material and a common material is also a more desirable embodiment. Specific examples include, but are not limited to, alumina crystals having a purity of 99.5% or more, zirconia crystals, silicon carbide, silicon nitride, high-purity quartz glass, and the like. In any case, it may be appropriately selected according to the purpose and use conditions.

【0021】なお、被処理物としては、円筒炉心管内で
処理することのできる粉体、粒状体といった粉粒体であ
れば特に制限なく用いることができ、これらを本発明の
熱交換装置を用いて処理することにより、コンタミネー
ションのない粉粒状の高純度材料である高純度粉粒体を
きわめて効率よく製造することができる。粉粒状の高純
度材料としては特に限定されないが、具体的には、例え
ばチタン酸バリウム系の誘電材料、チタン酸ジルコン酸
塩系の圧電材料などのセラミックス材料、石英ガラス粉
等の高純度ガラス材料等であって粉末状、粒状のもの等
が挙げられる。
The object to be treated can be used without any particular limitation as long as it is a powder or a granular material such as a powder or a granular material that can be processed in a cylindrical furnace tube, and these can be used with the heat exchanger of the present invention. By carrying out the treatment, a high-purity granular material, which is a granular high-purity material without contamination, can be produced very efficiently. The powdery high-purity material is not particularly limited, but specifically, for example, a ceramic material such as a barium titanate-based dielectric material, a zirconate titanate-based piezoelectric material, or a high-purity glass material such as quartz glass powder. And the like, such as powder and granules.

【0022】また、熱交換に用いる流体は通常はその取
り扱いの容易さから空気を代表とする気体が好ましい
が、被処理物の種類や処理温度との関係で適宜選択すれ
ばよい。 <第2実施例>図1〜図3では、冷却媒体の流路が単純
な環状断面であるものを示しているが、本発明における
冷却媒体流路はこれに限定されず、例えば図5および図
6に示されているように中心軸に対して実質的に垂直な
複数個の耐熱・断熱性のバッフル板19を設置して冷却
媒体と円筒管外表面間の熱伝達を良好にすることができ
る。図6のA、Bはそれぞれ図5においてX−X’、Y
−Y’の位置において中心軸に垂直な断面を示したもの
である。この際、バッフル形状・個数については任意で
あり、必ずしも図5、図6のものに拘束されない。 <第3実施例>さらに、冷却媒体と回転円筒管1との熱
交換を行わせる方法として、図7および図8の様にバッ
フル19を螺旋状に配設することもできる。図8に示す
ように、螺旋は円筒管と同軸となっている。図7は回転
の中心軸12に垂直な断面図であり、図8は外筒3の断
面図を示す。ダクト15から導入された冷却媒体は、外
筒3の内面に配設されたバッフル19により回転円筒管
1の回りを螺旋状に廻り回転円筒管1を冷却した後、ダ
クト16より排出される。冷却媒体の回転方向としては
どの様な方向も取りうるが、回転円筒管1の回転方向と
逆になる方が熱伝導の面から好ましい。なお、螺旋の巻
数や流路の大きさは任意に選択できる。
The fluid used for heat exchange is usually preferably a gas typified by air because of its easy handling, but may be appropriately selected depending on the type of the object to be treated and the processing temperature. <Second Embodiment> FIGS. 1 to 3 show a cooling medium flow path having a simple annular cross section. However, the cooling medium flow path in the present invention is not limited to this. As shown in FIG. 6, a plurality of heat- and heat-insulating baffle plates 19 substantially perpendicular to the central axis are provided to improve heat transfer between the cooling medium and the outer surface of the cylindrical tube. Can be. 6A and 6B respectively show XX ′ and Y in FIG.
It shows a cross section perpendicular to the central axis at the position of -Y '. At this time, the shape and number of baffles are arbitrary, and are not necessarily limited to those shown in FIGS. <Third Embodiment> Further, as a method of exchanging heat between the cooling medium and the rotary cylindrical tube 1, a baffle 19 can be spirally arranged as shown in FIGS. As shown in FIG. 8, the helix is coaxial with the cylindrical tube. FIG. 7 is a sectional view perpendicular to the center axis 12 of rotation, and FIG. 8 is a sectional view of the outer cylinder 3. The cooling medium introduced from the duct 15 is spirally wound around the rotary cylindrical tube 1 by the baffle 19 disposed on the inner surface of the outer cylinder 3 to cool the rotary cylindrical tube 1, and then discharged from the duct 16. Although any direction can be adopted as the rotation direction of the cooling medium, it is preferable that the rotation direction is opposite to the rotation direction of the rotary cylindrical tube 1 from the viewpoint of heat conduction. The number of spiral turns and the size of the flow path can be arbitrarily selected.

【0023】[0023]

【発明の効果】以上説明したように、本発明の熱交換装
置により高純度を要求される被処理物の冷却を連続的に
効率良く行うことができる。特に支持部の分割された本
発明の熱交換装置は、大型もしくは運転温度が高温の条
件下であっても、円筒管を支持固定するために軸方向に
間欠配置された支持部の間隔を任意に設定することがで
きるため、円筒管内の被処理物の荷重や自重に対して円
筒管の機械的強度を十分に確保することができる構造の
冷却装置を実現することができ、特に冷却装置の大型化
には有用である。また、転動する被処理物と円筒管内表
面との間の伝熱係数が極めて大きい値となるので、従来
の技術に比べて桁違いの短時間で高温の被処理物を冷却
することができるばかりでなく、その保有するエネルギ
ーを有効に回収することができる。さらに、円筒回転管
と冷却媒体の間隙に熱伝導の効率を低下させる保護管な
どの介在物がないため、熱伝導性、温度制御性に優れ工
業的に極めて有用である。
As described above, the object to be processed, which requires high purity, can be continuously and efficiently cooled by the heat exchanger of the present invention. In particular, in the heat exchange device of the present invention in which the support portion is divided, even if the operating temperature is large or the temperature is high, the interval between the support portions intermittently arranged in the axial direction to support and fix the cylindrical tube is arbitrary. Therefore, it is possible to realize a cooling device having a structure capable of sufficiently securing the mechanical strength of the cylindrical tube with respect to the load and the own weight of the object to be processed in the cylindrical tube. It is useful for upsizing. In addition, since the heat transfer coefficient between the rolling workpiece and the inner surface of the cylindrical tube is extremely large, it is possible to cool the high-temperature workpiece in an order of magnitude shorter than in the related art. Not only that, the energy possessed can be effectively recovered. Furthermore, since there is no inclusion such as a protective tube that reduces the efficiency of heat conduction in the gap between the cylindrical rotating tube and the cooling medium, the device is excellent in heat conductivity and temperature controllability and extremely industrially useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例に関わる熱交換装置の全体構造を示
す断面図
FIG. 1 is a cross-sectional view showing the overall structure of a heat exchange device according to a first embodiment.

【図2】図1のX−X’線に沿う断面図FIG. 2 is a sectional view taken along the line X-X 'in FIG.

【図3】図1のY−Y’線に沿う断面図FIG. 3 is a sectional view taken along the line Y-Y 'in FIG.

【図4】二重管式冷却装置の一例の全体構造を示す断面
FIG. 4 is a cross-sectional view showing the entire structure of an example of a double-tube cooling device.

【図5】第2実施例に関わる熱交換装置の中心軸を含む
垂直断面図
FIG. 5 is a vertical sectional view including a central axis of a heat exchange device according to a second embodiment.

【図6】図5の中心軸に垂直な断面図6 is a sectional view perpendicular to the central axis of FIG.

【図7】第3実施例に関わる熱交換装置の中心軸を含む
垂直断面図
FIG. 7 is a vertical sectional view including a central axis of a heat exchange device according to a third embodiment.

【図8】図7の中心軸に沿う断面図8 is a sectional view taken along the central axis in FIG.

【図9】図1に示す熱交換装置における被処理物出口付
近形状の断面図
FIG. 9 is a cross-sectional view of the shape near the outlet of the workpiece in the heat exchange device shown in FIG.

【図10】従来技術におけるグレート式冷却装置の構造
を示す断面図
FIG. 10 is a cross-sectional view showing the structure of a great cooling device according to the related art.

【図11】従来技術におけるシャフト式冷却装置の構造
を示す断面図
FIG. 11 is a cross-sectional view showing the structure of a conventional shaft-type cooling device.

【図12】従来例に係わるロータリー式冷却装置の構造
を示す断面図
FIG. 12 is a sectional view showing the structure of a rotary cooling device according to a conventional example.

【符号の説明】[Explanation of symbols]

1 円筒管 2 支持部 3 外筒 4 回転伝動装置 5 同軸シャフト 6 チェーン 7 電動機 8 円筒管端部 9 調整機構 10 支持棒 11 詰め物 12 中心軸 13 送入口 14 排出口 15 ダクト 16 ダクト 17 冷却流体流路 18 被処理物 19 バッフル 20 冷却流体の流れ方向 21 円筒管出口端部 22 端部部品 31 保護管 32 滑り止め 33 間隙 41 ロータリーキルン 42 冷却装置本体 43 揺動格子 44 冷却空気 45 被処理物の流れ 46 冷却空気の流れ DESCRIPTION OF SYMBOLS 1 Cylindrical pipe 2 Support part 3 Outer cylinder 4 Rotary transmission device 5 Coaxial shaft 6 Chain 7 Electric motor 8 Cylindrical tube end part 9 Adjusting mechanism 10 Support rod 11 Filling 12 Center shaft 13 Inlet 14 Outlet 15 Duct 16 Duct 17 Cooling fluid flow Passage 18 Workpiece 19 Baffle 20 Cooling fluid flow direction 21 Cylindrical pipe outlet end 22 End part 31 Protective tube 32 Non-slip 33 Gap 41 Rotary kiln 42 Cooling device main body 43 Oscillating grid 44 Cooling air 45 Flow of work 46 Cooling air flow

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】中心軸の回りに回転することにより内部の
被処理物を転動させつつ一端より他端に移動せしめうる
円筒管と、該円筒管を囲い該円筒管とは独立した外筒と
を有し、外筒と円筒管との間の空隙に流体を通じて被処
理物と熱交換を行わしめ得る熱交換装置。
1. A cylindrical tube capable of moving an object to be processed inside from one end to the other end while rotating about a central axis, and an outer tube surrounding the cylindrical tube and independent of the cylindrical tube. And a heat exchange device capable of performing heat exchange with the object to be processed through a fluid in a gap between the outer cylinder and the cylindrical tube.
【請求項2】外筒と円筒管との間の空隙が、円筒管と同
軸の螺旋状を形成してなる請求項1記載の熱交換装置。
2. The heat exchange device according to claim 1, wherein the gap between the outer tube and the cylindrical tube forms a spiral coaxial with the cylindrical tube.
【請求項3】外筒と円筒管との間の空隙にバッフル板が
設置されてなる請求項1又は2記載の熱交換装置。
3. The heat exchange device according to claim 1, wherein a baffle plate is provided in a gap between the outer cylinder and the cylindrical tube.
【請求項4】円筒管の材質が無機材料である請求項1〜
3のいずれかに記載の熱交換装置。
4. The cylindrical tube is made of an inorganic material.
4. The heat exchange device according to any one of 3.
【請求項5】円筒管の材質が石英である請求項4記載の
熱交換装置。
5. The heat exchanger according to claim 4, wherein the material of the cylindrical tube is quartz.
【請求項6】空隙を介して外筒に囲われた円筒管の一端
から円筒管内に粉粒体を導入しつつ円筒管外部より駆動
力を加えて円筒管を回転させ、該空隙に流体を通じて粉
粒体と熱交換を行わしめ粉粒体を加熱する粉粒体の加熱
方法であって、該外筒が該円筒管とは独立していること
を特徴とする粉粒体の加熱方法。
6. A cylindrical tube is rotated by applying a driving force from the outside of the cylindrical tube while introducing powdery material into the cylindrical tube from one end of the cylindrical tube surrounded by the outer tube via the gap, and passing fluid through the gap. What is claimed is: 1. A method for heating a granular material, comprising exchanging heat with the granular material and heating the granular material, wherein the outer cylinder is independent of the cylindrical tube.
【請求項7】空隙を介して外筒に囲われた円筒管の一端
から円筒管内に粉粒体を導入しつつ円筒管外部より駆動
力を加えて円筒管を回転させ、該空隙に流体を通じて粉
粒体と熱交換を行わしめ粉粒体を冷却する粉粒体の冷却
方法であって、該外筒が該円筒管とは独立していること
を特徴とする粉粒体の冷却方法。
7. A cylindrical tube is rotated by applying a driving force from the outside of the cylindrical tube while introducing powder and granules into the cylindrical tube from one end of the cylindrical tube surrounded by the outer cylinder via the gap, and passing the fluid through the gap. A method for cooling a granular material, wherein heat is exchanged with the granular material to cool the granular material, wherein the outer cylinder is independent of the cylindrical tube.
【請求項8】空隙を介して外筒に囲われた円筒管の一端
から円筒管内に粉粒体を導入しつつ円筒管外部より駆動
力を加えて円筒管を回転させ、該空隙に流体を通じて粉
粒体を冷却する高純度粉粒体の製造方法であって、該外
筒が該円筒管とは独立していることを特徴とする高純度
粉粒体の製造方法。
8. A cylindrical pipe is rotated by applying a driving force from outside the cylindrical pipe while introducing powder and granules into the cylindrical pipe from one end of the cylindrical pipe surrounded by the outer cylinder via the gap, and passing fluid through the gap. A method for producing a high-purity granular material for cooling a granular material, wherein the outer cylinder is independent of the cylindrical tube.
JP15580498A 1998-06-04 1998-06-04 Heat exchanger and production of high purity powder and grain Pending JPH11351767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15580498A JPH11351767A (en) 1998-06-04 1998-06-04 Heat exchanger and production of high purity powder and grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15580498A JPH11351767A (en) 1998-06-04 1998-06-04 Heat exchanger and production of high purity powder and grain

Publications (1)

Publication Number Publication Date
JPH11351767A true JPH11351767A (en) 1999-12-24

Family

ID=15613824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15580498A Pending JPH11351767A (en) 1998-06-04 1998-06-04 Heat exchanger and production of high purity powder and grain

Country Status (1)

Country Link
JP (1) JPH11351767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387102A (en) * 2017-08-03 2019-02-26 沈阳天洁环保新能源有限公司 Efficient rotary tubular type water-water heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387102A (en) * 2017-08-03 2019-02-26 沈阳天洁环保新能源有限公司 Efficient rotary tubular type water-water heat exchanger

Similar Documents

Publication Publication Date Title
US4753192A (en) Movable core fast cool-down furnace
JP2001082880A (en) Rotary tubular furnace made of graphite
US4802441A (en) Double wall fast cool-down furnace
JP4365017B2 (en) Method for controlling temperature drop rate of heat treatment apparatus and heat treatment apparatus
US8485815B2 (en) Overhung rotary tube furnace
RU2015144716A (en) A UNIVERSAL METHOD FOR USING SLAG BALLS HEATED TO HIGH TEMPERATURES OBTAINED FROM ROTARY FURNACE FOR THE PRODUCTION OF PHOSPHORIC ACID, AND A TECHNOLOGICAL PROCESS OF SUCH USE
US8957352B2 (en) Heat treatment furnace and heat treatment apparatus
CN207227489U (en) Batch furnace for product of annealing
Tescari et al. Experimental and numerical analysis of a solar rotary kiln for continuous treatment of particle material
JPH11351767A (en) Heat exchanger and production of high purity powder and grain
JP3101264B1 (en) Externally heated rotary kiln
JP4066262B2 (en) Waste pyrolysis equipment
CN1642630B (en) Reaction apparatus and reaction method applying the device
JPH10148469A (en) Externally heated rotary kirn and production of powdery/granular high purity material
RU2761323C1 (en) Rotary drum furnace for firing light porous filling aggregates
JP2000292067A (en) External heating kiln
JPH11349123A (en) Powder transferring device
JP2001255071A (en) Powder baking furnace
JPH085252A (en) Heat treatment furnace
EP4325152A1 (en) Calcined clay cooler
RU2393398C1 (en) Plant for thermal drying of loose disperse material
JPH1172290A (en) Rotary kiln and manufacture of high purity powdery granular matter
JPH0222632Y2 (en)
JP3120293U (en) Waste heat recovery device
JP2000234865A (en) Rotary kiln device