JPH11350963A - Intake manifold of internal combustion engine - Google Patents

Intake manifold of internal combustion engine

Info

Publication number
JPH11350963A
JPH11350963A JP16049098A JP16049098A JPH11350963A JP H11350963 A JPH11350963 A JP H11350963A JP 16049098 A JP16049098 A JP 16049098A JP 16049098 A JP16049098 A JP 16049098A JP H11350963 A JPH11350963 A JP H11350963A
Authority
JP
Japan
Prior art keywords
intake
cylinder
cylinder head
intake port
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16049098A
Other languages
Japanese (ja)
Other versions
JP3871807B2 (en
Inventor
Osamu Yamada
修 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP16049098A priority Critical patent/JP3871807B2/en
Publication of JPH11350963A publication Critical patent/JPH11350963A/en
Application granted granted Critical
Publication of JP3871807B2 publication Critical patent/JP3871807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve engine performance by making the cylinder head and surrounding portions compact, while equalizing the swirl between cylinders. SOLUTION: A hanging width W of a manifold passage 3 from a cylinder head end face 1a is made narrower to the extent that, at least, flaking off of the main current of suction air occurs. As a result, the cylinder head and surrounding portions can be made compact. In addition, an air inlet angle adjustment projection 40 that decreases an air inlet angle θ3 of the suction air main current relative to the normal of the surface of a furthermost inlet port 23 is provided near the furthermost suction air outlet 33 so that the swirl ratio of a cylinder 13 corresponding to the furthermost inlet port 23 becomes the same extent as that of another cylinder 11. As a result, the equalization of the swirl ratio between cylinders is achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、複数気筒を有す
る内燃機関の吸気マニホールドに関し、特に、内燃機関
のレイアウト上、シリンダヘッド周りのスペースが制限
されている内燃機関の吸気マニホールドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake manifold for an internal combustion engine having a plurality of cylinders, and more particularly to an intake manifold for an internal combustion engine in which a space around a cylinder head is limited due to the layout of the internal combustion engine.

【0002】[0002]

【従来の技術】図9は、三気筒の内燃機関において、シ
リンダヘッド端面1aからのマニホールド通路43の張
出幅Wを十分に大きくすることにより、吸気量を十分に
確保できるようにした従来の吸気マニホールド42を示
している。シリンダヘッド1内には各気筒11,12,
13に対応する第1,第2及び第3の吸気ポート21,
22,23が形成されている。各吸気ポート21,2
2,23は、各気筒11,12,13に反時計回りのス
ワールSを形成するように、弁口部21a,22a,2
3aが気筒中心から右側に偏移すると共に、弁口部21
a,22a,23aに対して弁ステム9の右側からうず
巻状に回り込むように形成されている。各吸気ポート2
1,22,23の上流部はシリンダヘッド端面1aに概
ね直角な姿勢で開口している。
2. Description of the Related Art FIG. 9 shows a conventional engine in which a sufficient intake air amount can be ensured in a three-cylinder internal combustion engine by sufficiently increasing a projection width W of a manifold passage 43 from a cylinder head end face 1a. The intake manifold 42 is shown. Each cylinder 11, 12,.
13, the first, second and third intake ports 21,
22 and 23 are formed. Each intake port 21,
The valve ports 21a, 22a, and 2 form counter-clockwise swirls S in the cylinders 11, 12, and 13, respectively.
3a shifts rightward from the center of the cylinder, and the valve port 21
The valve stem 9 is formed so as to spiral around from the right side of the valve stem 9 with respect to a, 22a and 23a. Each intake port 2
The upstream portions of 1, 2, and 23 are opened in a posture substantially perpendicular to the cylinder head end surface 1a.

【0003】吸気マニホールド42はシリンダヘッド端
面1aに取り付けられており、シリンダヘッド長さ方向
(クランク軸方向)の一端に吸気入口46を備え、マニ
ホールド通路43は、シリンダヘッド端面1aに沿って
他端側へと延び、各吸気ポート21,22,23に対応
する吸気出口51,52,53を有している。
[0003] An intake manifold 42 is attached to the cylinder head end face 1a, and has an intake port 46 at one end in the cylinder head length direction (crank axis direction). The manifold passage 43 has another end along the cylinder head end face 1a. And has intake outlets 51, 52, 53 corresponding to the respective intake ports 21, 22, 23.

【0004】各吸気ポート21,22,23への吸気主
流F1,F2,F3の流入角度θ1,θ2,θ3、すなわち、
吸気ポート入口面に立てた法線Hに対する傾斜角度θ
1,θ2,θ3は、吸気入口46から離れるに従い、吸気
慣性の増加により順次大きくなっている。
The inflow angles θ1, θ2, θ3 of the main intake air flows F1, F2, F3 to the intake ports 21, 22, 23, ie,
Inclination angle θ with respect to normal H set on the intake port entrance surface
The values of 1, θ2, and θ3 gradually increase as the distance from the intake port 46 increases, due to an increase in intake inertia.

【0005】傾斜角度θ1,θ2,θ3が順次大きくなっ
てゆくことにより、吸気ポート21,22,23内での
吸気主流f1,f2,f3は、矢印でそれらの位置を明確
に示すように、順次吸気ポート21,22,23内で右
側へと偏移しており、反時計回りのスワールSを生じる
構造では、吸気入口46から離れる気筒になるに従いス
ワールSが強くなっている。すなわち、吸気入口46か
ら離れる気筒になるにつれて、図10に示すようにスワ
ール比が順次大きくなり、気筒間でスワール比が不均等
になる。図10の実線Pは、ポート単体スワール、すな
わち吸気マニホールドを使用しないで1つの吸気管から
1つの吸気ポートに接続した場合のスワール比を示して
おり、第1気筒のスワール比の大きさに対応している。
[0005] As the inclination angles θ1, θ2, θ3 increase in order, the main intake air flows f1, f2, f3 in the intake ports 21, 22, 23 are changed so that their positions are clearly indicated by arrows. In the structure in which the swirl S is shifted to the right in the intake ports 21, 22, and 23 in a counterclockwise direction, the swirl S increases as the cylinder moves away from the intake port 46. That is, as the cylinder moves away from the intake port 46, the swirl ratio gradually increases as shown in FIG. 10, and the swirl ratio becomes uneven between the cylinders. The solid line P in FIG. 10 indicates the swirl ratio of the port alone, that is, the swirl ratio when one intake pipe is connected to one intake port without using the intake manifold, and corresponds to the magnitude of the swirl ratio of the first cylinder. doing.

【0006】上記のようにマニホールド通路の張出幅を
広く確保している複数気筒の内燃機関に対し、たとえば
農業用トラクタあるいは小型作業車等に搭載される内燃
機関では、シリンダヘッド周りのレイアウトが制限され
る場合が多く、その場合は図11のように、マニホール
ド通路43の張出幅Wを大幅に狭くすることによりコン
パクト化を図っている。
[0006] In contrast to the internal combustion engine of a plurality of cylinders in which the overhang width of the manifold passage is ensured as described above, for example, in an internal combustion engine mounted on an agricultural tractor or a small work vehicle, the layout around the cylinder head is small. In many cases, the width is limited, and in this case, as shown in FIG. 11, the projecting width W of the manifold passage 43 is significantly reduced to achieve compactness.

【0007】[0007]

【発明が解決しようとする課題】図11の場合でも、前
記図9の場合と同様に、マニホールド通路43内での吸
気慣性の増加により、吸気入口46から離れた吸気ポー
ト21,22,23に行くに従い吸気主流F1,F2,F
3の流入角度θ1,θ2,θ3は増加しているが、マニホー
ルド通路43の張出幅Wを狭くしていることにより、流
通断面積が小さく、マニホールド通路43内の流速が増
加し、吸気入口46から遠い吸気ポート、特に最も遠い
第3の吸気ポート23の吸気主流F3の流入角度θ3は、
前記図9の場合に比べて必要以上に大きくなっている。
In the case of FIG. 11, as in the case of FIG. 9, the intake ports 21, 22, and 23 distant from the intake port 46 due to the increase of the intake inertia in the manifold passage 43. As we go, the main intake air flow F1, F2, F
Although the inflow angles θ1, θ2, and θ3 of FIG. 3 are increased, the cross-sectional area of the flow is small, the flow velocity in the manifold passage 43 is increased, and the intake inlet The intake angle θ3 of the main intake flow F3 of the intake port far from the intake port 46, particularly the third intake port 23 farthest from the intake port is
It is larger than necessary in comparison with the case of FIG.

【0008】このように第3の吸気ポート23において
流入角度θ3が大きくなると共に主流F3の勢いが強くな
ることにより、クロスハッチングで示すように吸気ポー
ト23の左側壁に大きな剥離域Zが生じ、それに続いて
矢印f3で示すように左側壁への再付着が生じ、剥離及
び再付着により図12に示すように第3気筒のスワール
比が低下する。気筒間のスワール比の不均等が生じる
と、各気筒毎に燃焼状態が変化し、黒煙の発生及び燃費
低下など、機関性能が低下する。
As described above, as the inflow angle θ3 increases at the third intake port 23 and the momentum of the main flow F3 increases, a large separation zone Z occurs on the left side wall of the intake port 23 as shown by cross-hatching. Subsequently, reattachment to the left side wall occurs as shown by arrow f3, and the swirl ratio of the third cylinder decreases as shown in FIG. 12 due to peeling and reattachment. When the swirl ratio between the cylinders becomes uneven, the combustion state changes for each cylinder, and the engine performance such as the generation of black smoke and the decrease in fuel efficiency is reduced.

【0009】本願発明の目的は、シリンダヘッド周りの
コンパクト性を維持しながらも、各気筒間のスワール比
の均等性を保ち、機関性能を維持できるようにすること
である。
An object of the present invention is to maintain uniformity of a swirl ratio between cylinders and maintain engine performance while maintaining compactness around a cylinder head.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本願発明は、吸気入口と、シリンダヘッド端面に沿っ
て延びるマニホールド通路と、シリンダヘッド端面側に
向いて開口する複数の吸気出口とを有し、各吸気出口を
シリンダヘッド端面の各吸気ポート入口面に接続し、少
なくとも吸気入口から最も遠い吸気ポート内で吸気主流
の剥離が生じる程度に、シリンダヘッド端面からのマニ
ホールド通路の張出幅を狭くしている内燃機関の吸気マ
ニホールドにおいて、上記最遠の吸気ポートに対応する
気筒のスワール比が他の気筒のスワール比と同程度とな
るように、上記最遠の吸気ポート入口面の法線に対する
吸気主流の流入角度θを小さくせしめる流入角度調整用
凸部を、最遠の吸気出口の上流側近傍位置に設けてい
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention comprises an intake port, a manifold passage extending along a cylinder head end face, and a plurality of intake outlets opening toward the cylinder head end face. Connecting each intake outlet to each intake port inlet surface of the cylinder head end surface, and extending the manifold passage from the cylinder head end surface at least to such an extent that the main intake flow separates in the intake port farthest from the intake inlet. In the intake manifold of the internal combustion engine, the swirl ratio of the cylinder corresponding to the farthest intake port is substantially equal to the swirl ratio of the other cylinders. An inflow angle adjusting projection for reducing the inflow angle θ of the main intake air flow with respect to the line is provided near the upstream side of the farthest intake outlet.

【0011】[0011]

【発明の実施の形態】図1は本願発明を適用した三気筒
内燃機関のシリンダヘッドを示しており、説明をし易く
するために、クランク軸心Oの方向を左右方向と仮定
し、吸気マニホールド取付側を前側と仮定し、クランク
軸心O方向(左右方向)に沿って配置された3つの気筒
を、左側から順に第1,第2及び第3気筒11,12,
13と称して以下説明する。なお、シリンダヘッド1の
構造は前記図9の場合と同様であり、同じ部品あるいは
部位には同じ符号を付している。
FIG. 1 shows a cylinder head of a three-cylinder internal combustion engine to which the present invention is applied. For ease of explanation, the direction of a crankshaft center O is assumed to be a left-right direction, and an intake manifold is assumed. Assuming that the mounting side is the front side, three cylinders arranged along the direction of the crankshaft center O (left-right direction) are, in order from the left, first, second and third cylinders 11, 12,.
13 and will be described below. The structure of the cylinder head 1 is the same as that of FIG. 9, and the same components or parts are denoted by the same reference numerals.

【0012】各気筒11,12,13に開口する吸気用
の弁口部21a,22a,23aは、各気筒中心から右
側へと偏移した位置に形成され、各吸気ポート21,2
2,23は、シリンダヘッド前端面1aから後方へと延
び、その下流部は流通断面が絞られると共に吸気弁ステ
ム9の右側からうず巻状に反時計回りに回り込み、各弁
口部21a,22a,23aに連通している。これによ
り、気筒11,12,13内では矢印Sで示すように左
回り(反時計回り)のスワールが生じる。
The intake valve openings 21a, 22a, and 23a opening to the cylinders 11, 12, and 13 are formed at positions deviated from the center of each cylinder to the right side.
2, 23 extend rearward from the front end surface 1a of the cylinder head, and the downstream portion thereof is narrowed in flow cross section and spirally wound counterclockwise from the right side of the intake valve stem 9 to form respective valve port portions 21a, 22a. , 23a. As a result, a leftward (counterclockwise) swirl is generated in the cylinders 11, 12, and 13 as shown by the arrow S.

【0013】吸気マニホールド2はシリンダヘッド前端
面1aに固定されており、左端部の第1吸気ポート21
に略対応する位置に、上向き開口状の吸気入口6が形成
されている。マニホールド通路3は、左端部からシリン
ダヘッド前端面1aに沿って右端部まで直線状に延び、
各吸気ポート21,22,23の入口面に接続される吸
気出口31,32,33が、後向き開口状に形成されて
いる。
The intake manifold 2 is fixed to the front end face 1a of the cylinder head, and has a first intake port 21 at the left end.
An intake opening 6 having an upward opening shape is formed at a position substantially corresponding to. The manifold passage 3 extends linearly from the left end to the right end along the cylinder head front end surface 1a,
The intake outlets 31, 32, and 33 connected to the inlet surfaces of the intake ports 21, 22, and 23 are formed in a rearward opening shape.

【0014】マニホールド通路3のシリンダヘッド前端
面1aからの張出幅Wは、前記図11の従来例の場合と
同程度に狭くなっており、シリンダヘッド周りのコンパ
クト化を図っている。すなわち上記張出幅Wは、マニホ
ールド通路3内に何も処置を施さないと仮定すると、図
11のように最も遠い第3の吸気ポート23の吸気主流
F3の流入角度θ3が必要以上に大きくなり、第3の吸気
ポート23内で大きな剥離と再付着が生じる程度となっ
ている。
The projecting width W of the manifold passage 3 from the front end face 1a of the cylinder head is as narrow as that of the conventional example shown in FIG. 11 to make the area around the cylinder head compact. That is, assuming that no treatment is performed in the manifold passage 3, the overhang width W becomes larger than necessary so that the inflow angle θ3 of the main intake flow F3 of the farthest third intake port 23 as shown in FIG. , Large peeling and reattachment occur in the third intake port 23.

【0015】上記剥離及び再付着を防止すべく、吸気入
口6から最も遠い第3吸気出口33の左側(上流側)
に、シリンダヘッド前端面1aからマニホールド通路3
内へ突出する吸気流の流入角度調整用凸部40を設けて
いる。該凸部40は、第3の吸気ポート23の入口面に
立てた法線Hに対する吸気主流F3の流入角度θ3を小さ
くせしめるように、すなわち入口面に対して直角側に近
付くように吸気流を方向修正し、第3気筒13のスワー
ル比が第1気筒11のスワール比と同程度となるよう
に、マニホールド通路3内への突出量、左右方向長さ及
び形状が設定される。
In order to prevent the above-mentioned separation and reattachment, the left side (upstream side) of the third intake outlet 33 farthest from the intake inlet 6.
The manifold passage 3 from the front end face 1a of the cylinder head.
A protrusion 40 for adjusting the inflow angle of the intake air that protrudes inward is provided. The convex portion 40 reduces the inflow angle θ3 of the main intake flow F3 with respect to the normal H set on the entrance surface of the third intake port 23, that is, the intake flow so as to approach the side perpendicular to the entrance surface. The direction, the swirl ratio of the third cylinder 13, and the amount of protrusion into the manifold passage 3, the length and the shape in the left-right direction, and the shape are set so that the swirl ratio of the first cylinder 11 is substantially equal to the swirl ratio of the first cylinder 11.

【0016】図1に示す凸部40は水平断面が矩形状に
なっており、図3に示すようにマニホールド通路3の上
下端壁間に亙っている。
The convex section 40 shown in FIG. 1 has a rectangular horizontal section, and extends between the upper and lower end walls of the manifold passage 3 as shown in FIG.

【0017】作用を説明する。図1において、図示しな
い吸気管から左端の吸気入口6に入る吸気(給気)は、
マニホールド通路3内に流入し、一部が矢印F1で示す
ように概ね入口面と直角な状態で第1の吸ポート21に
流入し、残りはマニホールド通路3内を右方へと流れ
る。慣性力が付与されながらマニホールド通路3内を流
れ、途中、一部が矢印F2で示すように流入角度θ2で第
2の吸気ポート22内へ流入し、残りはさらに右方へ流
れ、さらに慣性力が付与される。第2及び第3の気筒1
2,13内ではそれぞれ左回りのスワールSが生じる。
The operation will be described. In FIG. 1, the intake air (supply air) from an intake pipe (not shown) entering the left intake port 6 is
Part of the gas flows into the manifold passage 3, part of the gas flows into the first suction port 21 in a state substantially perpendicular to the inlet surface as indicated by an arrow F 1, and the rest flows rightward in the manifold passage 3. The gas flows through the manifold passage 3 while the inertial force is being applied, and partly flows into the second intake port 22 at an inflow angle θ2 as shown by an arrow F2, and the rest flows further rightward, as shown by the arrow F2. Is given. Second and third cylinders 1
A counterclockwise swirl S occurs in each of the circles 2 and 13.

【0018】第3の吸気ポート23に入る前段階におい
て、凸部40によって吸気は一旦前側に寄せ集められる
ことにより、吸気主流の方向が調整されて後方へと曲が
り、矢印F3に示すように流入角度θ3でもって第3の吸
気ポート23内に入る。すなわち、第3の吸気ポート2
3での流入角度θ3は、図11の場合の流入角度θ3より
も小さくなるように調整されて第3の吸気ポート23に
入る。したがって、第3の吸気ポート23内で剥離や再
付着が生じることはなく、図1の矢印f3で示すように
第3の吸気ポート23の右側壁へと偏ることもなく、第
3の吸気ポート23内を後方へと整流状で流れ、左旋回
して弁口部23aから第3気筒13内へと供給され、第
3の気筒13内で適度な勢いの左回りのスワールSが生
じる。
At the stage before entering the third intake port 23, the intake air is once gathered to the front side by the convex portion 40, whereby the direction of the intake main flow is adjusted, and the intake air is bent backward and flows in as shown by the arrow F3. It enters the third intake port 23 at an angle θ3. That is, the third intake port 2
The inlet angle θ3 at 3 is adjusted to be smaller than the inlet angle θ3 in the case of FIG. Therefore, there is no separation or reattachment in the third intake port 23, and the third intake port 23 is not biased toward the right side wall of the third intake port 23 as shown by the arrow f3 in FIG. The air flows in a rectifying flow backward in the inside 23, turns leftward, and is supplied from the valve port portion 23 a into the third cylinder 13, and a counterclockwise swirl S having an appropriate momentum is generated in the third cylinder 13.

【0019】上記のように剥離及び再付着を生じること
なく吸気ポート23内を吸気流が通過するように調整し
ていることにより、第3気筒13のスワール比は、図2
に示すように、破線で示す従来の値から第1気筒11の
スワール比と略等しい大きさまで増加している。すなわ
ち、機関全体として気筒間のスワール比が均等化され、
燃焼状態の均一化を達成でき、黒煙の減少及び燃費の向
上など機関性能の向上を達成している。
As described above, the swirl ratio of the third cylinder 13 is adjusted so that the intake air flow passes through the intake port 23 without causing separation and reattachment.
As shown in FIG. 7, the swirl ratio of the first cylinder 11 is increased from the conventional value indicated by the broken line to a value substantially equal to the swirl ratio. That is, the swirl ratio between the cylinders is equalized as a whole engine,
The combustion state can be made uniform, and the engine performance has been improved, such as reducing black smoke and improving fuel efficiency.

【0020】[0020]

【その他の実施の形態】(1)図1では第3気筒用の調
整用凸部40のみを備えているが、第2の吸気ポート2
2内でも大きな剥離と再付着が生じるような場合には、
第3気筒用の調整用凸部40に加え、仮想線で示すよう
に第2の吸気出口32の上流側に第2気筒用の調整用凸
部41を形成することもできる。この場合、第2の凸部
41は第3吸気ポート用凸部40よりも張出高さは小さ
くなっている。
[Other Embodiments] (1) In FIG. 1, only the adjusting projection 40 for the third cylinder is provided.
If large peeling and re-adhesion occur even within 2,
In addition to the adjustment protrusion 40 for the third cylinder, an adjustment protrusion 41 for the second cylinder may be formed on the upstream side of the second intake outlet 32 as shown by a virtual line. In this case, the projecting height of the second convex portion 41 is smaller than that of the third intake port convex portion 40.

【0021】(2)図4、図5及び図6はそれぞれ凸部
40の変形例を示しており、図4に示す凸部40は、マ
ニホールド通路3と直角な板状に形成されている。図5
に示す調整用凸部40は、マニホールド通路3の下流側
(右側)に行くに従い通路3内への突出高さが増加する
湾曲状傾斜面を有し、下流端は、マニホールド通路3と
直角な端面に形成されている。図6に示す調整用凸部4
0は、丸みを有する台形状(兜形状)に形成されてお
り、下流縁は第3の吸気ポート入口面の左端に至ってい
る。
(2) FIGS. 4, 5 and 6 each show a modification of the projection 40. The projection 40 shown in FIG. 4 is formed in a plate shape perpendicular to the manifold passage 3. FIG.
Has a curved inclined surface whose protruding height into the passage 3 increases toward the downstream side (right side) of the manifold passage 3, and the downstream end is perpendicular to the manifold passage 3. It is formed on the end face. Adjusting projection 4 shown in FIG.
0 is formed in a rounded trapezoidal shape (helmet shape), and the downstream edge reaches the left end of the third intake port entrance surface.

【0022】(3)凸部40の垂直断面形状は、図3の
ように吸気マニホールド上下壁に亙る形状に限定され
ず、上下壁との間にそれぞれ隙間がある形状でも可能で
ある。
(3) The vertical cross-sectional shape of the convex portion 40 is not limited to the shape extending over the upper and lower walls of the intake manifold as shown in FIG. 3, but may be a shape having a gap between the upper and lower walls.

【0023】(4)図1のような左回りのスワールSを
発生する吸気ポートに代えて、図7に示すように右回り
のスワールSを発生する吸気ポート21,22,23を
備え、図1の吸気マニホールドと同様に左端に吸気入口
6を有する吸気マニホールド2を取り付けた構造に本願
発明を適用することもできる。すなわち、マニホールド
通路3の張出幅Wを図1と同様に狭くすると共に、吸気
入口6から最も遠い第3吸気出口33の上流部に調整用
凸部40を形成することにより、第3の吸気ポート23
への流入角度θ3が大きくなるのを阻止し、第3の吸気
ポート23内で剥離及び再付着が生じるのを阻止するよ
うにしている。
(4) Instead of the intake port for generating the left-hand swirl S as shown in FIG. 1, there are provided intake ports 21, 22, 23 for generating the right-hand swirl S as shown in FIG. The present invention can also be applied to a structure in which the intake manifold 2 having the intake port 6 at the left end is attached similarly to the first intake manifold. That is, the overhang width W of the manifold passage 3 is reduced as in FIG. 1, and the adjusting protrusion 40 is formed upstream of the third intake outlet 33 farthest from the intake inlet 6, so that the third intake air is formed. Port 23
Is prevented from increasing, and separation and re-adhesion in the third intake port 23 are prevented from occurring.

【0024】ただし、この場合は第3の吸気ポート23
への流入角度θ3が大きくなるのを阻止することによ
り、図8に破線で示すように従来の幅狭のマニホールド
通路では大きく成り過ぎる第3気筒のスワール比を、実
線で示すように第1気筒のスワール比の水準まで抑制す
ることにより、気筒間のスワール比の均等化を図ること
になる。
However, in this case, the third intake port 23
By preventing the inflow angle θ3 from increasing, the swirl ratio of the third cylinder, which is too large in the conventional narrow manifold passage as shown by the broken line in FIG. The swirl ratio between the cylinders is equalized by suppressing the swirl ratio up to the level of the swirl ratio.

【0025】(5)図1や図7のように吸気入口6を左
右方向の一端側に配置した吸気マニホールドの他に、左
右幅の中央部に吸気入口を有し、左右に分岐したマニホ
ールド通路を有する吸気マニホールドにも本願発明を適
用することができる。
(5) In addition to the intake manifold in which the intake port 6 is arranged at one end in the left-right direction as shown in FIGS. 1 and 7, a manifold passage having an intake port at the center of the left-right width and branching left and right. The present invention can also be applied to an intake manifold having

【0026】(6)吸気ポートの形状は、ヘリカル形あ
るいはダイレクト形のいずれでもよく、また、2気筒あ
るいは4気筒以上の内燃機関にも勿論適用することもで
きる。
(6) The shape of the intake port may be either a helical type or a direct type, and it can be applied to an internal combustion engine having two cylinders or four or more cylinders.

【0027】(7)図1では1つの気筒に1つの吸気ポ
ートを備えた構造であるが、1つの気筒に2以上の吸気
ポートを供えた内燃機関にも適用することも可能であ
る。
(7) Although FIG. 1 shows a structure in which one cylinder has one intake port, the present invention can also be applied to an internal combustion engine in which one cylinder has two or more intake ports.

【0028】(8)凸部40はシリンダヘッドに一体成
形することもできる。
(8) The projection 40 can be formed integrally with the cylinder head.

【0029】[0029]

【発明の効果】以上説明したように本願発明によると、
少なくとも吸気入口6から最も遠い吸気ポート23内で
吸気主流の剥離が生じる程度に、シリンダヘッド端面1
aからのマニホールド通路3の張出幅Wを狭くし、上記
最遠の吸気ポート23に対応する気筒13のスワール比
が他の気筒11,12のスワール比と同程度となるよう
に、吸気ポート入口面の法線Hに対する吸気主流F3の
流入角度θ3を小さくせしめる流入角度調整用凸部40
を、最遠の吸気出口の上流側近傍に設けているので、内
燃機関のシリンダヘッド周りをコンパクトに保ちながら
も、吸気ポート23内での剥離及び再付着を防止し、気
筒間のスワール比を均等化することができる。これによ
り、機関のコンパクト化と共に黒煙の発生防止及び燃費
向上等機関性能を向上させることができる。
As described above, according to the present invention,
At least the cylinder head end face 1 is separated to such an extent that the main intake air is separated in the intake port 23 farthest from the intake inlet 6.
a of the manifold passage 3 from the inlet port 23a, and the swirl ratio of the cylinder 13 corresponding to the farthest intake port 23 becomes substantially equal to the swirl ratio of the other cylinders 11 and 12. An inflow angle adjusting projection 40 for reducing the inflow angle θ3 of the main intake flow F3 with respect to the normal H to the inlet surface.
Is provided near the upstream side of the farthest intake outlet, thereby preventing separation and re-adhesion in the intake port 23 while keeping the area around the cylinder head of the internal combustion engine compact, and reducing the swirl ratio between cylinders. Can be equalized. As a result, the engine performance can be improved, such as preventing the generation of black smoke and improving fuel efficiency, as well as making the engine compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願発明による吸気マニホールドを備えたシ
リンダヘッドの水平断面図である。
FIG. 1 is a horizontal sectional view of a cylinder head provided with an intake manifold according to the present invention.

【図2】 図1の構造に対応する各気筒のスワール比の
比較図である。
FIG. 2 is a comparison diagram of a swirl ratio of each cylinder corresponding to the structure of FIG.

【図3】 図1のIII-III断面図である。FIG. 3 is a sectional view taken along line III-III of FIG.

【図4】 調整用凸部の変形例を示す水平断面図であ
る。
FIG. 4 is a horizontal cross-sectional view showing a modification of the adjustment projection.

【図5】 調整用凸部の変形例を示す水平断面図であ
る。
FIG. 5 is a horizontal cross-sectional view showing a modification of the adjustment protrusion.

【図6】 調整用凸部の変形例を示す水平断面図であ
る。
FIG. 6 is a horizontal cross-sectional view illustrating a modification of the adjustment protrusion.

【図7】 図1とは反対回りのスワールが生じるように
構成したシリンダヘッドに、本願発明の吸気マニホール
ドを適用した水平断面図である。
FIG. 7 is a horizontal cross-sectional view in which the intake manifold of the present invention is applied to a cylinder head configured to generate swirl in a direction opposite to that of FIG.

【図8】 図7の構造に対応する各気筒のスワール比の
比較図である。
8 is a comparison diagram of a swirl ratio of each cylinder corresponding to the structure of FIG. 7;

【図9】 従来例の水平断面図である。FIG. 9 is a horizontal sectional view of a conventional example.

【図10】 図9の構造による各気筒のスワール比の比
較図である。
10 is a comparison diagram of a swirl ratio of each cylinder according to the structure of FIG. 9;

【図11】 別の従来例の水平断面図である。FIG. 11 is a horizontal sectional view of another conventional example.

【図12】 図11の構造に対応する各気筒のスワール
比の比較図である。
12 is a comparison diagram of the swirl ratio of each cylinder corresponding to the structure of FIG.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 1a シリンダヘッド端面 2 吸気マニホールド 3 マニホールド通路 6 吸気入口 11,12,13 気筒 21,22,23 吸気ポート 31,32,33 吸気出口 40,41 調整用凸部 DESCRIPTION OF SYMBOLS 1 Cylinder head 1a Cylinder head end face 2 Intake manifold 3 Manifold passage 6 Intake port 11, 12, 13 Cylinder 21, 22, 23 Intake port 31, 32, 33 Intake port 40, 41 Adjusting projection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸気入口と、シリンダヘッド端面に沿っ
て延びるマニホールド通路と、シリンダヘッド端面側に
向いて開口する複数の吸気出口とを有し、各吸気出口を
シリンダヘッド端面の各吸気ポート入口面に接続し、少
なくとも吸気入口から最も遠い吸気ポート内で吸気主流
の剥離が生じる程度に、シリンダヘッド端面からのマニ
ホールド通路の張出幅を狭くしている内燃機関の吸気マ
ニホールドにおいて、上記最遠の吸気ポートに対応する
気筒のスワール比が他の気筒のスワール比と同程度とな
るように、上記最遠の吸気ポート入口面の法線に対する
吸気主流の流入角度θを小さくせしめる流入角度調整用
凸部を、最遠の吸気出口の上流側近傍位置に設けている
ことを特徴する内燃機関の吸気マニホールド。
An intake port, a manifold passage extending along an end face of a cylinder head, and a plurality of intake outlets opening toward the end face of the cylinder head. In the intake manifold of an internal combustion engine connected to a surface of the internal combustion engine, the width of the manifold passage extending from the end face of the cylinder head is narrowed to such an extent that the main intake flow is separated at least in the intake port farthest from the intake port. For adjusting the inflow angle θ of the main intake flow with respect to the normal of the inlet surface of the farthest intake port so that the swirl ratio of the cylinder corresponding to the intake port of the other cylinder is substantially the same as the swirl ratio of the other cylinders. An intake manifold for an internal combustion engine, wherein the projection is provided at a position near an upstream side of a farthest intake outlet.
JP16049098A 1998-06-09 1998-06-09 Intake manifold for internal combustion engine Expired - Fee Related JP3871807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16049098A JP3871807B2 (en) 1998-06-09 1998-06-09 Intake manifold for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16049098A JP3871807B2 (en) 1998-06-09 1998-06-09 Intake manifold for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11350963A true JPH11350963A (en) 1999-12-21
JP3871807B2 JP3871807B2 (en) 2007-01-24

Family

ID=15716077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16049098A Expired - Fee Related JP3871807B2 (en) 1998-06-09 1998-06-09 Intake manifold for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3871807B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063239A1 (en) * 2005-12-01 2007-06-07 Renault S.A.S. Improved air supply distributor for an internal combustion engine
FR2914695A1 (en) * 2007-04-06 2008-10-10 Renault Sas INTAKE AIR SUPPLY DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2009517596A (en) * 2005-12-01 2009-04-30 ルノー・エス・アー・エス Supply air distribution device for internal combustion engines
FR2924171A1 (en) * 2007-11-26 2009-05-29 Renault Sas PLATE SUPERIOR WALL ADDITION AIR DISTRIBUTOR
DE102008062188A1 (en) * 2008-12-13 2010-06-17 Volkswagen Ag Cylinder head for internal combustion engine, particularly for vehicle, comprises edge of partition in direction of inlet manifold flange, where intake flow is divided in individual intake channel in cylinder head for working cylinders
US8322321B2 (en) 2007-08-03 2012-12-04 Renault S.A.S. Internal combustion engine inlet manifold
DE102004013309B4 (en) * 2004-03-17 2015-09-24 Mahle Filtersysteme Gmbh Intake system for an internal combustion engine
JP2017203383A (en) * 2016-05-09 2017-11-16 本田技研工業株式会社 Intake device of v-type internal combustion engine
US10408174B2 (en) 2013-11-27 2019-09-10 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Internal combustion engine and method for manufacturing the same
JP2020105956A (en) * 2018-12-27 2020-07-09 株式会社クボタ Intake manifold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881413B2 (en) * 2011-12-27 2016-03-09 三菱重工業株式会社 Air supply manifold for internal combustion engines

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013309B4 (en) * 2004-03-17 2015-09-24 Mahle Filtersysteme Gmbh Intake system for an internal combustion engine
US7607412B2 (en) 2005-12-01 2009-10-27 Renault S.A.S. Air supply distributor for an internal combustion engine
FR2894296A1 (en) * 2005-12-01 2007-06-08 Renault Sas SUPPLY AIR DISTRIBUTOR FOR INTERNAL COMBUSTION ENGINE
JP4896154B2 (en) * 2005-12-01 2012-03-14 ルノー・エス・アー・エス Supply air distribution device for internal combustion engines
WO2007063239A1 (en) * 2005-12-01 2007-06-07 Renault S.A.S. Improved air supply distributor for an internal combustion engine
JP2009517596A (en) * 2005-12-01 2009-04-30 ルノー・エス・アー・エス Supply air distribution device for internal combustion engines
US7926460B2 (en) 2005-12-01 2011-04-19 Renault S.A.S. Air supply distributor for an internal combustion engine
WO2008132406A3 (en) * 2007-04-06 2009-02-12 Renault Sa Inlet air intake device for internal combustion engine
WO2008132406A2 (en) * 2007-04-06 2008-11-06 Renault S.A.S. Inlet air intake device for internal combustion engine
FR2914695A1 (en) * 2007-04-06 2008-10-10 Renault Sas INTAKE AIR SUPPLY DEVICE FOR INTERNAL COMBUSTION ENGINE
US8322321B2 (en) 2007-08-03 2012-12-04 Renault S.A.S. Internal combustion engine inlet manifold
WO2009068487A1 (en) * 2007-11-26 2009-06-04 Renault S.A.S. Inlet air distributor with planar upper wall
FR2924171A1 (en) * 2007-11-26 2009-05-29 Renault Sas PLATE SUPERIOR WALL ADDITION AIR DISTRIBUTOR
DE102008062188A1 (en) * 2008-12-13 2010-06-17 Volkswagen Ag Cylinder head for internal combustion engine, particularly for vehicle, comprises edge of partition in direction of inlet manifold flange, where intake flow is divided in individual intake channel in cylinder head for working cylinders
US10408174B2 (en) 2013-11-27 2019-09-10 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Internal combustion engine and method for manufacturing the same
JP2017203383A (en) * 2016-05-09 2017-11-16 本田技研工業株式会社 Intake device of v-type internal combustion engine
JP2020105956A (en) * 2018-12-27 2020-07-09 株式会社クボタ Intake manifold

Also Published As

Publication number Publication date
JP3871807B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
EP0137394B1 (en) Intake arrangement for internal combustion engine
JPH11350963A (en) Intake manifold of internal combustion engine
US7556008B2 (en) Internal combustion engine intake device
US5649513A (en) Combustion chamber of internal combustion engine
JP2004144068A (en) Cylinder head and water jacket structure for cylinder block in engine applying separation cooling system
JP3002286B2 (en) Intake system for fuel injection type 4-cycle engine
EP0137393B1 (en) Intake arrangement for internal combustion engine
US5634444A (en) Intake port structure in an internal combustion engine
JP2010236517A (en) Intake manifold
US5596965A (en) Cylinder head for an internal combustion engine
JP4300763B2 (en) Engine intake system
JP3551572B2 (en) Intake device for internal combustion engine
JP2001173513A (en) Intake system of engine and its valve seat
JP3014802B2 (en) Engine intake structure
JP3153598B2 (en) Engine intake system
JP3328990B2 (en) Multi-valve intake engine
JP7148461B2 (en) engine intake system
JPH0415939Y2 (en)
JP3521531B2 (en) Multiple intake system for internal combustion engine
JP2006161584A (en) Internal combustion engine
KR100338143B1 (en) Diesel engine intake system
JPH077544Y2 (en) Engine combustion chamber structure
JP3557353B2 (en) Double intake port of engine
JPH036854Y2 (en)
JP2003184646A (en) Cylinder head for multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141027

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees