JPH11350341A - Treating method for forming communicating pore of hollow fiber - Google Patents

Treating method for forming communicating pore of hollow fiber

Info

Publication number
JPH11350341A
JPH11350341A JP16064898A JP16064898A JPH11350341A JP H11350341 A JPH11350341 A JP H11350341A JP 16064898 A JP16064898 A JP 16064898A JP 16064898 A JP16064898 A JP 16064898A JP H11350341 A JPH11350341 A JP H11350341A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber
hollow
temperature
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16064898A
Other languages
Japanese (ja)
Inventor
Masatsugu Enomori
正嗣 榎森
Motoyoshi Suzuki
東義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16064898A priority Critical patent/JPH11350341A/en
Publication of JPH11350341A publication Critical patent/JPH11350341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a functionally excellent fiber by carrying out a communicating pore-forming treatment to suppress reduction of physical strengths, reduce dyeing specks and form communicating pores in a hollow fiber having a specific percentage of hollowness under a specific condition with a dyeing processing at the same time. SOLUTION: In treating a hollow fiber having >=20% percentage of hollowness and formed in fabric such as knitted products or the like in a buffer solution having a temperature equal or higher than the glass transition temperature of the hollow fiber and less than either one of the thermal decomposition- initiating temperature or the thermosoftening temperature, communicating pores are formed from the surface to the hollow part by using the buffer solution having 9.5-11.5 pH and applying repetition of stress within the elastic limit of the hollow fiber along the direction crossing to the longitudinal direction of the hollow fiber, and carrying out a dyeing processing at the same time The size of the communicating pores is preferably 0.2-5 μm wide and 1-50 μm long.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中空繊維の連通孔
形成処理方法に関し、さらに詳しくは、中空繊維の表面
から中空部に通じる連通孔を形成させる処理の方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a communicating hole in a hollow fiber, and more particularly, to a method for forming a communicating hole from a surface of a hollow fiber to a hollow portion.

【0002】[0002]

【従来の技術】従来より繊維表面から中空部への連通孔
を形成させる方法としては、幾つか知られている。例え
ば、ポリエステル繊維の場合、有機スルフォン酸化合物
を共重合したポリエステルを溶融紡糸して中空繊維とし
た後、アルカリ減量処理することにより多数の連通部
(微細孔)を形成させる方法(特開平1−20319号
公報など)、また、有機スルホン酸金属塩を添加配合せ
しめたポリエステル中空繊維をアルカリ減量処理するこ
とにより、繊維表面から中空部へ多数の連通部(微細
孔)を形成させる方法(特公昭61−60188号公
報、特公昭61−31231号公報など)も知られてい
る。
2. Description of the Related Art Several methods for forming a communication hole from a fiber surface to a hollow portion have been conventionally known. For example, in the case of a polyester fiber, a method in which a polyester obtained by copolymerizing an organic sulfonic acid compound is melt-spun into a hollow fiber and then subjected to alkali reduction treatment to form a large number of communicating portions (micropores) (Japanese Unexamined Patent Publication No. No. 20319) and a method of forming a large number of communicating portions (micropores) from the fiber surface to the hollow portion by subjecting a polyester hollow fiber to which an organic sulfonate metal salt is added and blended to an alkali reduction treatment (Japanese Patent Publication No. Nos. 61-60188 and JP-B-61-31231) are also known.

【0003】しかし、こららの方法では、有機スルホン
酸化合物の除去により連通孔を形成せしめるためアルカ
リ減量加工が必須であり、連通孔形成後の中空繊維自体
もアルカリ減量されているために、その強力や引き裂き
抵抗力が低下し、実用上問題が生じたり、強力等の物性
値が処理ごとに一定でないという不具合が起こる場合が
あるなどの問題があった。
However, these methods require alkali reduction in order to form communication holes by removing the organic sulfonic acid compound, and the hollow fibers themselves after the formation of the communication holes are also reduced in alkali. There were problems such as a decrease in strength and tear resistance, causing problems in practical use, and a problem that physical properties such as strength were not constant for each treatment.

【0004】さらに、中空率が20%以上の中空繊維を
アルカリ処理すれば、前記のような有機スルホン酸塩を
使用しなくても、繊維の長手方向に沿った低配向部、及
び/又は、変形歪集中部の除去痕として、多数の連通孔
(マイクログルーブ)を形成することができる(特開平
7−26466号公報)。
Furthermore, if a hollow fiber having a hollow ratio of 20% or more is subjected to alkali treatment, a low-oriented portion along the longitudinal direction of the fiber and / or without the use of the organic sulfonate as described above, and / or A large number of communication holes (microgrooves) can be formed as removal marks of the deformation strain concentration portion (Japanese Patent Application Laid-Open No. 7-26466).

【0005】しかし、この方法では、強くアルカリ減量
処理を行なうため、ポリエステルの加水分解による繊維
の強度劣化がかなり大きく、これを抑えようとすれば連
通孔の形成が不十分となる。また、布帛を染色加工しよ
うとすると、さらに1工程が必要となり、染め斑の少な
い安定した染色を実施するのも困難となり、コストアッ
プにつながるという問題点もある。
However, in this method, since a strong alkali weight reduction treatment is performed, the fiber strength degradation due to hydrolysis of the polyester is considerably large, and if this is to be suppressed, formation of communication holes becomes insufficient. Further, if the fabric is to be dyed, one more step is required, and it is difficult to carry out stable dyeing with less spots, leading to an increase in cost.

【0006】また、芯鞘型複合繊維をアルカリ減量処理
し、芯部ポリマーを分解除去して、繊維の長手方向に繊
維表面から中空部に達する連通部(割裂溝)を有する中
空繊維を得る方法(特開平6−173167号公報)も
知られているが、この方法では、前記と同様に繊維の強
度劣化あるいは連通孔の形成不足の問題が起こる。
Also, a method of subjecting a core-sheath type composite fiber to an alkali weight reduction treatment to decompose and remove a core polymer to obtain a hollow fiber having a communicating portion (split groove) extending from the fiber surface to the hollow portion in the longitudinal direction of the fiber. (Japanese Unexamined Patent Publication (Kokai) No. 6-173167) is also known, but in this method, the problem of deterioration of fiber strength or insufficient formation of communication holes arises as described above.

【0007】さらに、染色工程を連通孔形成の工程と組
み合わせて行う場合に、アルカリ減量処理を行うような
処理液の配合では染料分子に加水分解などの化学反応が
起こり染料が分解することが知られており、布帛の染色
が満足に行えない。このように連通孔形成と染色処理と
を同時に行うことは極めて難しいことであった。
Further, when the dyeing step is performed in combination with the step of forming communication holes, it is known that a chemical reaction such as hydrolysis occurs in the dye molecules and the dye is decomposed when a treatment solution for performing the alkali reduction treatment is used. The dyeing of the fabric cannot be performed satisfactorily. As described above, it is extremely difficult to simultaneously perform the formation of the communication hole and the dyeing treatment.

【0008】[0008]

【発明が解決しようとする課題】本発明は、中空繊維内
に粘度が5センチポイズ以上の液体を導入するに十分な
大きさ、及び数の連通孔を該中空繊維に形成し、その物
理的強度の低下を従来技術よりも大幅に押さえながら連
通孔を形成し、且つ、染色を同時に実施することで染色
斑の少ない繊維処理方法を提案することにある。
SUMMARY OF THE INVENTION According to the present invention, there is provided a hollow fiber in which a communication hole having a size and a number sufficient to introduce a liquid having a viscosity of 5 centipoise or more is formed in the hollow fiber. An object of the present invention is to propose a fiber treatment method in which a communication hole is formed while suppressing a decrease in the color density significantly compared with the conventional technology, and the dyeing is simultaneously performed to reduce the occurrence of stain spots.

【0009】[0009]

【課題を解決するための手段】本発明者等は前記の課題
に対して先に特許出願した特願昭10−59650号の
明細書に記載した方法を提案した。すなわち、この方法
によれば、少なくとも20%の中空率を有する中空繊維
の長手方向に沿って、繊維表面から中空部へ通じる連通
孔を形成させるにあたり、該繊維のガラス転移温度以上
で、且つ、熱分解開始温度、又は、熱軟化温度のうちい
ずれか低い方の温度以下の温度下で、該繊維の長手方向
と交差する方向に、該繊維の弾性限界内の応力を繰り返
し付与する方法である。
The present inventors have proposed a method described in the specification of Japanese Patent Application No. 10-59650, filed earlier, for solving the above-mentioned problems. That is, according to this method, at the time of forming a communication hole extending from the fiber surface to the hollow portion along the longitudinal direction of the hollow fiber having a hollow ratio of at least 20%, at least the glass transition temperature of the fiber, and A method of repeatedly applying stress within the elastic limit of the fiber in a direction intersecting with the longitudinal direction of the fiber under a temperature equal to or lower than the lower temperature of the thermal decomposition starting temperature or the thermal softening temperature. .

【0010】本発明では、この方法において、使用する
処理液のpHが9.5〜11.5の範囲のもので実施し
ても、その該処理液が特に弱アルカリ剤による緩衝液な
らば、繊維劣化を実用上問題ない範囲に押さえることが
出来、また、中空繊維の長手方向と交差する方向に沿っ
て付与する繊維の弾性限界内の応力の付与回数を大幅に
減少させること、すなわち、処理時間を大幅に短縮出来
ることを見出し、さらに、該処理中に同時に染色も実施
することにより均染剤を用いずに染め斑を大幅に低減す
ることができることを見出し本発明を完成するに至っ
た。
According to the present invention, in this method, even if the processing solution used has a pH in the range of 9.5 to 11.5, if the processing solution is particularly a buffer solution with a weak alkaline agent, Fiber degradation can be suppressed to a practically acceptable range, and the number of times of application of stress within the elastic limit of the fiber applied along the direction intersecting the longitudinal direction of the hollow fiber is significantly reduced, that is, the treatment It has been found that the time can be significantly reduced, and furthermore, the dyeing spots can be greatly reduced without using a leveling agent by simultaneously performing the dyeing during the treatment, and the present invention has been completed. .

【0011】すなわち本発明によれば、少なくとも20
%の中空率を有する中空繊維を該中空繊維のガラス転移
温度以上で、且つ、熱分解開始温度又は熱軟化温度のう
ちいずれか低い方の温度以下の温度の緩衝液中で処理す
る際に、該緩衝液のpHが9.5〜11.5の範囲のも
のを使用して該中空繊維の長手方向と交差する方向に沿
って該中空繊維の弾性限界内の応力を繰り返し付与して
繊維表面から中空部への連通孔を形成させ、且つ、染色
加工処理を同時に行うことを特徴とする中空繊維の連通
孔形成処理方法にある。
That is, according to the present invention, at least 20
% Of the hollow fiber having a hollow ratio of not less than the glass transition temperature of the hollow fiber, and the thermal decomposition start temperature or the heat softening temperature in a buffer solution at a temperature of the lower temperature, whichever is lower, By using a buffer solution having a pH in the range of 9.5 to 11.5, a stress within the elastic limit of the hollow fiber is repeatedly applied along a direction intersecting the longitudinal direction of the hollow fiber to obtain a fiber surface. A method of forming a communicating hole for a hollow fiber, characterized in that a communicating hole from the fiber to the hollow portion is formed, and a dyeing process is performed simultaneously.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で用いる中空繊維としては、レーヨン、アセテー
トなどの化学繊維、ポリエステル、ポリアミドなどの合
成繊維を適宜挙げることができる。特に、ポリエステル
繊維の場合は、アルカリ減量処理の必要がなく、従っ
て、強度などの物理的特性の低下がないうえ、アルカリ
減量処理後の廃液処理の必要がないため、特に好適であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Examples of the hollow fibers used in the present invention include chemical fibers such as rayon and acetate, and synthetic fibers such as polyester and polyamide. In particular, polyester fibers are particularly suitable because there is no need for alkali weight reduction treatment, and therefore, there is no reduction in physical properties such as strength and there is no need for waste liquid treatment after alkali weight reduction treatment.

【0013】ここでいうポリエステルとは、テレフタル
酸を主たるジカルボン酸成分とし、少なくとも1種のグ
リコール、好ましくは、エチレングリコール、トリメチ
レングリコールなどから選ばれた少なくとも1種のアル
キレングリコールを主たるグリコール成分とするポリエ
ステルなどであり、本発明の効果を損なわない範囲で、
イソフタル酸、アジピン酸、シクロヘキサンジメタノー
ルなどの第3成分を共重合したものであっても良く、ま
た他種ポリマーを混合せしめたポリエステルであっても
良い。
The polyester as used herein means terephthalic acid as a main dicarboxylic acid component and at least one glycol, preferably at least one alkylene glycol selected from ethylene glycol, trimethylene glycol and the like. Polyester, etc. to the extent that the effects of the present invention are not impaired,
It may be a copolymer obtained by copolymerizing a third component such as isophthalic acid, adipic acid, cyclohexane dimethanol, or a polyester obtained by mixing other kinds of polymers.

【0014】また、これらの繊維は必要に応じて、安定
剤、酸化防止剤、難燃剤、帯電防止剤、蛍光増白剤、触
媒、着色防止剤、耐熱剤、着色剤、無機粒子等を含有し
ていてもよい。
Further, these fibers may contain a stabilizer, an antioxidant, a flame retardant, an antistatic agent, a fluorescent whitening agent, a catalyst, a coloring inhibitor, a heat-resistant agent, a coloring agent, inorganic particles, etc., if necessary. It may be.

【0015】前記中空繊維は、従来から公知の方法によ
って製造することができ、例えば、実公平2−4387
9号公報に記載されている方法などが任意に採用でき
る。
The hollow fiber can be produced by a conventionally known method.
The method described in Japanese Patent Publication No. 9 can be arbitrarily adopted.

【0016】該中空繊維の中空率は、本発明の処理によ
り連通孔を形成させ、且つ、繊維としての必要な物理的
特性を維持するうえで、20%以上であることが必要で
あり、好ましく20〜60%の範囲のものを使用するこ
とであり、さらに好ましくは25〜50%の範囲のもの
である。該中空率が20%未満であると前記の範囲の温
度、及び、応力を与えて処理しても中空繊維の表面に生
じるクラックは連通孔まで成長せず、または、クラック
が全く形成されない場合が多い。また、逆に、該中空率
が60%を超える場合には、逆にクラックが成長し過ぎ
て中空繊維の中空部が潰れたり、割繊したりする場合が
あるので中空率は前記の範囲にあるものがより好まし
い。
The hollow ratio of the hollow fiber must be at least 20% in order to form a communication hole by the treatment of the present invention and to maintain the necessary physical properties as a fiber, and is preferably 20% or more. It is to use the one in the range of 20 to 60%, and more preferably in the range of 25 to 50%. When the hollow ratio is less than 20%, cracks generated on the surface of the hollow fiber do not grow to the communication hole even if the treatment is performed by applying a temperature and a stress in the above range, or a crack may not be formed at all. Many. Conversely, when the hollow ratio exceeds 60%, on the contrary, the crack may grow too much and the hollow portion of the hollow fiber may be crushed or split, so that the hollow ratio is in the above range. Some are more preferred.

【0017】本発明においては、このような中空繊維に
対して、該中空繊維のガラス転移温度以上で、且つ、熱
分解開始温度又は熱軟化温度のうちいずれか低い方の温
度以下の温度条件下で、該繊維の弾性限界内の応力を該
中空繊維の長手方向と交差する方向に繰り返し付与する
ことにより処理する。
In the present invention, the temperature of the hollow fiber is not less than the glass transition temperature of the hollow fiber and not more than the lower of the thermal decomposition starting temperature or the thermal softening temperature. The treatment is performed by repeatedly applying a stress within the elastic limit of the fiber in a direction intersecting the longitudinal direction of the hollow fiber.

【0018】該処理温度が中空繊維のガラス転移温度よ
りも低い場合には、中空繊維はいわゆるガラス状態であ
るために弾性変形が起こり難く、該繊維の弾性限界内の
応力を繰り返し付与しても、該繊維の表面にクラックが
生じないかあるいは生じても殆ど成長せず、連通孔は形
成されない。中空繊維に応力を加える際の処理温度は、
高ければ高いほど短時間でクラックが発生するので好都
合であるが、中空繊維の構成ポリマーの熱分解開始温度
を超えると、中空繊維自体が劣化して繊維の物理的特性
が低下し、実用上の不都合を生じる場合があるで不適当
である。また、中空繊維の熱軟化温度が熱分解開始温度
より低い場合は、処理温度が熱分解開始温度以下であっ
ても、熱軟化温度を超えると、塑性変形が起こってしま
うため不適当である。
When the treatment temperature is lower than the glass transition temperature of the hollow fiber, the hollow fiber is in a so-called glassy state, so that elastic deformation is unlikely to occur, and even if stress within the elastic limit of the fiber is repeatedly applied. In addition, no cracks are formed on the surface of the fiber, or even if cracks are formed, they hardly grow, and no communication hole is formed. The processing temperature when applying stress to the hollow fiber is
The higher the temperature, the more convenient the cracks occur in a short time, but if the temperature exceeds the thermal decomposition starting temperature of the constituent polymer of the hollow fiber, the hollow fiber itself will deteriorate and the physical properties of the fiber will decrease, and practically, It is not suitable because it may cause inconvenience. Further, when the heat softening temperature of the hollow fiber is lower than the heat decomposition start temperature, even if the treatment temperature is lower than the heat decomposition start temperature, if the heat softening temperature is exceeded, plastic deformation occurs, which is not suitable.

【0019】このように処理温度の適正な範囲は中空繊
維のガラス転移温度と熱分解開始温度及び熱軟化温度に
よって決めることができる。例えば、ポリエチレンテレ
フタレートの場合には、湿熱処理条件下及び水溶液処理
条件下では約70〜170℃の範囲、乾熱処理条件下で
は70〜240℃の範囲にあり、より好ましい温度の範
囲は、70〜140℃の範囲である。
As described above, the appropriate range of the treatment temperature can be determined by the glass transition temperature, the thermal decomposition onset temperature, and the thermal softening temperature of the hollow fiber. For example, in the case of polyethylene terephthalate, the temperature is in the range of about 70 to 170 ° C under the conditions of the wet heat treatment and the aqueous solution treatment, and is in the range of 70 to 240 ° C under the conditions of the dry heat treatment. 140 ° C. range.

【0020】次に、該熱処理における処理液のpHは、
9.5〜11.5の範囲にあるものが好ましく、より好
ましくは、9.5〜11.0の範囲の緩衝液中で実施す
る。該pHがこの範囲内の緩衝液を使用すると繊維劣化
を実用上問題ない範囲内に押さえることができる。この
場合に該緩衝液に使用するアルカリ剤は、例えば、炭酸
ソーダー等の弱アルカリが使用されるので、加水分解反
応は非常に穏やかに進行し、繊維劣化があまり起こらな
い。従来のアルカリ減量処理のように強アルカリ剤を用
いると反応が急激に進行し、部分的であっても繊維劣化
(強度低下)が発生するので好ましくない。
Next, the pH of the processing solution in the heat treatment is as follows:
It is preferably in the range of 9.5 to 11.5, more preferably in a buffer of 9.5 to 11.0. If a buffer having the above pH is used, the fiber deterioration can be suppressed to a practically acceptable range. In this case, as the alkaline agent used in the buffer solution, for example, a weak alkali such as sodium carbonate is used, so that the hydrolysis reaction proceeds very gently and fiber deterioration does not occur much. If a strong alkali agent is used as in the conventional alkali weight reduction treatment, the reaction rapidly proceeds, and even if it is partial, fiber deterioration (strength reduction) is not preferred.

【0021】本発明では、pHが前記の範囲の弱アルカ
リ性の処理液中で繰り返し張力を付加する処理を行うの
で、張力が付与された個所に劣化が集中しやすく、中空
部が潰れてしまう問題や、あるいは、非常に強度の弱い
個所ができる問題などの従来のアルカリ処理に伴う問題
を回避することができる。また、緩衝液で実施するため
に、処理中に加水分解反応の進行によりpHが低下して
適正範囲を下回ることを避けることもできる。
In the present invention, since the treatment for repeatedly applying tension is performed in a weakly alkaline treatment solution having a pH in the above-mentioned range, deterioration tends to concentrate on the place where tension is applied, and the hollow portion is crushed. Further, it is possible to avoid problems associated with the conventional alkali treatment, such as a problem that a portion having a very low strength is formed. Further, since the reaction is carried out with a buffer, it is possible to prevent the pH from dropping below an appropriate range due to the progress of the hydrolysis reaction during the treatment.

【0022】さらに、pHが前記の範囲の緩衝液の場合
には、非常に穏やかな加水分解反応を伴うため応力を与
える反復回数が大幅に少なくて済み、処理時間を大幅に
短縮することができる。すなわち、pH調節をしない場
合と比較して1/3の処理時間で行うことができる。
Further, in the case of a buffer having a pH in the above-mentioned range, a very mild hydrolysis reaction is involved, so that the number of repetitions for applying a stress is greatly reduced, and the processing time can be greatly reduced. . In other words, the treatment can be performed in 1/3 the processing time as compared with the case where the pH is not adjusted.

【0023】一方、該処理液のpHがこの範囲より高い
と、例えば、特開平7−26466号公報に記載されて
いるように、加水分解反応が強いため繊維の表層部の反
応にとどまらず、繊維の内部にまで至り、結果として繊
維は使用に耐えないような強度劣化を起こすことにな
り、アルカリ処理中やその後の乾燥工程、熱セットなど
の工程の際に中空部が潰れたりする場合があり、また、
染色処理を同時に行う場合には、染料の分解が大きく、
染色処理を同時に安定して行うことが困難となる。ま
た、該処理液のpHがこの範囲より低いと繊維表層部に
加水分解反応を伴わないので応力を与える反復回数を大
幅に減少させることはできない。
On the other hand, when the pH of the treatment liquid is higher than this range, for example, as described in JP-A-7-26466, the hydrolysis reaction is so strong that it is not limited to the reaction of the surface layer of the fiber. The fibers reach the inside of the fiber, and as a result, the fiber deteriorates in strength so that it cannot withstand use, and the hollow part may be crushed during the alkali treatment or during the subsequent drying process, heat setting, etc. Yes, and
When the dyeing process is performed simultaneously, the decomposition of the dye is large,
It is difficult to stably perform the dyeing treatment at the same time. On the other hand, if the pH of the treatment liquid is lower than this range, the number of repetitions of applying stress cannot be reduced significantly because no hydrolysis reaction accompanies the fiber surface layer.

【0024】また、中空繊維の長手方向と交差する方向
に繰り返し付与する応力は、該繊維の弾性限界内の応力
であることが必要であり、弾性限界を超える応力を付与
すると、繊維の変形、損傷が起こり、中空部が潰れた
り、強度等の物理的特性が低下したりするので不適当で
ある。また、連通孔を形成するのに必要な応力の大きさ
は、中空繊維を構成するポリマーの種類、中空率、処理
温度などによって変わるものであり、それらの条件に応
じて適宜選択すればよい。
The stress repeatedly applied in a direction intersecting the longitudinal direction of the hollow fiber must be within the elastic limit of the fiber. It is not suitable because damage occurs, the hollow portion is crushed, and physical properties such as strength are reduced. Further, the magnitude of the stress required to form the communication hole varies depending on the type of the polymer constituting the hollow fiber, the hollow ratio, the treatment temperature, and the like, and may be appropriately selected according to those conditions.

【0025】このような応力を付与する方法としては、
繊維の長手方向と交差する方向に沿って繰り返し応力を
付与できるものであれば、任意の方法を用いることがで
きる。例えば、ニップローラー間で繰り返し押圧する方
法、繰り返しカレンダー掛けする方法、布帛と石状の固
形物を一緒に液中で撹拌する、いわゆるストーンウオッ
シュ法と呼ばれる方法、高圧液流(サーキュラー)染色
機において、液を循環させるためのエジェクター部を布
帛が通過するときの引き込み張力によって、布帛を構成
する繊維を引っ張るか、あるいは押して、隣接する繊維
との接触で応力を付与する方法などが挙げられる。
As a method of applying such a stress,
Any method can be used as long as stress can be repeatedly applied along a direction intersecting with the longitudinal direction of the fiber. For example, a method of repeatedly pressing between nip rollers, a method of repeated calendering, a method called a so-called stone wash method in which a fabric and a stone-like solid material are stirred together in a liquid, and a high-pressure liquid (circular) dyeing machine And a method in which the fibers constituting the fabric are pulled or pushed by a pulling tension when the fabric passes through an ejector portion for circulating the liquid to apply stress by contact with adjacent fibers.

【0026】中空繊維に応力を繰り返し付与する際、中
空繊維は、糸、紡績糸、織物、編物、不織布などの任意
の形態で用いることができるが、通常は、織物、編物な
どの布帛の形態で処理するものが適当である。
When the stress is repeatedly applied to the hollow fibers, the hollow fibers can be used in any form such as yarn, spun yarn, woven fabric, knitted fabric, and non-woven fabric. What is processed by is suitable.

【0027】このような応力の反復付加処理により、該
中空繊維には繊維の外側表面から中空部の内部表面に通
じる連通孔が形成されるが、形成される該連通孔の大き
さは、5センチポイズ以上の液体を中空繊維の中空部内
に導入するうえで、幅0.2〜5μm、長さ1〜50μ
mの範囲にあるものが好ましい。
[0027] By such a repeated stress application process, a communication hole is formed in the hollow fiber from the outer surface of the fiber to the inner surface of the hollow portion. In introducing a liquid of centipoise or more into the hollow portion of the hollow fiber, a width of 0.2 to 5 μm and a length of 1 to 50 μm
Those in the range of m are preferred.

【0028】さらに本発明の方法では、前記の緩衝液中
に染料、染色助剤などを入れて染色処理を同時に行うも
のである。本発明で使用する染料は、ポリエステル繊維
の場合には、通常は分散染料が使用されるが、カチオン
染料可染性ポリエステル繊維の場合には、分散染料の他
にカチオン染料でも染色することができる。これらの染
料のなかで、pHが9.5〜11.5の範囲において耐
性を持つ染料が好ましく使用される。すなわち、処理液
のpHが11.5を超える場合には染料の分解が著し
く、また、該pHが9.5未満では、先に述べたように
繊維表面に加水分解反応が起こらない。
Further, in the method of the present invention, a dye, a dyeing assistant and the like are added to the above-mentioned buffer solution to simultaneously carry out the dyeing treatment. In the case of the polyester fiber, the dye used in the present invention is usually a disperse dye, but in the case of a cationic dyeable polyester fiber, it can be dyed with a cationic dye in addition to the disperse dye. . Among these dyes, dyes having a pH in the range of 9.5 to 11.5 are preferably used. That is, when the pH of the treatment liquid exceeds 11.5, the decomposition of the dye is remarkable, and when the pH is less than 9.5, the hydrolysis reaction does not occur on the fiber surface as described above.

【0029】本発明に使用する染料の例としては、Ka
yalon PolyesterBlue BR−S
F、Kayalon Polyester Red H
D−SF、Kayalon Polyester Li
ght Scarlet G−S 200、Kayal
on Polyester Yellow BRL−
S、Kayalon Polyester Yello
w HD−SF、Kayacelon Blue E−
BR、Kayacelon Yellow E−HG
L、Dianix Red R−E、Resolin
Violet RLなどを例示することができる。
Examples of dyes used in the present invention include Ka
yalon PolyesterBlue BR-S
F, Kayalon Polyester Red H
D-SF, Kayalon Polyester Li
gh Scarlet GS 200, Kayal
on Polyester Yellow BRL-
S, Kayalon Polyester Yellow
w HD-SF, Kayacelon Blue E-
BR, Kayacelon Yellow E-HG
L, Dianix Red RE, Resolin
Violet RL can be exemplified.

【0030】[0030]

【発明の作用】このように本発明では同一缶体の中で連
通孔の形成処理と染色処理とを同時に実施するが、染色
はガラス転移温度以上の比較的低温領域である80〜9
0℃近辺の温度から起こり始めるのに対して、連通孔形
成は弱アルカリによる繊維表層部の加水分解反応と弾性
限界内の応力の繰り返し付与により起こるので比較的高
温領域である100℃以上の温度で著しく形成されるよ
うになる。
As described above, in the present invention, the forming process of the communicating hole and the dyeing process are performed simultaneously in the same can body, but the dyeing is performed in a relatively low temperature range of 80 to 9 which is higher than the glass transition temperature.
In contrast to the case where the temperature starts around 0 ° C., the formation of communication holes is caused by the hydrolysis reaction of the fiber surface layer by weak alkali and the repetitive application of stress within the elastic limit. Is formed remarkably.

【0031】このように該加水分解反応が進行する際に
は、染色処理では繊維内を染料の2次的な移行が進行し
ていると考えられ、ここで加水分解反応の進行により非
晶部が加水分解を起こし、繊維表面に多孔構造ができる
ことにより染料の移行が酸性条件下より早く進行し、短
時間で均染剤を用いることなく染め斑の少ない安定した
染色が可能となる。さらに、本発明では中空繊維を使用
するので該繊維の外部表面と中空内部表面とから同時に
染料の移行が進行するためこの点でも安定した染色が可
能となる。
As described above, when the hydrolysis reaction proceeds, it is considered that the secondary transfer of the dye is progressing in the fiber in the dyeing treatment. Is hydrolyzed to form a porous structure on the fiber surface, so that the transfer of the dye proceeds faster than under acidic conditions, and it is possible to perform stable dyeing with less spots and less staining in a short time without using a leveling agent. Further, in the present invention, since hollow fibers are used, dye transfer proceeds simultaneously from the outer surface of the fibers and the inner surface of the hollow fibers, so that stable dyeing can be performed in this regard.

【0032】[0032]

【発明の効果】本発明によれば、中空繊維内に5センチ
ポイズ以上の液体を導入するに充分な大きさ、及び数の
連通孔を形成するに際し、pH調整をしない場合よりも
大幅に処理時間を短縮でき、短時間で連通孔を形成する
ことができた。また、染色処理も同時に行い染色斑の少
ない布帛を得ることができた。
According to the present invention, when forming communication holes having a size and a number sufficient to introduce a liquid of 5 centipoise or more into hollow fibers, the treatment time is significantly longer than when pH is not adjusted. And the communication hole could be formed in a short time. In addition, the dyeing treatment was performed at the same time, and a fabric with less spots could be obtained.

【0033】なお、本発明方法によって処理された中空
繊維によれば、形成された連通孔を経て、薬効、植物香
を有する物質(植物エキス、植物蛋白質)、細菌培養
用、傷治療用等の医学的、生理的機能付与物質(動物蛋
白質)、導電体用、磁性体用等の電気的機能付与物質
(セラミックス微粒子)、抗菌性、消臭性を有する化合
物、芳香性を有する化合物、吸水性や吸湿性を有する化
合物、撥水性を有する化合物などの機能性付与物質を含
有する液、特に粘度が5センチポイズ以上の液体を中空
繊維の中空部内に導入することができる。
According to the hollow fiber treated by the method of the present invention, a substance having a medicinal effect, a plant fragrance (plant extract, plant protein), a bacterium culture, a wound treatment, etc. Medical and physiological function-imparting substances (animal proteins), electric function-imparting substances (ceramic fine particles) for conductors and magnetic substances, compounds with antibacterial and deodorant properties, compounds with aromatic properties, water absorption A liquid containing a function-imparting substance, such as a compound having moisture absorption properties and a compound having water repellency, in particular, a liquid having a viscosity of 5 centipoise or more can be introduced into the hollow portion of the hollow fiber.

【0034】[0034]

【実施例】以下、実施例によりさらに詳細に説明する
が、本発明はこれによりなんら限定されるものではな
い。なお、実施例、及び比較例で用いた各特性値の測定
方法は下記に通りである。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. In addition, the measuring method of each characteristic value used in the example and the comparative example is as follows.

【0035】(1)中空糸フィラメントの準備;固有粘
度が0.61のポリエチレンテレフタレート(ポリエス
テル)を溶融し、公知の中空紡糸口金を用いて得た中空
率:40%の中空繊維の未延伸糸を延伸して、断面が丸
中空のポリエステルフィラメント糸(50デニール/2
0フィラメント、酸化チタン量:0.3重量%)を得
た。電子顕微鏡による断面撮影を行い、該中空繊維の外
半径を内半径とを測定したところ、それぞれ22μm、
15μmであった。また、該中空繊維のガラス転移温度
は約70℃、熱分解開始温度は約260℃(湿熱下では
約170℃)、熱軟化温度は約230℃であった。この
中空繊維の単糸1本の長手方向と直行する方向の弾性限
界応力を微小圧縮試験装置で測定したところ95℃で2
g、130℃で1gであった(圧縮子の先端は円形で直
径:26μm)。
(1) Preparation of hollow fiber filaments: Polyethylene terephthalate (polyester) having an intrinsic viscosity of 0.61 is melted, and a hollow fiber undrawn yarn having a hollow ratio of 40% obtained by using a known hollow spinneret. Is stretched to obtain a polyester filament yarn having a hollow cross section (50 denier / 2
0 filament, titanium oxide amount: 0.3% by weight). A cross section was taken with an electron microscope, and the outer radius and the inner radius of the hollow fiber were measured.
It was 15 μm. Further, the glass transition temperature of the hollow fiber was about 70 ° C, the thermal decomposition onset temperature was about 260 ° C (about 170 ° C under wet heat), and the thermal softening temperature was about 230 ° C. The elastic limit stress in the direction perpendicular to the longitudinal direction of one single yarn of this hollow fiber was measured with a micro-compression tester.
g, 1 g at 130 ° C. (the tip of the compressor was circular and the diameter: 26 μm).

【0036】(2)連通孔の有無及び中空糸形状の確認
(評価1);中空繊維の断面を電子顕微鏡で撮影し、そ
の映像により連通孔の有無を確認する。
(2) Confirmation of presence / absence of communication hole and shape of hollow fiber (Evaluation 1): A cross section of the hollow fiber is photographed with an electron microscope, and the presence or absence of the communication hole is confirmed by an image.

【0037】(3)強力維持率の確認(評価2);フィ
ラメントの場合には引張り強力を、布帛の場合には引裂
き強力(ペンジュラム法)を、応力付加処理の前後で同
一条件にて測定し、強力維持率を算出した。処理後の強
力の維持率が90%以上の場合を合格とする。
(3) Confirmation of Strength Retention (Evaluation 2): Tensile strength was measured for filaments, and tear strength (pendulum method) was measured for fabrics under the same conditions before and after the stress application treatment. , A strong retention rate was calculated. A case where the retention rate of the strength after the treatment is 90% or more is regarded as a pass.

【0038】(4)連通孔からの粘度5センチポイズ以
上の液体の導入の可否(評価3);重合度9のポリエチ
レングリコールのジメタクリレートと水と過硫酸カリウ
ムとを30:69.995:0.005の比率で配合し
た液体(20℃の温度での粘度:10センチポイズ)に
被評価糸あるいは布帛を20℃の温度下で5日間浸漬
し、取出して100℃の蒸気で10分間処理して、該液
体を固形化させる。連通孔が形成されている付近3個所
(5mm間隔)をカッターナイフで切断し、その断面を
電子顕微鏡で観察する。中空繊維内に固形物が存在して
いることが2個所以上で確認されたものを合格とする。
(4) Whether a liquid having a viscosity of 5 centipoise or more can be introduced from the communication hole (Evaluation 3); dimethacrylate of polyethylene glycol having a polymerization degree of 9, water and potassium persulfate are mixed in a ratio of 30: 69.9995: 0. The yarn or fabric to be evaluated was immersed in a liquid (viscosity at a temperature of 20 ° C .: 10 centipoise) mixed at a temperature of 20 ° C. for 5 days at a temperature of 20 ° C., taken out, and treated with steam at 100 ° C. for 10 minutes. The liquid solidifies. Three places near the communication hole (5 mm intervals) are cut with a cutter knife, and the cross section is observed with an electron microscope. A sample in which the presence of a solid substance in the hollow fiber was confirmed at two or more locations was judged to be acceptable.

【0039】(5)染色布の染め斑(評価4);染色後
の布帛を目視判定により染め斑を評価した。目視で染め
斑が認められないものを合格とした。
(5) Dyeing spots of dyed cloth (Evaluation 4): Dyeing spots were evaluated on the cloth after dyeing by visual judgment. A sample in which no spots were visually observed was judged as acceptable.

【0040】[実施例1]前記により準備した中空マル
チフィラメント糸(50デニール/20フィラメント)
に用いて、幅:150cm、目付:100g/m、55
コース数/インチ、60ウェール数/インチにより編成
した編布(丸編地)を用いて、精練、プレセットを行っ
た。次いで、高圧液流染色機でpH:10.5の緩衝液
(炭酸ソーダ:0.5g/リットルの水溶液)とKay
alon Polyester Blue BR−S
F:2%owfとからなる染色浴中で130℃の温度で
30分間処理した。この時の高圧液流染色機のノズル部
分による生地の引き込みが、最大張力:3.6kg
(1.0g/ループ)で2〜3秒の間隔で繰り返し行わ
れた。得られた編物について評価1の方法による電子顕
微鏡映像の観察により、幅:1μm、長さ:20μmの
連通孔の存在を確認した。該編物の引裂強力を測定し、
評価2の方法による処理後の強力維持率は92%であっ
た。また、評価3の方法による中空繊維内に固形物が存
在していることが3個所とも確認され、評価4の方法に
よる染め斑も確認できなかった。
Example 1 Hollow multifilament yarn prepared as described above (50 denier / 20 filament)
Used, width: 150 cm, basis weight: 100 g / m, 55
Using a knitted fabric (circular knitted fabric) knitted at the number of courses / inch and 60 wales / inch, scouring and presetting were performed. Subsequently, a buffer solution (pH: 10.5: aqueous solution of sodium carbonate: 0.5 g / liter) and Kay were added using a high-pressure liquid jet dyeing machine.
alon Polyester Blue BR-S
F: treated in a dye bath consisting of 2% owf at a temperature of 130 ° C. for 30 minutes. At this time, the dough is pulled in by the nozzle of the high-pressure liquid jet dyeing machine, and the maximum tension is 3.6 kg.
(1.0 g / loop) at 2-3 second intervals. Observation of an electron microscopic image of the obtained knitted fabric by the method of Evaluation 1 confirmed the presence of a communication hole having a width of 1 μm and a length of 20 μm. Measuring the tear strength of the knit,
The strength retention rate after the treatment according to the method of Evaluation 2 was 92%. In addition, it was confirmed in all three places that solid matter was present in the hollow fiber according to the method of Evaluation 3, and no staining spot was observed by the method of Evaluation 4.

【0041】[比較例1]実施例1において、高圧液流
染色機内の液には染料以外の添加剤を一切加えずに処理
液のpHを7とし、それ以外の条件は実施例1と同様に
して処理を行った。その結果、得られた処理布には、評
価1の方法による電子顕微鏡映像の観察では平均で幅:
1μm、長さ:10μmの大きさの連通孔の存在が認め
られ、評価2の方法による処理後の強力維持率も94%
であったが、評価3の方法による中空繊維内に固形物が
存在していることが3個所とも確認できず、評価4の方
法による染色後の布帛には目視で染め斑が認められた。
[Comparative Example 1] In Example 1, the pH of the processing solution was set to 7 without adding any additives other than the dye to the solution in the high-pressure jet dyeing machine, and the other conditions were the same as in Example 1. The process was performed. As a result, the average width of the obtained treated cloth was observed by electron microscopic image observation according to the method of Evaluation 1.
The presence of a communication hole having a size of 1 μm and a length of 10 μm was recognized, and the strength retention rate after the treatment according to the method of Evaluation 2 was 94%.
However, the presence of solid matter in the hollow fiber according to the method of Evaluation 3 could not be confirmed at all three places, and the dyed spots were visually observed on the cloth dyed by the method of Evaluation 4.

【0042】[比較例2]実施例1において、高圧染色
機内の処理液温度を180℃(湿熱下での熱分解開始温
度を超える温度)とする以外は実施例1と同様にして処
理を行った。得られた処理布には、評価1の方法による
電子顕微鏡映像の観察では平均で幅:1μm、長さ:3
2μmの大きさの連通孔の存在が認められたが、一部で
中空部の潰れているものが認められ、また、処理後の布
帛の強力維持率は72%と低いものであった。
Comparative Example 2 Processing was performed in the same manner as in Example 1 except that the temperature of the processing solution in the high-pressure dyeing machine was set at 180 ° C. (a temperature exceeding the thermal decomposition starting temperature under wet heat). Was. The obtained treated cloth had an average width of 1 μm and a length of 3 in observation of an electron microscope image by the method of Evaluation 1.
Although the presence of a communication hole having a size of 2 μm was recognized, the hollow portion was partially crushed, and the strength retention rate of the treated fabric was as low as 72%.

【0043】[比較例3]実施例1において、高圧液流
染色機のノズル部を布帛が通過するときの引き込み張力
を最大:4.3kg(1.2g/ループ、弾性限界応力
を超える応力)で2〜3秒の間隔で繰り返し行う以外
は、実施例1と同様にして処理を行った。得られた処理
布には、平均の幅:1μm、長さ:30μmの大きさの
連通孔の存在が認められたが、一部で中空部の潰れてい
るものが認められ、また、処理後の布帛の強力維持率は
76%と低いものであった。
[Comparative Example 3] In Example 1, the pull-in tension when the cloth passed through the nozzle of the high-pressure liquid jet dyeing machine was 4.3 kg (1.2 g / loop, stress exceeding the elastic limit stress). The processing was performed in the same manner as in Example 1 except that the processing was repeated at intervals of 2 to 3 seconds. In the obtained treated cloth, the presence of a communication hole having an average width of 1 μm and a length of 30 μm was recognized, but a part of the hollow part was crushed was recognized, and after treatment, The strength retention of the fabric was as low as 76%.

【0044】[比較例4]実施例1において、緩衝液の
代わりに苛性ソーダ(pH:12)を含む水溶液を使用
する以外は、実施例1と同様にして処理を行った。その
結果、得られた処理布には、平均の幅:1μm、長さ:
40μmの大きさの連通孔の存在が認められたが、一部
で中空部の潰れているものが認められ、また、処理後の
布帛の強力維持率は64%と低いものであり、また、評
価4の方法による染色後の布帛には目視で染め斑が認め
られた。
Comparative Example 4 Processing was performed in the same manner as in Example 1 except that an aqueous solution containing caustic soda (pH: 12) was used instead of the buffer solution. As a result, the obtained treated cloth had an average width of 1 μm and a length of:
Although the existence of a communication hole having a size of 40 μm was recognized, the hollow portion was partially crushed, and the strength retention rate of the treated fabric was as low as 64%. Dyeing spots were visually observed on the fabric dyed by the method of Evaluation 4.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも20%の中空率を有する中空
繊維を、該中空繊維のガラス転移温度以上で、且つ、熱
分解開始温度又は熱軟化温度のうちいずれか低い方の温
度以下の温度の緩衝液中で処理する際に、該緩衝液のp
Hが9.5〜11.5の範囲のものを使用して該中空繊
維の長手方向と交差する方向に沿って該中空繊維の弾性
限界内の応力を繰り返し付与して繊維表面から中空部へ
の連通孔を形成させ、且つ、染色加工処理を同時に行う
ことを特徴とする中空繊維の連通孔形成処理方法。
1. A method of buffering a hollow fiber having a hollow ratio of at least 20% at a temperature equal to or higher than the glass transition temperature of the hollow fiber and equal to or lower than a lower temperature of a thermal decomposition initiation temperature or a thermal softening temperature. When processing in a liquid, the p
H is used in the range of 9.5 to 11.5, and a stress within the elastic limit of the hollow fiber is repeatedly applied along a direction intersecting with the longitudinal direction of the hollow fiber to apply a stress from the fiber surface to the hollow portion. The method of forming a communicating hole for a hollow fiber, wherein the communicating hole is formed and the dyeing process is performed simultaneously.
【請求項2】 中空繊維として、布帛状に形成されたも
のを用いる請求項1に記載された中空繊維の連通孔形成
処理方法。
2. The method according to claim 1, wherein the hollow fibers are formed in a fabric form.
【請求項3】 布帛状に形成されたものが編物である請
求項2に記載された中空繊維の連通孔形成処理方法。
3. The method according to claim 2, wherein the fabric is a knitted fabric.
【請求項4】 連通孔の大きさが、幅:0.2〜5μ
m、長さ:1〜50μmの範囲にある請求項1〜請求項
3のいずれか1項に記載された中空繊維の連通孔形成処
理方法。
4. The size of the communication hole is 0.2 to 5 μm in width.
The method for forming a communicating hole of a hollow fiber according to any one of claims 1 to 3, wherein m and the length are in the range of 1 to 50 µm.
JP16064898A 1998-06-09 1998-06-09 Treating method for forming communicating pore of hollow fiber Pending JPH11350341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16064898A JPH11350341A (en) 1998-06-09 1998-06-09 Treating method for forming communicating pore of hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16064898A JPH11350341A (en) 1998-06-09 1998-06-09 Treating method for forming communicating pore of hollow fiber

Publications (1)

Publication Number Publication Date
JPH11350341A true JPH11350341A (en) 1999-12-21

Family

ID=15719486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16064898A Pending JPH11350341A (en) 1998-06-09 1998-06-09 Treating method for forming communicating pore of hollow fiber

Country Status (1)

Country Link
JP (1) JPH11350341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132021A (en) * 2004-11-04 2006-05-25 Teijin Fibers Ltd Heat-reserving and heat-retaining clothing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132021A (en) * 2004-11-04 2006-05-25 Teijin Fibers Ltd Heat-reserving and heat-retaining clothing
JP4563773B2 (en) * 2004-11-04 2010-10-13 帝人ファイバー株式会社 Thermal storage and warm clothes

Similar Documents

Publication Publication Date Title
EP0084203B1 (en) Ultra-fine sheath-core composite fibers and composite sheets made thereof
KR880001030B1 (en) Aromatic polyamide fibers and process for stabilizing such fibers
TWI405881B (en) Highly functional polyethylene fiber, woven/knitted fabric and cut resistant glove
GB2043526A (en) Production of fibrillated fibre structures
KR100418824B1 (en) Ethylene-vinyl alcohol copolymer fiber and method for producing the same
EP1132508B1 (en) Composite staple fiber and process for producing the same
KR100808724B1 (en) Fibre and its production
KR20170112594A (en) Ultra-light denim fabric
JP3601902B2 (en) Microporous hollow polyamide fiber having openings and method for producing the same
JPH11350341A (en) Treating method for forming communicating pore of hollow fiber
JPH03287820A (en) Conjugate fiber
JPH11256473A (en) Processing method for hollow fibers
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP3516771B2 (en) Method for producing alkali-solvable polyester filament
JP4839174B2 (en) FIBER STRUCTURE, PROCESS FOR PRODUCING THE SAME AND APPAREL
JPH0390613A (en) Hollow flat viscose rayon yarn
JP2000178864A (en) Production of nonwoven fabric structural form and nonwoven fabric structural form thus produced
JP3743627B2 (en) Textile treatment agent
JP3616211B2 (en) Polyester multifilament and method for producing woven or knitted fabric comprising the same
EP0914503B1 (en) Method for the manufacture of lyocell fibre
JPH08246245A (en) Core-sheath conjugate short fiber for nonwoven fabric
JP3157643B2 (en) Method for producing fiber, yarn or fabric
JPS5947733B2 (en) Polyester fiber manufacturing method
JPS59192725A (en) Preparation of flame-retardant polyester yarn
JPH06330424A (en) Combined filament yarn