JPH11350094A - Gas turbine moving blade - Google Patents

Gas turbine moving blade

Info

Publication number
JPH11350094A
JPH11350094A JP16467798A JP16467798A JPH11350094A JP H11350094 A JPH11350094 A JP H11350094A JP 16467798 A JP16467798 A JP 16467798A JP 16467798 A JP16467798 A JP 16467798A JP H11350094 A JPH11350094 A JP H11350094A
Authority
JP
Japan
Prior art keywords
temperature
gas turbine
strength
heat treatment
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16467798A
Other languages
Japanese (ja)
Inventor
Shinya Konno
晋也 今野
Hiroyuki Doi
裕之 土井
Shigeyoshi Nakamura
重義 中村
Isao Takehara
竹原  勲
Takeshi Kudo
健 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16467798A priority Critical patent/JPH11350094A/en
Publication of JPH11350094A publication Critical patent/JPH11350094A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the tensile strength of the areas of moving blades of a gas turbine of which temperature is low during operation by subjecting the blades made of Ni-based alloy to a multi-stage heat treatment at specified temperatures to increase creep rupture strength and subsequently subjecting them to aging treatment at a temperature range lower than in the heat treat ment. SOLUTION: This gas turbine blade consisting of the Ni base alloy whose 100,000 hour creep rupture strength at 825 deg.C is controlled to >=10 kgf/mm<2> by multistage heat treatment at >=800 deg.C is subjected to aging treatment within the temp. range of 700 to 800 deg.C successively to the multistage heat treatment at >=800 deg.C to improve the tensile strength of the part where using temp. is <=700 deg.C. In the gas turbine moving blade consisting of the Ni base alloy treated in this way, the strength of the part where the using temp. reaches >=800 deg.C by multastage heat treatment at >=800 deg.C is improved, and moreover, by applying aging treatment within the temp. range of 700 to 800 deg.C, the tensile strength of the part where the using temp. is <=700 deg.C is improved without impairing its creep strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温高効率ガスタ
ービンの動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving blade for a high-temperature and high-efficiency gas turbine.

【0002】[0002]

【従来の技術】ガスタービンの動翼は、1000℃〜1
400℃の高温ガスにさらされ、高度な冷却を行って
も、高温部では800℃以上になる。このような環境に
耐えるため、ガスタービンには、γ’相(Ni3Al)
によって析出強化されたNi基合金が用いられている。
2. Description of the Related Art A moving blade of a gas turbine operates at a temperature of 1000 ° C.
Even if it is exposed to a 400 ° C. high-temperature gas and performs advanced cooling, the temperature in the high-temperature portion becomes 800 ° C. or more. To withstand such an environment, the gas turbine is required to have a γ 'phase (Ni3Al)
Is used.

【0003】[0003]

【発明が解決しようとする課題】ガスタービン動翼材は
使用温度を向上させるために、初段動翼の最高温度にお
ける特性を向上させることを目的に開発が成されてき
た。Ni基合金では700℃以上では引張強度よりもク
リープ強度が不足するため、既存の開発材は高温のクリ
ープ強度を重視して開発されたものである。しかし、ガ
スタービンの大容量化に伴う翼の大型化によって、温度
が低い翼付け根部にかかる応力が増加し、高温のクリー
プ強度だけでなく、低温の引張強度も高い値が求められ
るようになっている。
Gas turbine blade materials have been developed with the aim of improving the characteristics of the first stage blade at the maximum temperature in order to improve the operating temperature. Since the Ni-based alloy has a creep strength lower than the tensile strength at 700 ° C. or higher, the existing developed material has been developed with an emphasis on the high-temperature creep strength. However, due to the increase in the size of the blades accompanying the increase in the capacity of gas turbines, the stress applied to the roots of the blades at low temperatures increases, and not only high-temperature creep strength but also high-temperature tensile strength are required to be high. ing.

【0004】ガスタービンの3段動翼や4段動翼は大型
であるため作用遠心応力が高いが、使用温度が低いた
め、一般的には初段動翼用に開発された合金が流用され
てきた。近年高効率化を狙い燃焼温度が上昇しており、
3段動翼の使用温度も高くなっている。これに対応し
て、より耐用温度の高い初段動翼材を用いれば良いが、
クリープ強度を重視した耐用温度の高い初段動翼材の中
には、低温の引張強度が既存の3段動翼材より低いもの
が存在する。
[0004] The three-stage and four-stage blades of gas turbines are large in size and therefore have high centrifugal stress, but due to the low operating temperature, alloys developed for the first stage are generally diverted. Was. In recent years, the combustion temperature has been increasing in order to increase efficiency,
The operating temperature of the three-stage bucket is also high. Correspondingly, the first stage blade material with higher service temperature may be used,
Among the first-stage blade materials having a high service temperature with an emphasis on creep strength, there are those having a low-temperature tensile strength lower than that of the existing three-stage blade material.

【0005】γ′相強化型Ni基合金の強度はγ′相の
組織形態に大きく依存する。γ′相の組織形態は合金の
化学成分に大きく依存するため、合金の化学成分を調整
するのも一つの方法であるが、このような試みは長い間
行われてきており、クリープ強度と引張強度の間にさら
に高い妥協点を見出すことは容易ではない。
[0005] The strength of a γ 'phase strengthened Ni-based alloy largely depends on the structure of the γ' phase. The morphology of the γ 'phase is highly dependent on the chemical composition of the alloy, so one of the methods is to adjust the chemical composition of the alloy.However, such attempts have been made for a long time, and the creep strength and tensile strength It is not easy to find a higher compromise between strengths.

【0006】[0006]

【課題を解決するための手段】ガスタービン動翼には前
述のように高い耐クリープ性と引張特性が要求される。
しかし、高い耐クリープ性が要求される部位と引張特性
が要求される部位は異なる。高い耐クリープ性が要求さ
れるのは温度が高い翼中央部から上端部にかけてであ
る。また、引張特性が要求されるのは翼付根側から中央
部にかけてである。したがって、翼の引張特性を向上さ
せたい場合は、翼下部のみの組織を引張特性を向上させ
る組織とすれば良い。また、耐クリープ性を従来レベル
に保つためには翼上部の組織は従来通りとする必要があ
る。
As described above, gas turbine blades are required to have high creep resistance and tensile properties.
However, the part where high creep resistance is required is different from the part where tensile properties are required. High creep resistance is required from the center to the upper end of the blade where the temperature is high. Further, the tensile properties are required from the wing root side to the center. Therefore, when it is desired to improve the tensile characteristics of the blade, the structure of only the lower part of the blade may be set as the structure for improving the tensile characteristics. Further, in order to maintain the creep resistance at the conventional level, the structure of the upper part of the wing needs to be the same as the conventional one.

【0007】強化相であるγ′相は母相のγ相に対して
低温で安定なため、最終時効温度を低くすればγ′相の
含有率が増加し、引張強度が向上する。しかし、使用温
度が最終時効温度より高いと使用中にγ′相が減ってし
まい組織が不安定になるため、最終時効温度は使用温度
と同程度か高めに設定されるのが一般的であり、初段動
翼用に開発された多くの合金の最終時効温度は840℃
以上である。
Since the γ 'phase, which is the reinforcing phase, is stable at a lower temperature than the γ phase of the parent phase, lowering the final aging temperature increases the content of the γ' phase and improves the tensile strength. However, if the operating temperature is higher than the final aging temperature, the γ 'phase decreases during use and the structure becomes unstable, so the final aging temperature is generally set to be equal to or higher than the operating temperature. The final aging temperature of many alloys developed for the first stage rotor blades is 840 ° C
That is all.

【0008】このような合金に対して、通常の最終時効
を行った後に、700℃〜800℃程度でさらに時効を
加えた場合、前述のようにγ′相が増加し、室温から7
00℃程度までの引張強度が向上する。使用中に温度が
800℃以上に上がる部分では、700℃〜800℃の
時効によって増加したγ′相が再び減少し従来の最終時
効後の組織に戻ってしまうため、効果がなくなるが、実
際に高い引張強度が要求される翼付け根側の低温部では
この効果が使用中も維持される。なお、使用中に高温に
なる翼中央部から先端部の組織は前述のように使用時は
従来の最終時効後の組織に戻るためクリープ強度も従来
レベルとなり、本発明を適用することにより、翼の耐ク
リープ性を損なうことなく、引張特性が向上できる。
When such alloys are further aged at about 700 ° C. to 800 ° C. after the usual final aging, the γ ′ phase increases as described above, and
The tensile strength up to about 00 ° C. is improved. In the part where the temperature rises to 800 ° C. or higher during use, the γ ′ phase increased by aging at 700 ° C. to 800 ° C. decreases again and returns to the structure after the conventional final aging, so that there is no effect. This effect is maintained during use in the low temperature portion on the wing root side where high tensile strength is required. In addition, the structure from the center to the tip of the blade, which becomes hot during use, returns to the structure after final aging during use as described above, so that the creep strength is also at the conventional level. The tensile properties can be improved without impairing the creep resistance of the steel.

【0009】通常の最終時効後に行う時効の温度は低す
ぎるとγ′相の析出速度が遅いため効果的でなく、ま
た、通常の最終熱処理温度に近すぎるとγ′相の増加量
が少ないため効果的でない。したがって、時効温度は7
00〜800℃程度が望ましい。
[0009] If the aging temperature after the usual final aging is too low, the precipitation rate of the γ 'phase is too slow to be effective, and if it is too close to the usual final heat treatment temperature, the increase in the γ' phase is small. Not effective. Therefore, the aging temperature is 7
About 00-800 degreeC is desirable.

【0010】高温のクリープ強度が高くない合金は使用
温度が低く、もともと最終時効温度が低いものがあるた
め、この合金を用いたガスタービン動翼に本発明を適用
しても有意な結果は得られない。本発明が有効なのは最
終時効温度が825℃以上の合金、特に825℃におけ
る100,000 時間クリープ破断強度が10kgf/mm2以上で
あるNi基鋳造材を用いたガスタービン動翼である。
[0010] Some alloys having a low high-temperature creep strength have a low use temperature and a low final aging temperature. Therefore, even if the present invention is applied to a gas turbine blade using this alloy, significant results can be obtained. I can't. The present invention is effective for a gas turbine blade using an alloy having a final aging temperature of 825 ° C. or higher, particularly a Ni-base cast material having a creep rupture strength at 825 ° C. for 100,000 hours of 10 kgf / mm 2 or more.

【0011】即ち、ガスタービン動翼について、800
℃以上の多段熱処理を施すことによって、使用時の温度
が800℃以上になる部分の強度を向上させた後に、7
00℃〜800℃の温度範囲で、時効処理を加えること
によって、耐クリープ性を損なうことなく翼の引張強度
が向上する。
That is, for a gas turbine blade, 800
After performing a multi-stage heat treatment at a temperature of 800 ° C. or higher to improve the strength of a portion where the temperature during use is 800 ° C. or higher,
By adding the aging treatment in the temperature range of 00 ° C to 800 ° C, the tensile strength of the blade is improved without impairing the creep resistance.

【0012】[0012]

【発明の実施の形態】(実施例1)(Embodiment 1)

【0013】[0013]

【表1】 [Table 1]

【0014】表1に示した3種の組成の合金を溶解し、
精密鋳造法によって直径15mm,長さ150mmの丸棒を
作製した。各試料の一部について表2の熱処理Aに示し
た条件で熱処理を行い、これを従来翼模擬材とした。従
来翼模擬材の825℃における100,000 時間クリープ破
断強度は、それぞれ、16,14,8kgf/mm2である。
また、残りの試料について、熱処理Aに引き続き、熱処
理Bを施し、これらの試料を本発明模擬材とした。表1
中のクリープ強度は従来翼模擬材のクリープ破断データ
から外挿し推定した835℃における100,000 時間クリ
ープ破断強度である。
The alloys of the three compositions shown in Table 1 were melted,
A round bar having a diameter of 15 mm and a length of 150 mm was manufactured by a precision casting method. Heat treatment was performed on a part of each sample under the conditions shown in heat treatment A in Table 2, and this was used as a conventional blade simulation material. The creep rupture strength of the conventional simulated wing material at 825 ° C. for 100,000 hours is 16, 14.8 kgf / mm 2 , respectively.
The remaining samples were subjected to the heat treatment B following the heat treatment A, and these samples were used as simulated materials of the present invention. Table 1
The creep strength inside is the creep rupture strength at 835 ° C for 100,000 hours extrapolated from the creep rupture data of the conventional simulated wing material.

【0015】これらの模擬材について、平行部長さ32
mm,直径6mmの精密引張試験片を作製し、使用時の温度
が低い、翼付け根部および使用温度が高い翼上部を模擬
し、650℃および850℃で引張試験を行った。試験
は試験温度で15分保持した後に開始した。図1
(a),(b),(c)は各合金の引張試験結果である。
クリープ強度が高く、最終時効温度が高い試料Iおよび
IIでは650℃の引張強さおよび0.2% 耐力が向上
しており、本発明が有効であることがわかる。引張強度
よりもクリープ強度が重要である850℃の引張強度は
従来模擬材と同程度である。試料III は、何れの温度で
も本発明の適用による強度向上は見られないが、これ
は、クリープ強度、すなわちクリープの耐用温度が低
く、最終時効温度が低いためである。このような合金を
用いた動翼に対しては本発明は有効でない。図2
(a),(b)は本発明の適用によって低温域の引張り強
度向上が達成される試料IおよびIIの従来模擬材および
本発明模擬材の900℃におけるクリープ破断試験結果
である。何れの本発明模擬材も、従来模擬材に対して高
温クリープ強度の劣化が見られず、本発明が有効である
ことを示している。
For these simulation materials, the parallel part length 32
A precision tensile test piece having a diameter of 6 mm and a diameter of 6 mm was prepared, and a tensile test was performed at 650 ° C. and 850 ° C. to simulate a blade root portion having a low temperature during use and a blade upper portion having a high use temperature. The test started after holding at the test temperature for 15 minutes. FIG.
(A), (b), (c) are the results of the tensile test of each alloy.
Samples I and II having high creep strength and high final aging temperature have improved tensile strength at 650 ° C. and 0.2% proof stress, indicating that the present invention is effective. The tensile strength at 850 ° C. where creep strength is more important than tensile strength is about the same as that of the conventional simulated material. In Sample III, no improvement in strength due to the application of the present invention was observed at any temperature, because the creep strength, that is, the service temperature of creep was low, and the final aging temperature was low. The present invention is not effective for a blade using such an alloy. FIG.
(A) and (b) show the results of creep rupture tests at 900 ° C. of the conventional simulated materials of Samples I and II and the simulated material of the present invention in which the tensile strength in the low temperature region is improved by applying the present invention. In any of the simulated materials of the present invention, no deterioration in the high-temperature creep strength was observed with respect to the simulated materials of the related art, indicating that the present invention is effective.

【0016】[0016]

【表2】 [Table 2]

【0017】図3は、試料Iについて表2における熱処
理Bの熱処理温度を変えた場合の硬さ測定の結果であ
る。熱処理時間は8,16,24,48時間とし、各時
間で5回測定を行い平均値を硬さとした。前述のよう
に、800℃以上で硬化していないのは最終時効温度
(843℃)との差が小さいためγ′相の析出量が少な
いためである。700℃以下では析出速度が遅いため4
8時間程度では大きな硬化が得られず何れの条件でも強
度向上は図れない。本発明が有効なのは時効温度を70
0〜800℃程度とした場合である。
FIG. 3 shows the results of hardness measurement of sample I when the heat treatment temperature of heat treatment B in Table 2 was changed. The heat treatment time was 8, 16, 24, and 48 hours, and the measurement was performed five times at each time, and the average value was regarded as the hardness. As described above, the resin is not cured at 800 ° C. or higher because the difference from the final aging temperature (843 ° C.) is small and the amount of the γ ′ phase precipitated is small. Below 700 ° C, the deposition rate is slow,
In about 8 hours, large hardening cannot be obtained, and strength cannot be improved under any conditions. The present invention is effective when the aging temperature is 70
This is the case where the temperature is set to about 0 to 800 ° C.

【0018】(実施例2)試料Iの組成(Rene80タイ
プ)の合金を用いて、図4(a),(b)に示した形状の
ガスタービン動翼1を精密鋳造によって2個作製した。
そのうちの1個について、実施例1の熱処理A,残りの
2個については熱処理Aおよび熱処理Bを施しそれぞ
れ、従来翼(Rene80タイプ)および本発明翼(Rene80タ
イプ)とした。これらの翼の下部2より引張試験片を切
り出し、650℃において実施例1と同様に、引張試験
を行った。
(Example 2) Using the alloy of the composition of Sample I (Rene 80 type), two gas turbine rotor blades 1 having the shapes shown in FIGS. 4A and 4B were produced by precision casting.
One of them was subjected to heat treatment A of Example 1 and the other two were subjected to heat treatment A and heat treatment B to obtain a conventional blade (Rene80 type) and a blade of the present invention (Rene80 type), respectively. Tensile test pieces were cut out from the lower part 2 of these wings and subjected to a tensile test at 650 ° C. in the same manner as in Example 1.

【0019】図5は試験結果であり、本発明翼は従来翼
に対して650℃の引張強度が優れている。また、本発
明翼および従来翼について、翼上部3より、クリープ試
験片を3本採取し、925℃において、クリープ破断試
験を行った。図6はこの結果である。本発明翼は従来翼
に対して引張強度が向上していながらも、ほぼ同程度の
クリープ強度を有している。
FIG. 5 shows the test results. The blade of the present invention is superior to the conventional blade in tensile strength at 650 ° C. In addition, three creep test pieces were taken from the upper part 3 of the wing of the present invention and the conventional wing, and a creep rupture test was performed at 925 ° C. FIG. 6 shows the result. The wing according to the present invention has substantially the same creep strength as the conventional wing, although the tensile strength is improved.

【0020】次に試料IIの組成(IN738LCタイ
プ)の合金を用いて試料Iと同様にガスタービン動翼を
1つ作製した。この翼に実施例1の熱処理Aを施し従来
翼(IN738LCタイプ)とした。翼下部2から試験
を片採取し引張試験を行った。また、翼上部3から採取
した試験片を用いて、温度935℃,応力14kgf/mm
2 でクリープ破断試験を行った。また、従来翼(Rene80
タイプ)および本発明翼(Rene80タイプ)についても同
じ同条件でクリープ試験を行った。
Next, one gas turbine rotor blade was manufactured in the same manner as in Sample I, using the alloy having the composition of Sample II (IN738LC type). This blade was subjected to the heat treatment A of Example 1 to obtain a conventional blade (IN738LC type). A test piece was taken from the lower wing 2 and a tensile test was performed. Using a test piece taken from the upper part 3 of the wing, the temperature was 935 ° C., the stress was 14 kgf / mm.
The creep rupture test was performed in 2 . The conventional wing (Rene80
Type) and the wing of the present invention (Rene80 type) were also subjected to creep tests under the same conditions.

【0021】図7はこれらの試験結果をもとに、従来翼
と本発明翼の特性を比較したものである。Rene80タイプ
の合金を用いた従来翼はクリープ強度がIN738LC
タイプの合金を用いた従来翼よりクリープ強度が高く、
より高温まで使えるという利点があるが、引張強度がI
N738LCタイプより低いという問題がある。Rene80
タイプの合金を用いた本発明翼はクリープ強度をRene80
タイプの合金を用いた従来翼と同程度に維持しながら引
張強度がIN738LCタイプの合金を用いた従来翼並
みである。
FIG. 7 compares the characteristics of the conventional blade and the blade of the present invention based on the test results. Conventional wing using Rene80 type alloy has creep strength of IN738LC
Creep strength is higher than conventional wings using a type of alloy,
It has the advantage that it can be used up to higher temperatures, but its tensile strength is I
There is a problem that it is lower than the N738LC type. Rene80
The wing of the present invention using a type alloy has a creep strength of Rene80
While maintaining the same tensile strength as that of the conventional blade using the alloy of the type 7, the tensile strength is comparable to that of the conventional blade using the alloy of the IN738LC type.

【0022】[0022]

【発明の効果】以上のように本発明によれば、耐クリー
プ性を損なうことなく翼の引張強度を向上することがで
きる。
As described above, according to the present invention, the tensile strength of a blade can be improved without impairing creep resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)ないし(c)は本発明翼模擬材および従
来翼模擬材の引張試験結果を示す特性図。
FIGS. 1A to 1C are characteristic diagrams showing tensile test results of a simulated wing material of the present invention and a simulated conventional wing material.

【図2】(a)及び(b)は本発明翼模擬材および従来
翼模擬材のクリープ試験結果を示す特性図。
FIGS. 2A and 2B are characteristic diagrams showing creep test results of the simulated wing material of the present invention and the simulated conventional wing material.

【図3】本発明翼模擬材の硬さ測定結果を示す特性図。FIG. 3 is a characteristic diagram showing a hardness measurement result of the simulated wing material of the present invention.

【図4】(a)及び(b)は作製翼形状を示す摸式斜視
図。
FIGS. 4A and 4B are schematic perspective views showing the shape of a manufactured wing.

【図5】本発明翼および従来翼の引張試験結果を示す特
性図。
FIG. 5 is a characteristic diagram showing tensile test results of the wing of the present invention and the conventional wing.

【図6】本発明翼および従来翼のクリープ試験結果を示
す特性図。
FIG. 6 is a characteristic diagram showing creep test results of the wing of the present invention and the conventional wing.

【図7】本発明翼および従来翼の特性比較を示す特性
図。
FIG. 7 is a characteristic diagram showing a characteristic comparison between the wing of the present invention and a conventional wing.

【符号の説明】[Explanation of symbols]

1…タービン動翼、2…下部、3…上部。 1. Turbine blades, 2. Lower part, 3. Upper part.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691C (72)発明者 竹原 勲 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 工藤 健 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 691 C22F 1/00 691C (72) Inventor Isao Takehara 3-1-1 Kochicho, Hitachi-shi, Hitachi, Ibaraki Pref. Inside Hitachi, Ltd. Hitachi Plant (72) Inventor Ken Kudo 3-1-1, Sachimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】800℃以上の多段熱処理を施すことによ
って、825℃における100,000 時間クリープ破断強度
を10kgf/mm2以上としたNi基合金からなるガスター
ビン動翼について、800℃以上の多段熱処理に引き続
き、700℃〜800℃の温度範囲で時効処理を加える
ことによって、使用時の温度が700℃以下の部位の引
張強度を改善することを特徴としたガスタービン動翼。
By 1. A is subjected to multi-stage heat treatment above 800 ° C., 100,000 hours creep rupture strength at 825 ° C. for a gas turbine blade made of a Ni-based alloy was 10 kgf / mm 2 or more, the multi-stage heat treatment above 800 ° C. A gas turbine rotor blade characterized by improving the tensile strength of a portion where the temperature during use is 700 ° C. or less by successively performing aging treatment in a temperature range of 700 ° C. to 800 ° C.
【請求項2】Rene80タイプの化学成分の合金よりなるガ
スタービン動翼について、800℃以上の多段熱処理に
よって、825℃における100,000 時間クリープ破断強
度を10kgf/mm2以上とした後に、700℃〜800℃
の温度範囲で時効処理を加えることによって、使用時の
温度が700℃以下の部位の引張強度を改善することを
特徴とした請求項1記載のガスタービン動翼。
2. A gas turbine blade made of an alloy having a chemical composition of Rene 80 type, after a creep rupture strength at 825 ° C. for 100,000 hours of 10 kgf / mm 2 or more at 825 ° C. by a multi-stage heat treatment at 700 ° C. to 800 ° C. ° C
The gas turbine rotor blade according to claim 1, wherein the aging treatment in the temperature range of (1) improves the tensile strength of a portion where the temperature during use is 700 ° C or lower.
【請求項3】Rene80タイプの化学成分の合金よりなるガ
スタービン動翼について、Rene80タイプの4段標準熱処
理に引き続き、700℃〜800℃の温度範囲で、時効
処理を加えることによって使用時の温度が700℃以下
の部位の引張強度を改善したことを特徴とした請求項1
記載のガスタービン動翼。
3. A gas turbine blade made of an alloy having a chemical composition of Rene 80 type, which is subjected to an aging treatment in a temperature range of 700 ° C. to 800 ° C., following the four-stage standard heat treatment of Rene 80 type, to thereby increase the temperature during use. 2. The tensile strength of a part at a temperature of 700 ° C. or lower has been improved.
A gas turbine blade as described.
JP16467798A 1998-06-12 1998-06-12 Gas turbine moving blade Pending JPH11350094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16467798A JPH11350094A (en) 1998-06-12 1998-06-12 Gas turbine moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16467798A JPH11350094A (en) 1998-06-12 1998-06-12 Gas turbine moving blade

Publications (1)

Publication Number Publication Date
JPH11350094A true JPH11350094A (en) 1999-12-21

Family

ID=15797753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16467798A Pending JPH11350094A (en) 1998-06-12 1998-06-12 Gas turbine moving blade

Country Status (1)

Country Link
JP (1) JPH11350094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100697A (en) * 2005-10-04 2007-04-19 General Electric Co <Ge> Bi-layer tip cap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100697A (en) * 2005-10-04 2007-04-19 General Electric Co <Ge> Bi-layer tip cap

Similar Documents

Publication Publication Date Title
JP4004163B2 (en) Ti2AlNb type titanium-based intermetallic alloy with high elastic limit and high creep resistance
US5151249A (en) Nickel-based single crystal superalloy and method of making
KR101687320B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY
US6755921B2 (en) Nickel-based single crystal alloy and a method of manufacturing the same
JP5235383B2 (en) Ni-based single crystal alloy and casting
JP5252348B2 (en) Ni-base superalloy, manufacturing method thereof, and turbine blade or turbine vane component
US10107112B2 (en) Method for producing forged components from a TiAl alloy and component produced thereby
JP5876915B2 (en) High strength single crystal superalloy
JP4115369B2 (en) Ni-base superalloy
GB2071695A (en) An alloy suitable for making single-crystal castings and a casting made thereof
CN112575229A (en) Long-life high-strength hot-corrosion-resistant nickel-based high-temperature alloy and application thereof
JP2786443B2 (en) Method of forming fatigue crack-resistant nickel-base superalloy and formed product
KR101618649B1 (en) Ni-based single crystal superalloy
JPH10317079A (en) Steam turbine blade and its production
JPH09272933A (en) High strength nickel-base superalloy for directional solidification
JPH11246924A (en) Ni-base single crystal superalloy, its production, and gas turbine parts
JP2000063969A (en) Nickel base superalloy, its production and gas turbine part
KR20040095712A (en) Nickel-base alloy
JPH09170016A (en) Production of high-temperature-stable object made of in706 type iron/nickel super alloy
US5403546A (en) Nickel-based superalloy for industrial turbine blades
JPH11350094A (en) Gas turbine moving blade
CA1202505A (en) Nickel-chromium-cobalt base alloys and castings thereof
JPS5837382B2 (en) Heat treatment method for nickel-based heat-resistant alloy
JPH06287667A (en) Heat resistant cast co-base alloy
JP2552351B2 (en) Single crystal Ni-based super heat resistant alloy