JPH11347368A - Method and apparatus for controlling ammonia injection in denitration apparatus - Google Patents

Method and apparatus for controlling ammonia injection in denitration apparatus

Info

Publication number
JPH11347368A
JPH11347368A JP10162361A JP16236198A JPH11347368A JP H11347368 A JPH11347368 A JP H11347368A JP 10162361 A JP10162361 A JP 10162361A JP 16236198 A JP16236198 A JP 16236198A JP H11347368 A JPH11347368 A JP H11347368A
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
denitration
amount
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10162361A
Other languages
Japanese (ja)
Inventor
Seiji Morii
政治 森井
Masato Mukai
正人 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10162361A priority Critical patent/JPH11347368A/en
Publication of JPH11347368A publication Critical patent/JPH11347368A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absolute injection control apparatus capable of solving a problem such that leaked ammonia increases temporarily at a start time and at a time of a rise in load in a denitration apparatus relatively low in the concn. of NOx in exhaust gas at its inlet and operated in a high NH3 /NOx molar ratio of 1.0 or more in order to obtain a predetermined denitration ratio. SOLUTION: NOx-containing exhaust gas is introduced into a denitration apparatus having a denitration catalyst built therein and the wiping-out of an ammonia injection amt. to the total NOx amt. in the exhaust gas is performed in a molar ratio (NH3 /NOx) of 1.0 or more and, at a time of low load of 30% or less, an ammonia injection amt. is increased or decreased by about 10% centering around a molar ratio (NH3 /NOx) at a short interval.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、脱硝装置のアンモ
ニア注入制御方法および制御装置に係り、特に排ガス中
の窒素酸化物(NOx)を除去する脱硝装置のアンモニ
ア注入制御方法および制御装置であって、排ガス中のN
Ox濃度を目標値まで低減するとともに、負荷上昇時の
リークアンモニアを低減するのに好適な脱硝装置のアン
モニア注入制御方法および制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a control apparatus for controlling the injection of ammonia in a denitration apparatus, and more particularly to a method and a control apparatus for controlling the injection of ammonia in a denitration apparatus for removing nitrogen oxides (NOx) in exhaust gas. , N in exhaust gas
The present invention relates to an ammonia injection control method and a control device for a denitration apparatus suitable for reducing the Ox concentration to a target value and reducing leaked ammonia when the load increases.

【0001】[0001]

【従来の技術】発電所、各種工場、自動車などから排出
される排ガス中のNOxは光化学スモッグの原因物質で
あり、その効果的な除去方法として触媒を使ったアンモ
ニアによる選択的接触還元による排ガス脱硝法が火力発
電所を中心に幅広く用いられている。近年、産業の発展
からNOxを含む排ガス量は増大する傾向にあり、環境
基準を遵守するため今後さらなる低NOx化が要求され
る趨勢にある。また、NOxのほか燃焼排ガス中に含ま
れるCOも非常に低レベルにまで抑えることが望まれて
おり、それらを除去するための触媒やプロセスの実現が
重要な課題となっている。
2. Description of the Related Art NOx in exhaust gas emitted from power plants, various factories, automobiles, and the like is a causative substance of photochemical smog. As an effective method of removing NOx, NOx in exhaust gas is denitrated by selective catalytic reduction with ammonia using a catalyst. The law is widely used mainly in thermal power plants. In recent years, the amount of exhaust gas containing NOx has been increasing due to the development of industry, and there is a trend that further reduction of NOx is required in order to comply with environmental standards. In addition, it is desired that CO contained in combustion exhaust gas besides NOx be suppressed to a very low level, and realization of a catalyst and a process for removing them is an important issue.

【0002】ところで、脱硝反応器の入口NOx濃度が
比較的低めではあるが、排ガス量が大きく、排出総NO
x量が多くて公害防止上除去処理が必要なプラントにお
いて、所定の脱硝率を得るため、モル比1.0以上の高
モル比で運転を行う場合は、起動時および負荷変化した
ときの負荷上昇時に脱硝装置後流域のリークアンモニア
(NH3 )が一時的に上昇する現象が起こる場合があ
る。未反応NH3 の高濃度排出に関しては、排ガス中に
無水硫酸SO3 が含有される場合、未反応アンモニアが
これと反応して(NH4 2 SO4 や(NH4 )HSO
4 を生成する。これらの生成物は後流のボイラ用エアヒ
ータ(空気予熱器)などの熱交換器に付着し、排ガス流
路の閉塞に伴う圧力損失の増大を引き起こすため脱硝装
置やボイラの運転に支障を来す。また、LNGを燃料と
する燃焼装置からのSO3 を含まない排ガスに対しても
NH3 自体が臭気を伴うため高濃度の排出には問題があ
る。これらの問題を解決するためには未反応NH3 の排
出をできるだけ抑えなければならない。
Although the NOx concentration at the inlet of the denitration reactor is relatively low, the exhaust gas amount is large and the
In a plant where the amount of x is large and the removal treatment is required in order to prevent pollution, when operating at a high molar ratio of 1.0 or more in order to obtain a predetermined denitration rate, the load at startup and when the load changes There is a case where a phenomenon in which the leak ammonia (NH 3 ) in the downstream region of the denitration device temporarily rises during the rise. Regarding the high-concentration discharge of unreacted NH 3 , when the sulfuric anhydride SO 3 is contained in the exhaust gas, the unreacted ammonia reacts with this and reacts with (NH 4 ) 2 SO 4 or (NH 4 ) HSO
Generate 4 . These products adhere to heat exchangers such as boiler air heaters (air preheaters) in the downstream and cause an increase in pressure loss due to blockage of exhaust gas passages, which hinders the operation of denitration equipment and boilers. . In addition, there is a problem with high-concentration discharge of exhaust gas not containing SO 3 from a combustion device using LNG as fuel because NH 3 itself has an odor. In order to solve these problems, emission of unreacted NH 3 must be suppressed as much as possible.

【0003】脱硝装置へのアンモニア注入量制御に関す
る従来技術を図5に示す。脱硝触媒を内蔵した脱硝装置
1の入口NOx濃度分析計101による計測値と脱硝装
置出口のNOx濃度設定器105により与えた設定値と
に基づき、モル比(NH3 /NOx)の演算をモル比演
算部106により行う。入口NOx濃度分析計101の
分析値と出口NOx濃度設定器105の設定値との差分
を差分器105aにより求め、この差分を入口NOx濃
度分析計101の分析値を用いて割算器105bにより
割算することにより脱硝率を求め、この値を関数発生器
90aに入力してアンモニア注入用モル比を求める。出
口NOx濃度設定器105の設定値と出口NOx濃度分
析計104の分析値の偏差を差分器104aにより求
め、この偏差により前記モル比を加算器107にて補正
し、補正モル比107aを得る。一方、処理排ガス量に
入口NOx濃度分析計101の分析値を乗算器101a
にて乗算して総NOx量111を求め、これに前記補正
モル比107aを乗算器107bにて乗算してアンモニ
ア注入量112を得る。
FIG. 5 shows a conventional technique relating to control of the amount of ammonia injected into a denitration apparatus. The calculation of the molar ratio (NH 3 / NOx) is performed based on the measured value by the NOx concentration analyzer 101 at the inlet of the denitration device 1 and the set value given by the NOx concentration setting device 105 at the outlet of the denitration device. The calculation is performed by the calculation unit 106. The difference between the analysis value of the inlet NOx concentration analyzer 101 and the set value of the outlet NOx concentration setter 105 is obtained by a differentiator 105a, and this difference is divided by a divider 105b using the analysis value of the inlet NOx concentration analyzer 101. The denitration rate is obtained by calculation, and this value is input to the function generator 90a to obtain the ammonia injection molar ratio. The difference between the set value of the outlet NOx concentration setting device 105 and the analysis value of the outlet NOx concentration analyzer 104 is obtained by a differentiator 104a, and the molar ratio is corrected by the adder 107 based on the difference to obtain a corrected molar ratio 107a. On the other hand, the analysis value of the inlet NOx concentration analyzer 101 is multiplied by the processing exhaust gas amount by the multiplier 101a.
To obtain the total NOx amount 111, and multiply this by the corrected molar ratio 107a in the multiplier 107b to obtain the ammonia injection amount 112.

【0004】このとき排ガスの発生源であるボイラ負荷
が負荷指令131によって変化したとき、負荷の状態が
変化したことを検知して負荷変化時のみに働く1次微分
回路108(負荷変化してから目標負荷到達時までバイ
アス補正する)が先行してアンモニア注入量のバイアス
補正を加算器107cにて行う。こうして得られたアン
モニア注入量20をアンモニア流量計103とアンモニ
ア流量調節弁102で構成される制御回路の設定値とし
て与える。これにより脱硝装置出口のNOx量を所定値
にするようにアンモニア注入量が制御される。ここで1
03bは比例積分器、103cは電空変換器である。
At this time, when the load of the boiler, which is the source of the exhaust gas, changes according to the load command 131, it is detected that the load state has changed, and the primary differentiating circuit 108 (only after the load change) which operates only when the load changes. Bias correction of the ammonia injection amount is performed by the adder 107c in advance of the bias correction until the target load is reached. The obtained ammonia injection amount 20 is given as a set value of a control circuit composed of the ammonia flow meter 103 and the ammonia flow control valve 102. Thus, the ammonia injection amount is controlled so that the NOx amount at the outlet of the denitration device is set to a predetermined value. Where 1
03b is a proportional integrator, 103c is an electropneumatic converter.

【0005】ボイラ負荷上昇時、負荷に見合って燃料量
が変化するので、安全性を考慮して燃料量に対し通常の
負荷整定時より空気量を過剰に投入するやり方が行われ
るので、このときエアーリッチによる過剰空気によっ
て、NOx濃度も一時的に上昇する。この脱硝装置入口
NOx急上昇に対応して、負荷変化してから目標負荷到
達時まで一定量のバイアス補正ができる1次微分回路1
08と、その一定量を任意に決めることができる上下限
制御器110を使用して調整される。ここで、113は
モニタリレーであり、負荷が変化中であるか否か検知し
て、変化中は切換器114をaからcに接続して、アン
モニア増(または減)信号を加算器107cに送るよう
になっている。
[0005] When the boiler load rises, the amount of fuel changes in proportion to the load. Therefore, in consideration of safety, a method of introducing an excessive amount of air into the fuel amount as compared with the normal load setting is performed. Due to the excess air due to the air rich, the NOx concentration also temporarily increases. A primary differentiating circuit 1 capable of correcting a certain amount of bias from a load change to a target load in response to a sudden rise in NOx at the denitration device inlet.
08 and an upper / lower limit controller 110 that can arbitrarily determine the fixed amount. Here, 113 is a monitor relay which detects whether the load is changing or not, connects the switch 114 from a to c during the change, and sends an ammonia increase (or decrease) signal to the adder 107c. It is supposed to be sent.

【0006】また、NH3 注入制御は図5に示した従来
技術のほかにNH3 /NOxモル比一定制御の場合があ
り、この場合はNH3 注入量をNH3 注入量(kg/h)
=乾き排ガス量(kg/h)×入口NOx濃度(ppm )×
10-6 ×モル比(−)として制御するが、ボイラ負荷
変化時においてはこれにボイラ負荷要求信号をNH3
入制御の先行信号とし、負荷要求信号の微分値(単位時
間当たりの負荷変化量)に比例したNH3 注入量を加え
制御しているものもある。
In addition to the prior art shown in FIG. 5, the NH 3 injection control may be controlled by a constant NH 3 / NOx molar ratio. In this case, the NH 3 injection amount is changed to the NH 3 injection amount (kg / h).
= Dry exhaust gas volume (kg / h) x Inlet NOx concentration (ppm) x
10 -6 × molar ratio (-) and controls as, but the boiler load demand signal thereto during boiler load changes and the preceding signal of the NH 3 injection control, the load change amount per differential value (unit time load demand signal In some cases, the injection amount is controlled by adding an NH 3 injection amount in proportion to ( 3 ).

【0007】[0007]

【発明が解決しようとする課題】脱硝反応器の入口NO
x濃度の比較的低いプラントにおいて、所定の脱硝率を
得るため、NH3 /NOxモル比1.0以上の高モル比
で運転する脱硝装置ではモル比一定制御の場合またはボ
イラ負荷要求信号により負荷要求に比例したNH 3 注入
量を決定している場合、負荷上昇時、特に起動時に一時
的に脱硝装置からのリークNH3 が増加するという現象
が見られる。
SUMMARY OF THE INVENTION Inlet NO of denitration reactor
x In a plant with a relatively low concentration,
NH to obtainThree/ NOx high molar ratio of 1.0 or more
In denitration equipment operated with
NH proportional to the load request according to the load request signal ThreeInjection
If the volume has been determined, temporarily increase
NH from denitration equipmentThreePhenomenon that increases
Can be seen.

【0008】この原因は低負荷時に低温で触媒に吸着さ
れたNH3 が、負荷上昇に伴う温度上昇により触媒から
脱離するが、モル比1.0以上の高モル比であるため、
NH 3 吸離量がNOx濃度に較べ多く、負荷上昇時に伴
うNOxの増加を考慮してもなおNH3 の脱着量が多
く、一気に反応器出口へ排出されてしまうためである。
このようにモル比1.0以上の高モル比運転を行う脱硝
反応器においては、負荷変化時における以上のような問
題が発生している。
[0008] This is because the catalyst adsorbs at low temperature at low load.
NHThreeFrom the catalyst due to the temperature rise accompanying the load increase
Desorbed, but because of a high molar ratio of 1.0 or more,
NH ThreeThe adsorption amount is larger than the NOx concentration,
Considering the increase in NOxThreeLarge amount of desorption
This is because they are discharged to the reactor outlet at a stretch.
As described above, the denitration is performed at a high molar ratio of 1.0 or more.
In the reactor, when the load changes,
Problem has occurred.

【0009】本発明の目的は、上記従来技術の問題点を
解決し、負荷上昇時、特に起動時でのリークNH3 の一
時的上昇を抑え、所定の脱硝率を得ることができる脱硝
装置のアンモニア注入制御方法および制御装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a denitration apparatus capable of solving the above-mentioned problems of the prior art and suppressing a temporary increase in the leak NH 3 at the time of load increase, particularly at the time of starting, and obtaining a predetermined denitration rate. An object of the present invention is to provide an ammonia injection control method and a control device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求される発明は以下のとおりである。 (1)NOx(窒素酸化物)含有排ガスを脱硝用触媒を
内蔵した脱硝装置に導入し、前記排ガス中の総NOx量
に対応してアンモニア注入量を調節して、排ガス中のN
Oxを選択的に還元除去する脱硝装置のアンモニア注入
制御方法において、低負荷運転時にアンモニア注入量を
短いインターバルで変化させることを特徴とする脱硝装
置のアンモニア注入制御方法。
The invention claimed in the present application to achieve the above object is as follows. (1) The exhaust gas containing NOx (nitrogen oxide) is introduced into a denitration device having a built-in catalyst for denitration, and the amount of injected ammonia is adjusted in accordance with the total amount of NOx in the exhaust gas.
An ammonia injection control method for a denitration apparatus for selectively reducing and removing Ox, wherein the ammonia injection amount is changed at short intervals during a low load operation.

【0011】(2)NOx含有排ガスを脱硝用触媒を内
蔵した脱硝装置に導入し、前記排ガス中の総NOx量に
対応してアンモニア注入量を調節して、排ガス中のNO
xを還元除去する脱硝装置のアンモニア注入制御方法に
おいて、排ガス中の総NOx量に対するアンモニア注入
量の割合をモル比(NH3 /NOx)1.0以上で行
い、かつ低負荷運転時に前記モル比を中心として約10
%アンモニア注入量を短いインターバルで増減させるこ
とを特徴とする脱硝装置のアンモニア注入制御方法。
(2) The NOx-containing exhaust gas is introduced into a denitration device having a built-in denitration catalyst, and the amount of ammonia injected is adjusted in accordance with the total NOx amount in the exhaust gas, so that the NOx in the exhaust gas is reduced.
In the ammonia injection control method of the denitration apparatus for reducing and removing x, the ratio of the ammonia injection amount to the total NOx amount in the exhaust gas is set at a molar ratio (NH 3 / NOx) of 1.0 or more, and the molar ratio is set at the time of low load operation. About 10
A method for controlling the injection of ammonia in a denitration apparatus, comprising increasing and decreasing the amount of injected ammonia at short intervals.

【0012】(3)脱硝用触媒を内蔵した脱硝装置にN
Ox含有濃度の比較的低い排ガスを導入する手段と、排
ガス中の総NOx量に対するアンモニア注入量のモル比
が1.0以上の高モル比となるようにアンモニアを排ガ
ス中に注入する手段とを備えたものにおいて、排ガス排
出プラントの運転負荷が30%以下の低負荷であるか否
かを検出する手段と、該検出手段の検出負荷が30%以
下の低負荷時にアンモニア注入量のモル比を短いインタ
ーバルで増減させる手段とを設けたことを特徴とする脱
硝装置のアンモニア注入制御装置。
(3) A denitration device incorporating a denitration catalyst is
Means for introducing exhaust gas having a relatively low Ox content, and means for injecting ammonia into the exhaust gas such that the molar ratio of the amount of injected ammonia to the total NOx amount in the exhaust gas is a high molar ratio of 1.0 or more. Means for detecting whether the operating load of the exhaust gas discharge plant is a low load of 30% or less, and a molar ratio of the ammonia injection amount when the detection load of the detecting means is a low load of 30% or less. An ammonia injection control device for a denitration device, comprising: means for increasing and decreasing at short intervals.

【0013】[0013]

【発明の実施の形態】本発明の実施例を図1により説明
する。本実施例では排ガスを発生するプラント(例えば
ボイラ)の負荷が定格負荷の30%を超えた場合は、脱
硝装置へのアンモニア注入量をモル比1.1とし、この
モル比を処理排ガス総NOx量111に乗算器9にて乗
算することにより設定アンモニア流量20を求め、この
設定アンモニア流量とアンモニア流量計103の測定値
を調節器10に入力し、調節器10はその偏差に基づき
アンモニア流量調節弁102の開度を調節する。プラン
トの負荷が30%以下の場合は信号器5からの信号に基
づき、モル比信号を1.1より10%アップさせたモル
比1.21の信号が信号器3より、またモル比を1.1
より10%ダウンさせたモル比信号0.99が信号器4
より、所定間隔(図1では120秒)ごとに交互に切換
えて乗算器9に入力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. In this embodiment, when the load of a plant (for example, a boiler) that generates exhaust gas exceeds 30% of the rated load, the amount of ammonia injected into the denitration apparatus is set to a molar ratio of 1.1, and this molar ratio is set to the total NOx of the treated exhaust gas. The set ammonia flow rate 20 is obtained by multiplying the amount 111 by the multiplier 9, and the set ammonia flow rate and the measurement value of the ammonia flow meter 103 are input to the controller 10. The controller 10 adjusts the ammonia flow rate based on the deviation. The opening of the valve 102 is adjusted. When the load of the plant is 30% or less, a signal having a molar ratio of 1.21 which is 10% higher than the molar ratio signal based on the signal from the signal device 5 is obtained from the signal device 3 and the molar ratio is 1 based on the signal from the signal device 5. .1
The molar ratio signal 0.99, which is reduced by 10%,
Thus, the signals are alternately switched at predetermined intervals (120 seconds in FIG. 1) and input to the multiplier 9.

【0014】図1に示した制御シーケンスの作動につ
き、さらに詳細に説明する。図1において、6、7、8
はいずれもアンド回路であり、入力信号がすべて“1”
になったときのみ出力信号が出力され、それ以外では出
力信号は“0”である。11、12はタイムデイレーで
あり、入力に“1”信号が加えられてから“T”時間後
に出力が“1”となり、入力が“1”である限り出力も
1に保たれる。本実施例ではこの“T”は120秒に設
定される。13はワイプアウトであり、入力Xが“1”
のとき入力Zが“0”で出力Yが“1”、入力Zが
“1”で出力Yが0となる。14および15はノット回
路であり、入力Xが“1”のとき出力Y=0、入力Xが
“0”のとき出力Yが“1”となる。16はオア回路で
あり、入力X、Y、Wのうちどれかが“0”でなく
“1”であれば出力Zは1となる。
The operation of the control sequence shown in FIG. 1 will be described in further detail. In FIG. 1, 6, 7, 8
Are AND circuits, and all input signals are "1".
The output signal is output only when the output signal has become. Otherwise, the output signal is "0". Reference numerals 11 and 12 denote time delays. The output becomes "1" after a time "T" since the "1" signal is applied to the input, and the output is kept at 1 as long as the input is "1". In this embodiment, the “T” is set to 120 seconds. 13 is a wipe-out, and the input X is "1"
In this case, the input Z is "0" and the output Y is "1", and the input Z is "1" and the output Y is 0. Numerals 14 and 15 denote knot circuits. When the input X is "1", the output Y = 0, and when the input X is "0", the output Y becomes "1". Reference numeral 16 denotes an OR circuit, and if any of the inputs X, Y, and W is not "0" but "1", the output Z is "1".

【0015】ボイラ負荷が30%を超えているときは、
ノット回路15の出力信号は“1”が出力されているの
で、信号器2からのモル比信号1.1がアンド回路6を
通り、オア回路16を経て乗算器9に入力される。
When the boiler load exceeds 30%,
Since the output signal of the knot circuit 15 is “1”, the molar ratio signal 1.1 from the signal device 2 passes through the AND circuit 6 and is input to the multiplier 9 via the OR circuit 16.

【0016】ボイラ負荷が30%以下となったとき、信
号器5の信号がノット回路15、アンド回路7、タイム
デイレーワイプアウト13に入力され、ノット回路15
の出力信号は0となり、アンド回路6の出力は0とな
る。また、アンド回路7では信号器3からのモル比1.
21の信号が入力され、またノット回路14への入力信
号は“0”であるので、その出力信号は“1”となり、
アンド回路7の出力としてモル比1.21の信号が出力
され、オア回路16を経て乗算器9に入力され脱硝装置
へのアンモニア注入量を調節する次に、タイムデイレー
ワイプアウト13では、信号器5からの信号が入力され
たとき入力Zが0であるので、出力Yとして“1”信号
が出力されタイムデイレー11に入力される。所定時間
後(本実施例では120秒後)タイムデイレー11から
出力信号“1”が出力され、これがノット回路14とア
ンド回路8に入力される。よって、ノット回路14の出
力信号は“0”となり、アンド回路7の出力は0とな
る。
When the boiler load becomes 30% or less, the signal of the signal device 5 is input to the knot circuit 15, the AND circuit 7, and the time delay wipeout 13, and the knot circuit 15
Becomes 0, and the output of the AND circuit 6 becomes 0. In the AND circuit 7, the molar ratio from the signal 3 is 1.
21 and the input signal to the knot circuit 14 is "0", the output signal thereof is "1".
A signal having a molar ratio of 1.21 is output as an output of the AND circuit 7, and is input to the multiplier 9 via the OR circuit 16 to adjust the amount of ammonia injected into the denitration apparatus. Since the input Z is 0 when the signal from the device 5 is input, a “1” signal is output as the output Y and input to the time delay 11. After a predetermined time (in this embodiment, after 120 seconds), an output signal “1” is output from the time delay 11 and input to the knot circuit 14 and the AND circuit 8. Therefore, the output signal of the knot circuit 14 becomes “0”, and the output of the AND circuit 7 becomes 0.

【0017】同時に、アンド回路8ではモル比0.99
の信号が出力開始し、オア回路16を経て乗算器9に入
力されてアンモニア流量調節弁の制御を行う。このとき
アンド回路8の出力はタイムデイレー12に入力され、
所定時間後(本実施例では120秒後)にタイムデイレ
ー12より出力信号“1”(=Z)がタイムデイレーワ
イプアウト13に加えられ、このとき13の出力信号は
0となる。
At the same time, the AND circuit 8 has a molar ratio of 0.99.
Starts to be output and is input to the multiplier 9 via the OR circuit 16 to control the ammonia flow control valve. At this time, the output of the AND circuit 8 is input to the time delay 12,
After a predetermined time (in this embodiment, after 120 seconds), an output signal "1" (= Z) is added from the time delay 12 to the time delay wipeout 13, and the output signal of the 13 becomes zero at this time.

【0018】よって、ノット回路14の出力信号は
“1”となり、アンド回路7からモル比1.21の信号
が出力される。一方、アンド回路8の出力は“0”とな
る。すると、タイムデイレー12の出力も0となり、タ
イムデイレーワイプアウト13から信号“1”が出力開
始し、所定時間後(本実施例では120秒)にタイムデ
イレー11の出力信号が“1”となる。これによりアン
ド回路7からの出力が終了し、アンド回路8からの出力
が開始される。
Accordingly, the output signal of the knot circuit 14 becomes "1", and the AND circuit 7 outputs a signal having a molar ratio of 1.21. On the other hand, the output of the AND circuit 8 is "0". Then, the output of the time delay 12 also becomes 0, and the output of the signal “1” starts from the time delay wipeout 13. After a predetermined time (120 seconds in this embodiment), the output signal of the time delay 11 becomes “1”. ". Thus, the output from the AND circuit 7 ends, and the output from the AND circuit 8 starts.

【0019】以上のようにして、アンモニア流量調節弁
はモル比1.21とモル比0.99による制御を所定時
間ごとに交互に繰返すことになる。なお、ボイラ負荷が
30%を超えると信号器5からの信号は“0”となり、
ノット回路15の出力信号が“1”となって、モル比
1.1の信号がアンド回路6から出力され、アンド回路
7および8の出力信号は“0”となる。
As described above, the ammonia flow control valve alternately repeats the control with the molar ratio of 1.21 and the molar ratio of 0.99 every predetermined time. When the boiler load exceeds 30%, the signal from the signal unit 5 becomes "0",
The output signal of the knot circuit 15 becomes "1", a signal having a molar ratio of 1.1 is output from the AND circuit 6, and the output signals of the AND circuits 7 and 8 become "0".

【0020】以上述べたように、本発明においては運用
最低負荷付近での低負荷運転時にモル比を短インターバ
ルで変化させることにより、触媒への過剰NH3 吸着を
押さえ、プラントの低負荷時の排ガスの低温状態時に触
媒に吸着したNH3 が負荷上昇により排ガス温度が上が
るため脱離することによる排出NH3 量の一時的急上昇
を防ぎ、反応器出口でのリークNH3 量を低減し、かつ
吸着アンモニアが脱硝反応に利用されるため、所定の脱
硝率を得ることができ、脱硝装置としての性能を高める
ことを可能とする。
As described above, in the present invention, excessive NH 3 adsorption to the catalyst is suppressed by changing the molar ratio at short intervals during low-load operation near the minimum operating load, and the plant is operated at low load. When the temperature of the exhaust gas is low, the temperature of the exhaust gas rises due to an increase in the load of NH 3 adsorbed on the catalyst, thereby preventing a temporary sudden rise in the amount of discharged NH 3 due to desorption, reducing the amount of leak NH 3 at the reactor outlet, and Since the adsorbed ammonia is used for the denitration reaction, a predetermined denitration rate can be obtained, and the performance as a denitration device can be improved.

【0021】以下、本発明の効果を確認するため、図2
に示す水平流型試験装置にユニットの断面が縦、横とも
に450mmで、触媒長さ0.5mの脱硝触媒30を3ユ
ニット設置し、負荷100%での脱硝反応器入口NOx
濃度30ppm と比較的低濃度であるガスタービンとボイ
ラおよび発電機よりなるコンバインドサイクルプラント
の起動時の負荷変化を想定し、通常モル比1.1の運転
で試験を行った。
Hereinafter, in order to confirm the effect of the present invention, FIG.
3 units of denitration catalyst 30 with a unit length of 450 mm and a catalyst length of 0.5 m were installed in a horizontal flow type test apparatus shown in Fig. 3 and NOx at the inlet of denitration reactor at 100% load.
Assuming a load change at the time of startup of a combined cycle plant including a gas turbine, a boiler, and a generator having a relatively low concentration of 30 ppm, a test was performed in an operation at a normal molar ratio of 1.1.

【0022】図3に、本発明の実施例である低負荷時の
モル比を2分間隔で0.99〜1.21に変化させたN
3 注入量制御での、負荷変化に伴う各値の挙動を示
す。また、図4に比較例としての従来技術のモル比1.
1一定でのNH3 注入量制御での挙動を示す。脱硝率8
0%以上(出口NOx:6ppm 以下)、リークNH 3
10ppm 以下を目標値とし、本発明の実施例と従来技術
を比較する。
FIG. 3 shows an embodiment of the present invention at a low load.
N with the molar ratio changed from 0.99 to 1.21 at 2 minute intervals
HThreeShows the behavior of each value with load change in injection volume control
You. FIG. 4 shows a comparative example in which the molar ratio of the prior art is 1.
NH at 1 constantThreeThe behavior in controlling the injection amount is shown. DeNOx rate 8
0% or more (outlet NOx: 6ppm or less), leak NH Three:
The embodiment of the present invention and the prior art
Compare.

【0023】従来の制御方法では、図4に示すように負
荷上昇時にリークNH3 が一時的に増加し、10ppm を
超えている。また、負荷上昇前の低負荷時の出口NOx
は平均4ppm 程度となっている。しかし、本発明の制御
方法では、図3に示すように負荷上昇前の低負荷時の出
口NOxは平均3ppm 程度に低下し、そしてリークNH
3 の一時的上昇は抑えられ、常に10ppm 以下をキープ
している。したがって、負荷変化時においても出口NO
x、リークNH3 を目標値以下に抑えることが可能とな
り、脱硝装置の性能を向上することができる。
In the conventional control method, as shown in FIG. 4, when the load rises, the leak NH 3 temporarily increases and exceeds 10 ppm. In addition, the outlet NOx at the time of low load before load increase
Is about 4 ppm on average. However, in the control method of the present invention, as shown in FIG. 3, the outlet NOx at the time of low load before the load rises is reduced to about 3 ppm on average, and the leak NHx is reduced.
The temporary rise of 3 was suppressed and kept below 10 ppm at all times. Therefore, even when the load changes, the exit NO
x, the leak NH 3 can be suppressed to the target value or less, and the performance of the denitration device can be improved.

【0024】以上述べた実施例においては、通常の運転
時に一定モル比でアンモニア注入量を制御するものを示
したが、本発明は上記実施例に限定されるものではな
く、図5に示した従来技術におけるように、脱硝装置の
入口および出口NOx濃度から求めた脱硝率に基づき、
注入アンモニアのモル比を算出し、これにより脱硝装置
へのアンモニア注入量を制御するような場合にも適用で
きることはいうまでもない。
In the embodiment described above, the ammonia injection amount is controlled at a constant molar ratio during normal operation. However, the present invention is not limited to the above embodiment, and is shown in FIG. As in the prior art, based on the denitration rate determined from the NOx concentration at the inlet and outlet of the denitration device,
It is needless to say that the present invention can be applied to a case where the molar ratio of the injected ammonia is calculated and the amount of ammonia injected into the denitration apparatus is controlled based on the calculated molar ratio.

【0025】[0025]

【発明の効果】本発明によれば、低負荷運転時に脱硝装
置の触媒へのアンモニアの過剰吸着を低減し、負荷上昇
時の装置後流へのリークアンモニア量の一時的な上昇を
押さえ、脱硝装置の性能を高めることができる。また、
脱硝装置後流域に設けた熱交換装置でのリークアンモニ
アに基づくトラブルを軽減することができる。
According to the present invention, during low load operation, excessive adsorption of ammonia to the catalyst of the denitration device is reduced, and a temporary increase in the amount of leaked ammonia to the downstream of the device when the load is increased is suppressed. The performance of the device can be enhanced. Also,
It is possible to reduce troubles caused by leak ammonia in the heat exchange device provided in the downstream area of the denitration device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の効果確認用試験装置を示す図。FIG. 2 is a view showing a test device for confirming the effect of the present invention.

【図3】図2の装置を使った本発明による試験結果を示
す図。
FIG. 3 is a diagram showing test results according to the present invention using the apparatus of FIG. 2;

【図4】図2の装置を使った従来技術による比較試験結
果を示す図。
FIG. 4 is a diagram showing the results of a comparative test using the apparatus of FIG. 2 according to a conventional technique.

【図5】従来技術の一例を示す図。FIG. 5 is a diagram showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1…脱硝装置、2…モル比1.1の信号器、3…モル比
1.21の信号器、4…モル比0.99の信号器、5…
ボイラ負荷30%以下の検出信号器、6、7、8、…ア
ンド回路、9…乗算器、10…アンモニア流量調節器、
11、12…タイムデイレー、13…タイムデイレーワ
イプアウト、14、15…ノット回路、20…アンモニ
ア流量設定信号、30…脱硝触媒、101…アンモニア
流量調節弁、103…アンモニア流量計。
DESCRIPTION OF SYMBOLS 1 ... Denitrification apparatus, 2 ... Signal signal of molar ratio 1.1, 3 ... Signal signal of molar ratio 1.21, 4 ... Signal signal of molar ratio 0.99, 5 ...
Detection signal device with boiler load of 30% or less, 6, 7, 8, ... AND circuit, 9 ... multiplier, 10 ... ammonia flow rate controller,
11, 12: time delay, 13: time delay wipe-out, 14, 15: knot circuit, 20: ammonia flow setting signal, 30: denitration catalyst, 101: ammonia flow control valve, 103: ammonia flow meter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 NOx(窒素酸化物)含有排ガスを脱硝
用触媒を内蔵した脱硝装置に導入し、前記排ガス中の総
NOx量に対応してアンモニア注入量を調節して排ガス
中のNOxを選択的に還元除去する脱硝装置のアンモニ
ア注入制御方法において、低負荷運転時にアンモニア注
入量を短いインターバルで変化させることを特徴とする
脱硝装置のアンモニア注入制御方法。
1. An exhaust gas containing NOx (nitrogen oxide) is introduced into a denitration device having a built-in catalyst for denitration, and the amount of injected ammonia is adjusted according to the total amount of NOx in the exhaust gas to select NOx in the exhaust gas. An ammonia injection control method for a denitration apparatus, wherein the ammonia injection amount is changed at short intervals during a low-load operation.
【請求項2】 NOx含有排ガスを脱硝用触媒を内蔵し
た脱硝装置に導入し、前記排ガス中の総NOx量に対応
してアンモニア注入量を調節して排ガス中のNOxを還
元除去する脱硝装置のアンモニア注入制御方法におい
て、排ガス中の総NOx量に対するアンモニア注入量の
割合をモル比(NH3 /NOx)1.0以上で行い、か
つ低負荷運転時に前記モル比を中心として約10%アン
モニア注入量を短いインターバルで増減させることを特
徴とする脱硝装置のアンモニア注入制御方法。
2. A denitration apparatus which introduces NOx-containing exhaust gas into a denitration apparatus having a denitration catalyst built therein and adjusts an ammonia injection amount in accordance with a total NOx amount in the exhaust gas to reduce and remove NOx in the exhaust gas. In the ammonia injection control method, the ratio of the ammonia injection amount to the total NOx amount in the exhaust gas is set to a molar ratio (NH 3 / NOx) of 1.0 or more, and about 10% ammonia injection is performed at a low load operation centering on the molar ratio. An ammonia injection control method for a denitration apparatus, characterized in that the amount is increased or decreased at short intervals.
【請求項3】 脱硝用触媒を内蔵した脱硝装置にNOx
含有濃度の比較的低い排ガスを導入する手段と、排ガス
中の総NOx量に対するアンモニア注入量のモル比が
1.0以上の高モル比となるようにアンモニアを排ガス
中に注入する手段とを備えたものにおいて、排ガス排出
プラントの運転負荷が30%以下の低負荷であるか否か
を検出する手段と、該検出手段の検出負荷が30%以下
の低負荷時にアンモニア注入量のモル比を短いインター
バルで増減させる手段とを設けたことを特徴とする脱硝
装置のアンモニア注入制御装置。
3. A NOx removal device with a built-in NOx removal catalyst
Means for introducing exhaust gas having a relatively low content concentration, and means for injecting ammonia into the exhaust gas so that the molar ratio of the amount of injected ammonia to the total amount of NOx in the exhaust gas is a high molar ratio of 1.0 or more. A means for detecting whether the operating load of the exhaust gas discharge plant is a low load of 30% or less, and reducing the molar ratio of the ammonia injection amount when the detection load of the detecting means is a low load of 30% or less. An ammonia injection control device for a denitration device, comprising: means for increasing and decreasing at intervals.
JP10162361A 1998-06-10 1998-06-10 Method and apparatus for controlling ammonia injection in denitration apparatus Pending JPH11347368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10162361A JPH11347368A (en) 1998-06-10 1998-06-10 Method and apparatus for controlling ammonia injection in denitration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10162361A JPH11347368A (en) 1998-06-10 1998-06-10 Method and apparatus for controlling ammonia injection in denitration apparatus

Publications (1)

Publication Number Publication Date
JPH11347368A true JPH11347368A (en) 1999-12-21

Family

ID=15753115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10162361A Pending JPH11347368A (en) 1998-06-10 1998-06-10 Method and apparatus for controlling ammonia injection in denitration apparatus

Country Status (1)

Country Link
JP (1) JPH11347368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813754A (en) * 2021-04-13 2021-12-21 北京云岚科技有限公司 Optimization automatic control method and system for industrial enterprise emission pollution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813754A (en) * 2021-04-13 2021-12-21 北京云岚科技有限公司 Optimization automatic control method and system for industrial enterprise emission pollution
CN113813754B (en) * 2021-04-13 2024-04-19 北京云岚科技有限公司 Industrial enterprise emission pollution optimization automatic control method and system

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
US4681746A (en) Method of regulating the amount of reducing agent added during catalytic reduction of NOx contained in flue gases
JP3558737B2 (en) Exhaust gas denitration method and exhaust gas treatment method
JPH11347368A (en) Method and apparatus for controlling ammonia injection in denitration apparatus
JP3002819B2 (en) Method and apparatus for controlling the amount of nitrogen oxide removal medium introduced
JP3565607B2 (en) Method and apparatus for controlling amount of ammonia injection into denitration device
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
JP2635643B2 (en) Denitration control device for gas turbine plant
KR102483964B1 (en) NOx REDUCTION FACILITY CONTROL METHOD OF GAS TURBINE COMBINED CYCLE POWER PLANT USING NATURAL GAS
JP2693106B2 (en) DeNOx control device
EP0468205B1 (en) Apparatus for treating exhaust gas
JP3263184B2 (en) DeNOx control device
JPH0631136A (en) Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler
JP3190938B2 (en) Flue gas desulfurization equipment
JPS6071027A (en) Controlling method of ammonia injection amount in dry waste gas denitration apparatus
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH0975665A (en) Ammonia injection control of denitration apparatus
JP2001104755A (en) Method and apparatus for controlling ammonia injection amount to denitration apparatus
JPH0760061A (en) Process and device for exhaust gas denitration
JPH03258326A (en) Method and apparatus for denitrating exhaust gas
JP3492744B2 (en) Series denitration control device
JP2002355530A (en) Method of controlling injection rate of ammonia in denitration equipment for refuse incineration facility
JP2003010645A (en) Method and apparatus for controlling ammonia injection amount to nitrogen oxide removal apparatus and ammonia injection amount correcting apparatus to be employed therefor
JPH11319482A (en) Control method of flue gas denitration device
JP2002219337A (en) Control method and device of denitration device