JPH11346766A - Comparative analysis of nucleic acid sequence and reagent kit therefor - Google Patents

Comparative analysis of nucleic acid sequence and reagent kit therefor

Info

Publication number
JPH11346766A
JPH11346766A JP10161800A JP16180098A JPH11346766A JP H11346766 A JPH11346766 A JP H11346766A JP 10161800 A JP10161800 A JP 10161800A JP 16180098 A JP16180098 A JP 16180098A JP H11346766 A JPH11346766 A JP H11346766A
Authority
JP
Japan
Prior art keywords
fragment
nucleic acid
stranded
group
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10161800A
Other languages
Japanese (ja)
Inventor
Hiroko Matsunaga
浩子 松永
Kazunobu Okano
和宣 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10161800A priority Critical patent/JPH11346766A/en
Publication of JPH11346766A publication Critical patent/JPH11346766A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for the comparative analysis of nucleic acid sequences through making use of the fragment analysis of fragmented sample nucleic acid. SOLUTION: This method for the comparative analysis of a nucleic acid sequence comprises the following procedure: a wild type-derived sample DNA 1 and a variant type-derived sample DNA 2 are fragmented with restriction enzymes, respectively, to prepare two kinds of 1st fragment group 4 and 5, which are then mixed with each other to effect complete modification followed by complementary strand formation again, thereby affording a 2nd fragment group 8 made up of completely complementary strands 9, 10, and complementary strands 11 formed between variant type-derived fragments and wild type-derived fragments; subsequently, only the single strand 14 portion of the variant part 3 of the fragments 11 is specifically cleaved with an enzyme to afford a 3rd fragment group 15; the fragment analysis of the fragments of the 3rd fragment group and that of the fragments formed of the wild type-derived fragments alone are then performed and the electrophoretic patterns of both kinds of fragment are compared with each other; thereby the presence/absence of the variation in the variant type sample DNA 2 can be confirmed, and the base sequence can be determined by selectively amplifying only the fragment containing the variant part 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酵素による核酸の
分解、及び相補鎖合成を基本技術とする核酸配列比較分
析法、及びこれに用いる試薬キットに関する。
[0001] The present invention relates to a nucleic acid sequence comparative analysis method based on the basic techniques of nucleic acid degradation and complementary strand synthesis by an enzyme, and a reagent kit used therefor.

【0002】[0002]

【従来の技術】遺伝子、又はゲノムの配列比較を行なう
には、対象試料の全配列を決定した上で比較を行なうの
が望ましい。しかし、点突然変異体のように一塩基だけ
が違う場合の比較等に於いては、全配列を決定して比較
する方法では非常に無駄が多く効率が悪い。癌等は遺伝
子の点突然変異が原因であると考えられており、今後遺
伝子診断を普及させていく上で、変異領域の限られた点
突然変異体等を簡単に検出する方法の開発が望まれる。
2. Description of the Related Art In order to compare the sequences of genes or genomes, it is desirable to perform the comparison after determining the entire sequence of the target sample. However, when comparing only one base such as a point mutant, the method of determining and comparing all sequences is very wasteful and inefficient. It is thought that cancers are caused by point mutations in genes, and in order to spread genetic diagnosis in the future, it is desirable to develop a method for easily detecting point mutants with limited mutation regions. It is.

【0003】従来、点突然変異体の検出はSSCP(
ingle trand onformation
olymorphism)法と呼ばれる手法で検出
されていた。SSCPは、核酸を一度完全に変性して1
本鎖状態にした後に、試料核酸に2次元構造を作らせ未
変性ゲルで電気泳動的に分離解析する方法である。野生
型と変異体とでは構造の取り方が異なり、電気泳動によ
る移動度も異なる。移動度の差を利用して、野生型の電
気泳動パターンとの比較から変異体の検出が可能にな
る。しかし、この方法の場合、検出可能な核酸の長さは
200〜300塩基長程度とされている。これ以上長い
核酸の場合、2次元構造の形状の差異が小さく、構造の
差が電気泳動による移動度の差にあらわれにくい。ま
た、2次元構造を壊さないように電気泳動するのは非常
に難しく、安定したデータを得るのは難しいとされてい
る。
[0003] Conventionally, point mutants have been detected by SSCP ( S
ingle S trand C onformation
( Polymorphism) method. SSCP is a method in which nucleic acids are completely denatured once and
This is a method in which a two-dimensional structure is formed in a sample nucleic acid after it is brought into a main chain state, and the sample nucleic acid is electrophoretically separated and analyzed on a native gel. The structure of the wild type and the mutant are different from each other, and the mobility by electrophoresis is also different. By utilizing the difference in mobility, a mutant can be detected by comparison with a wild-type electrophoresis pattern. However, in this method, the length of the detectable nucleic acid is about 200 to 300 bases. In the case of a nucleic acid longer than this, the difference in the shape of the two-dimensional structure is small, and the difference in the structure is unlikely to appear in the difference in mobility due to electrophoresis. Further, it is extremely difficult to perform electrophoresis without breaking the two-dimensional structure, and it is difficult to obtain stable data.

【0004】上記のような問題を克服する方法として、
野生型と変異体とのハイブリッド(2種核酸間での相補
鎖形成物)を作製し、配列の異なる変異部分、即ち、相
補鎖を形成できず1本鎖状態になっている部分のみを特
異的に分解するRibonuclease A (Am
bion社;MisMatch DetectII)
や、T4 endonucleaseVII(Nucl
eic Acid Research、1995、Vo
l.23、5082−5084)等を用いて切断処理す
る方法が開発されている。この方法の場合、500〜
1、000塩基長程度までの試料核酸の分析が可能とさ
れている。しかし、解析対象となるであろう遺伝子は短
いものでも平均2〜3k塩基長とされており、更に長塩
基長の解析可能な手法が望まれている。また、上記の何
れの方法をとっても、変異の有無の判定はつくが変異部
分の配列を得るためには結局全長の塩基配列決定が必要
となる。
[0004] As a method of overcoming the above problems,
A hybrid of a wild type and a mutant (complementary strand forming product between two nucleic acids) is prepared, and only the mutated portion having a different sequence, that is, the portion that cannot form a complementary strand and is in a single-stranded state is specified. Ribonuclease A (Am
Bion; MisMatch Detect II)
And T4 endonuclease VII (Nucl
eic Acid Research, 1995, Vo
l. 23, 5082-5084) and the like have been developed. In the case of this method, 500-
It is possible to analyze a sample nucleic acid up to about 1,000 bases in length. However, even genes that will be analyzed are short, having an average length of 2 to 3 k bases, and a method capable of analyzing longer bases is desired. In any of the above methods, the presence or absence of a mutation can be determined, but in order to obtain the sequence of the mutated portion, it is necessary to determine the full-length nucleotide sequence after all.

【0005】[0005]

【発明が解決しようとする課題】以上に説明したよう
に、何れの従来法を用いた場合も、対象となる核酸の塩
基長は1k塩基長程度が限界である。また、変異部分の
配列決定は、試料核酸全長の配列決定を行わないと決定
できない。このため1k塩基長以上の核酸でも変異の検
出が可能であり、更に変異のある部分のみ抜き出して配
列決定を行える手法の開発が課題となっている。本発明
の目的は、これら課題を解決する核酸配列比較分析方
法、及び試薬キットを提供することにある。
As described above, the base length of the target nucleic acid is limited to about 1 k base length in any of the conventional methods. In addition, sequencing of the mutated portion cannot be determined without sequencing the full length of the sample nucleic acid. For this reason, it is possible to detect a mutation even in a nucleic acid having a length of 1 k bases or more, and to develop a method of extracting only a portion having a mutation and determining a sequence. An object of the present invention is to provide a nucleic acid sequence comparative analysis method and a reagent kit that solve these problems.

【0006】[0006]

【課題を解決するための手段】本発明の第1の構成で
は、野生型試料核酸(2本鎖)と変異型試料核酸(2本
鎖)とを予め別々に短断片化し2本鎖の第1の断片群の
2種を得、次いで、2本鎖の第1の断片群の各断片の両
末端を揃えた2本鎖の第2の断片群の2種を各々得て、
この2種の第2の断片群を混合し1本鎖にした後、ハイ
ブリダイゼーションを行なう。この時、野生型と変異体
と配列に違いのある部分は相補鎖を形成できず、1本鎖
状態になった部分ができる。この1本鎖状態の部分のみ
を特異的に認識する酵素を用いて、酵素分解を行なって
2本鎖の第3の断片群を得る。
According to a first aspect of the present invention, a wild-type sample nucleic acid (double-stranded) and a mutant sample nucleic acid (double-stranded) are separately fragmented in advance to form a double-stranded nucleic acid. Two types of fragments of the first fragment group were obtained, and then two types of the second fragment group of the double-strand in which both ends of each fragment of the first fragment group of the double-strand were aligned were obtained,
After the two kinds of second fragment groups are mixed to form a single strand, hybridization is performed. At this time, a portion having a sequence difference between the wild type and the mutant cannot form a complementary strand, and a single-stranded portion is formed. Enzymatic degradation is performed using the enzyme that specifically recognizes only the single-stranded portion to obtain a double-stranded third fragment group.

【0007】一方の鎖に変異を含む2本鎖断片(ハイブ
リッド断片)は、変異部分で切断され複数の断片に分割
される。続いてこの2本鎖の第3の断片群の全ての断片
の両3’末端に既知塩基配列を持つオリゴマーを導入す
る。この様にして得られたオリゴマーが導入された第3
の断片群は、公知のフラグメントアナリシス法(Ele
ctrophoresis、vol.17、1833−
1840(1996))を用いて解析され、オリゴマー
が導入された第3の断片群の各断片の制限酵素認識部分
に続く5’末端側の2塩基の配列、及び断片長が決定さ
れる。即ち、野生型試料核酸と変異型試料核酸のハイブ
リッド核酸、野生型試料核酸(2本鎖)、変異型試料核
酸(2本鎖)を解析試料とするフラグメントアナリシス
により電気泳動パターン(a)が得られる。
A double-stranded fragment (hybrid fragment) containing a mutation in one chain is cleaved at the mutated portion and divided into a plurality of fragments. Subsequently, an oligomer having a known base sequence at both 3 'ends of all fragments of the double-stranded third fragment group is introduced. The third oligomer into which the oligomer thus obtained was introduced
The fragment group of (1) is obtained by a known fragment analysis method (Ele).
crophoresis, vol. 17, 1833-
1840 (1996)) to determine the sequence of the two bases at the 5 ′ end following the restriction enzyme recognition portion of each fragment of the third fragment group into which the oligomer has been introduced, and the fragment length. That is, an electrophoresis pattern (a) is obtained by fragment analysis using a hybrid nucleic acid of a wild-type sample nucleic acid and a mutant sample nucleic acid, a wild-type sample nucleic acid (double-stranded), and a mutant sample nucleic acid (double-stranded) as an analysis sample. Can be

【0008】野生型のみの断片群、又は変異型のみの断
片群に関しても同様にフラグメントアナリシス法による
解析を行なう。即ち、野生型試料核酸(2本鎖)、変異
型試料核酸(2本鎖)の各試料核酸を短断片化した後、
各断片の両3’末端に既知塩基配列を持つオリゴマーを
導入して、野生型試料核酸のフラグメントアナリシスに
より電気泳動パターン(b)、変異型試料核酸(2本
鎖)のフラグメントアナリシスにより電気泳動パターン
(c)を得る。電気泳動パターン(a)と(b)との
間、又は電気泳動パターン(a)と(c)との間で、出
現する泳動ピーク(断片ピーク)の比較を行なう。
[0008] The fragment group consisting of only the wild type or the fragment group consisting of only the mutant type is similarly analyzed by the fragment analysis method. That is, after fragmenting each sample nucleic acid of the wild-type sample nucleic acid (double-stranded) and the mutant sample nucleic acid (double-stranded),
An oligomer having a known base sequence is introduced into both 3 ′ ends of each fragment, and an electrophoresis pattern (b) is obtained by fragment analysis of a wild-type sample nucleic acid, and an electrophoresis pattern is obtained by fragment analysis of a mutant sample nucleic acid (double-stranded). (C) is obtained. Comparison of the electrophoretic peaks (fragment peaks) appearing between the electrophoretic patterns (a) and (b) or between the electrophoretic patterns (a) and (c).

【0009】変異を含まない場合、電気泳動パターン
(a)、(b)、(c)は同じになる。
When no mutation is contained, the electrophoresis patterns (a), (b) and (c) are the same.

【0010】第3の断片群の断片のうち、変異を含む断
片は複数に分割されており、電気泳動パターン(a)に
は、ハイブリッド断片に由来する分割された断片のパタ
ーンが検出される。この様にして電気泳動パターンより
容易に変異の有無を確認できる。また、フラグメントア
ナリシス法では電気泳動パターンを参考にして、断片混
合液中より目的の断片のみを選択プライマーを用いて容
易に増幅することが可能である。従って、フラグメント
アナリシスによる電気泳動パターンを参考にして、オリ
ゴマーが導入された第3の断片群中より変異部分を含む
断片のみを増幅し配列決定できる。
[0010] Among the fragments of the third fragment group, the fragment containing the mutation is divided into a plurality of fragments, and in the electrophoresis pattern (a), the pattern of the divided fragments derived from the hybrid fragment is detected. In this way, the presence or absence of a mutation can be easily confirmed from the electrophoresis pattern. In the fragment analysis method, it is possible to easily amplify only a target fragment from a fragment mixture using a selection primer with reference to an electrophoresis pattern. Therefore, referring to the electrophoresis pattern obtained by fragment analysis, only the fragment containing the mutated portion can be amplified and sequenced from the third fragment group into which the oligomer has been introduced.

【0011】本発明の核酸配列比較分析方法の第1の構
成は、(1)2本鎖の第1の核酸試料、及び2本鎖の第
2の核酸試料を、それぞれ制限酵素により断片化して、
第1、及び第2の核酸試料に由来する2種の2本鎖の第
1の断片群を得る工程と、(2)2種の第1の断片群を
混合して、全断片を変性した後に相補鎖形成反応を行な
い、2本鎖の第2の断片群を得る工程と、(3)工程
(2)で生じる1本鎖部分を酵素により分解して2本鎖
の第3の断片群を得る工程と、(4)第3の断片群の各
断片の相補鎖を電気泳動して断片長の分布を得る工程と
を有することに特徴がある。
The first structure of the nucleic acid sequence comparison analysis method of the present invention is as follows. (1) A double-stranded first nucleic acid sample and a double-stranded second nucleic acid sample are each fragmented with a restriction enzyme. ,
Obtaining two double-stranded first fragment groups derived from the first and second nucleic acid samples; and (2) mixing the two first fragment groups to denature all fragments. A step of subsequently performing a complementary strand formation reaction to obtain a double-stranded second fragment group, and (3) a double-stranded third fragment group obtained by decomposing the single-stranded portion generated in step (2) with an enzyme. And a step of (4) obtaining the distribution of fragment lengths by electrophoresing the complementary strand of each fragment of the third fragment group.

【0012】第1の構成において、(a)工程(1)、
及び(2)に代えて、第1、及び第2の核酸試料を予め
混合し、第1、及び第2の核酸試料を変性した後に相補
鎖形成反応を行ない、相補鎖形成反応生成物を制限酵素
により断片化して第2の断片群を得る工程を有するこ
と、(b)第1又は第2の核酸試料を制限酵素で断片化
して得る断片群の各断片をゲル電気泳動して得る断片長
の分布と、工程(4)で得る断片長の分布とを比較する
こと、(c)第1、第2の核酸試料の塩基配列の間で
の、点変異、挿入、又は欠出による塩基配列の差を検出
すること、(d)工程(3)に続いて、既知の塩基配列
を持つオリゴマーを第3の断片群の各断片の両3’末端
にライゲーションにより導入する工程を有すること、
(e)工程(3)に続いて、第3の断片群の各断片の両
3’末端にポリA、ポリU、又はポリTをターミナルデ
オキシヌクレオチジルトランスフェラーゼを使用して導
入する工程を有すること、(f)工程(3)に続いて、
既知の塩基配列を持つオリゴマーを第3の断片群の各断
片の両3’末端にライゲーションにより導入する工程
と、5’末端が標識されオリゴマーの塩基配列の少なく
とも一部に相補な第1の塩基配列と、第1の塩基配列の
3’末端に続く制限酵素の制限酵素認識配列に相補な第
2の塩基配列と、第2の塩基配列の3’末端に続く1塩
基から3塩基からなる第3の塩基配列を有するプイライ
マーを用いて、第3の断片群の各断片を鋳型として相補
鎖伸張反応を行なう工程とを有し、工程(4)に於い
て、相補鎖伸張反応生成物を電気泳動すること、(g)
工程(3)の酵素は、S1ヌクレアーゼ、マグビーンヌ
クレアーゼ、リボヌクレアーゼA、T4エンドヌクレー
アゼVIIの何れかであること、(h)第1、第2の試
料核酸はDNA又はRNAであること、更に、第1の構
成の核酸配列比較分析方法に用いる試薬キットであり、
第1、第2の試料核酸を断片化する制限酵素と、2本鎖
の核酸断片の1本鎖部分を分解する酵素と、少なくとも
ライゲース又はターミナルデオキシヌクレオチジルトラ
ンスフェラーゼを含む第3の断片群の各断片の両3’末
端へ既知の塩基配列を持つオリゴマーを導入するための
試薬と、オリゴマーの塩基配列の少なくとも一部に相補
な塩基配列を持つ5’末端が標識されたプライマーとを
含む試薬キットに特徴がある。
In the first configuration, (a) step (1),
In place of (1) and (2), the first and second nucleic acid samples are pre-mixed, the first and second nucleic acid samples are denatured, and a complementary strand formation reaction is performed to limit the complementary strand formation reaction product. (B) fragment length obtained by subjecting each fragment of the fragment group obtained by fragmenting the first or second nucleic acid sample with a restriction enzyme to gel electrophoresis; Comparing the distribution of the fragment length obtained in step (4) with the distribution of the fragment length obtained in the step (4). (D) following step (3), a step of introducing an oligomer having a known base sequence into both 3 ′ ends of each fragment of the third fragment group by ligation,
(E) following the step (3), a step of introducing polyA, polyU, or polyT into both 3 ′ ends of each fragment of the third fragment group using terminal deoxynucleotidyl transferase. , (F) following step (3),
Introducing an oligomer having a known base sequence into both 3 'ends of each fragment of the third fragment group by ligation; and a first base labeled at the 5' end and complementary to at least a part of the base sequence of the oligomer. A sequence, a second base sequence complementary to the restriction enzyme recognition sequence of the restriction enzyme following the 3 ′ end of the first base sequence, and a second base sequence consisting of 1 to 3 bases following the 3 ′ end of the second base sequence. Performing a complementary strand extension reaction using each of the fragments of the third fragment group as a template using a primer having a base sequence of 3 in the step (4). Electrophoresis, (g)
The enzyme of step (3) is any of S1 nuclease, mag bean nuclease, ribonuclease A, and T4 endonuclease VII; (h) the first and second sample nucleic acids are DNA or RNA; Further, it is a reagent kit used for the nucleic acid sequence comparative analysis method of the first configuration,
A restriction enzyme for fragmenting the first and second sample nucleic acids, an enzyme for degrading the single-stranded portion of the double-stranded nucleic acid fragment, and a third fragment group containing at least ligase or terminal deoxynucleotidyl transferase A reagent kit comprising a reagent for introducing an oligomer having a known base sequence into both 3 ′ ends of a fragment, and a 5′-end labeled primer having a base sequence complementary to at least a part of the base sequence of the oligomer There is a feature.

【0013】本発明の第2の構成では、野生型試料核酸
(2本鎖)と変異型試料核酸(2本鎖)とを予め別々に
短断片化し2本鎖の第1の断片群の2種を得て、次い
で、2種の第1の断片群の各断片の両末端を揃えた後
に、各断片の両3’末端のOH基を修飾した2本鎖の第
2の断片群の2種を各々得る。3’末端の修飾では、例
えば、既知配列を持つ2本鎖で一方の末端の5’末端に
はリン酸基、3’末端にはOH基を持ち他方の末端の
3’末端はジデオキシヌクレオチド三リン酸により構成
されているアダプターを、各断片の両末端に付加する。
次いで、この両3’末端が修飾された2種の第2の断片
群を混合し1本鎖にした後、ハイブリダイゼーションを
行なう。この時、野生型と変異体と配列に違いのある部
分は相補鎖を形成できず、1本鎖状態になった部分がで
きる。この1本鎖状態の部分のみを特異的に認識する酵
素を用いて、酵素分解を行なって2本鎖の第3の断片群
を得る。
In the second configuration of the present invention, the wild-type sample nucleic acid (double-stranded) and the mutant sample nucleic acid (double-stranded) are separately short-fragmented in advance, and the double-stranded first fragment group 2 After obtaining the seeds and then aligning both ends of each fragment of the two first fragment groups, 2 of the two-chain second fragment group in which the OH groups at both 3 ′ ends of each fragment were modified. Get each seed. In the modification of the 3 'end, for example, a double-stranded chain having a known sequence has a phosphate group at the 5' end of one end, an OH group at the 3 'end and a dideoxynucleotide triad at the 3' end of the other end. Adapters composed of phosphate are added to both ends of each fragment.
Next, the two kinds of second fragment groups whose both 3 ′ ends are modified are mixed to form a single strand, followed by hybridization. At this time, a portion having a sequence difference between the wild type and the mutant cannot form a complementary strand, and a single-stranded portion is formed. Enzymatic degradation is performed using the enzyme that specifically recognizes only the single-stranded portion to obtain a double-stranded third fragment group.

【0014】この様にして得られた第3の断片群のう
ち、相補鎖形成後に酵素分解された3’末端のみに蛍光
体等による標識を行ない標識された断片を得る。相補鎖
形成後に酵素分解された断片以外の断片は、既に両3’
末端が修飾されており標識を付加できない。この様にし
て得られた標識された第3の断片のみを検出すること
で、変異の有無をフラグメントアナリシス法を用いずに
容易に確認できる。検出された変異を持つ断片は容易に
分取できる。
[0014] Of the third fragment group thus obtained, only the 3 'end that has been enzymatically decomposed after the formation of the complementary strand is labeled with a fluorescent substance or the like to obtain a labeled fragment. Fragments other than the fragment that was enzymatically degraded after the formation of the complementary strand were already 3 ′
The end is modified and no label can be added. By detecting only the labeled third fragment thus obtained, the presence or absence of the mutation can be easily confirmed without using a fragment analysis method. Fragments with the detected mutations can be easily sorted.

【0015】本発明の核酸配列比較分析方法の第2の構
成は、(1)2本鎖の第1の核酸試料、及び2本鎖の第
2の核酸試料を、それぞれ制限酵素により断片化して、
第1、及び第2の核酸試料に由来する2種の2本鎖の第
1の断片群を得る工程と、(2)2種の第1の断片群の
各断片群の各断片の両3’末端のOH基を修飾する工程
と、(3)両3’末端がOH基により修飾された2種の
第1の断片群を混合して、全断片を変性した後に相補鎖
形成反応を行ない、2本鎖の第2の断片群を得る工程
と、(4)工程(3)で生じる1本鎖部分を酵素により
分解して2本鎖の第3の断片群を得る工程と、(5)工
程(4)で酵素により切断された末端の3’末端を標識
する工程と、(6)3’末端が標識された断片をゲル電
気泳動により検出する工程とを有することに特徴があ
る。
The second configuration of the nucleic acid sequence comparative analysis method of the present invention is as follows. (1) A double-stranded first nucleic acid sample and a double-stranded second nucleic acid sample are each fragmented with a restriction enzyme. ,
Obtaining two types of double-stranded first fragment groups derived from the first and second nucleic acid samples; and (2) obtaining two fragments of each fragment group of the two first fragment groups. (A) a step of modifying the OH group at the terminal, and (3) mixing the two first fragment groups whose both 3 'terminals are modified with the OH group, denaturing all the fragments, and then performing a complementary strand forming reaction. (4) obtaining a double-stranded second fragment group; (4) obtaining a double-stranded third fragment group by decomposing the single-stranded portion generated in step (3) with an enzyme; And (3) a step of labeling the 3 ′ end of the terminal cleaved by the enzyme in step (4) and a step of (6) detecting the fragment labeled with the 3 ′ end by gel electrophoresis.

【0016】第1の構成において、(I)工程(5)で
の標識は、ターミナルデオキシヌクレオチジルトランス
フェラーゼを用いて付加された蛍光標識ヌクレオチドで
あること、(II)工程(5)での標識は、ライゲーシ
ョン法を用いて付加された蛍光標識ヌクレオチドである
こと、(III)第1、第2の核酸試料の塩基配列の間
での、点変異、挿入、又は欠出による塩基配列の差を検
出すること、(IV)工程(4)の酵素は、S1ヌクレ
アーゼ、マグビーンヌクレアーゼ、リボヌクレアーゼ
A、T4エンドヌクレーアゼVIIの何れかであるこ
と、(V)第1、第2の試料核酸はDNA又はRNAで
あること、更に、第1の構成の核酸配列比較分析方法に
用いる試薬キットであり、第1、第2の試料核酸を断片
化する制限酵素と、該制限酵素により生じる2本鎖断片
の3’末端を修飾する酵素と、2本鎖の核酸断片の1本
鎖部分を分解する酵素と、少なくともライゲース又はタ
ーミナルデオキシヌクレオチジルトランスフェラーゼを
含み第3の断片群の酵素による断片の3’末端を標識す
るための試薬とを含む試薬キットに特徴がある。
In the first configuration, (I) the label in step (5) is a fluorescently labeled nucleotide added using terminal deoxynucleotidyl transferase, and (II) the label in step (5) is (III) detecting a difference in nucleotide sequence between the nucleotide sequences of the first and second nucleic acid samples due to a point mutation, insertion, or deletion. (IV) the enzyme of step (4) is any of S1 nuclease, Magbean nuclease, ribonuclease A, and T4 endonuclease VII; and (V) the first and second sample nucleic acids are DNA Or a reagent kit for use in the nucleic acid sequence comparative analysis method of the first configuration, wherein the restriction enzyme is used to fragment first and second sample nucleic acids. An enzyme that modifies the 3 ′ end of a double-stranded fragment generated by a restriction enzyme, an enzyme that decomposes a single-stranded portion of a double-stranded nucleic acid fragment, and a third fragment group that includes at least ligase or terminal deoxynucleotidyl transferase And a reagent for labeling the 3 ′ end of the fragment with the enzyme (1).

【0017】本発明を用いた場合、試料核酸は短断片化
された後に解析処理されるため、1k塩基長以上の核酸
からの変異の検出も可能である。また、検出された変異
部分のみをピックアップし、変異部分の塩基配列を容易
に決定でき、従来法の持つ課題を解決できる。
When the present invention is used, the sample nucleic acid is analyzed after being fragmented into short fragments, so that mutations from nucleic acids having a length of 1 k or more can be detected. Further, only the detected mutated portion can be picked up, the nucleotide sequence of the mutated portion can be easily determined, and the problem of the conventional method can be solved.

【0018】[0018]

【発明の実施の形態】以下、実施例を図を参照して詳細
に説明する。図1は、野生型試料DNA、及び変異型試
料DNAより第1、第2、及び第3の断片群を調製する
工程を説明する図である。試料DNA(2本鎖)1は、
puc19DNA(約2.7kb)に野生型p53遺伝
子のエクソン7(110bp)を含む約200bpの断
片を挿入したもの、試料DNA2(2本鎖)は、puc
19DNAに変異型p53遺伝子のエクソン7(110
bp)を含む約200bpの断片を挿入したものであ
る。試料DNA2の配列は変異部分3を持つ。試料DN
A1、及び2の配列は、変異部分3を除き全て同じであ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram illustrating a process of preparing first, second, and third fragment groups from a wild-type sample DNA and a mutant-type sample DNA. The sample DNA (double-stranded) 1
puc19 DNA (about 2.7 kb) into which a fragment of about 200 bp containing exon 7 (110 bp) of wild-type p53 gene was inserted. Sample DNA 2 (double-stranded) was puc19 DNA.
Exon 7 of mutant p53 gene (110
bp) into which a fragment of about 200 bp was inserted. The sequence of the sample DNA2 has a mutated portion 3. Sample DN
The sequences of A1 and A2 are all the same except for the mutated part 3.

【0019】(試料DNAの短断片化)試料DNA1、
及び2を制限酵素で断片化し第1の断片群を調製する。
本実施例では、制限酵素HhaIを用いたが、制限酵素
はクラスIであれば良く、SmaI、Hsp92II等
のでもよくHhaIには限定されない。制限酵素Hha
Iを用いる断片化により、試料DNA1から2本鎖の第
1の断片群4、試料DNA2から2本鎖の第1の断片群
5が各々調製される。37℃条件下で1時間反応を行な
い、HhaIにより試料DNAを完全に切断した後、制
限酵素の失活、除去の目的でエタノール沈殿による濃縮
精製操作を行った。
(Shortening of Sample DNA) Sample DNA 1,
And 2 are fragmented with a restriction enzyme to prepare a first fragment group.
In this example, the restriction enzyme HhaI was used. However, the restriction enzyme may be any class I, such as SmaI or Hsp92II, and is not limited to HhaI. Restriction enzyme Hha
By the fragmentation using I, a double-stranded first fragment group 4 from the sample DNA 1 and a double-stranded first fragment group 5 from the sample DNA 2 are respectively prepared. The reaction was carried out at 37 ° C. for 1 hour, the sample DNA was completely cleaved with HhaI, and then concentrated and purified by ethanol precipitation for the purpose of inactivating and removing restriction enzymes.

【0020】続いて、第1の断片群4、5のDNA断片
の2本鎖の両末端の長さを揃えた2本鎖の第1の断片群
6、7を得るために、Klenow Fragment
を用いて、37℃条件下で30分処理した後、酵素の失
活、除去の目的で、フェノール/クロロフォルム抽出、
及びエタノール沈殿による精製濃縮操作を行った。
Subsequently, in order to obtain double-stranded first fragment groups 6 and 7 having the same length at both ends of the double-stranded DNA fragments of the first fragment groups 4 and 5, Klenow Fragment was used.
, And then treated with phenol / chloroform for 30 minutes at 37 ° C. for the purpose of deactivating and removing the enzyme.
And an operation of purification and concentration by ethanol precipitation.

【0021】(ハイブリダイゼーション、及び1本鎖部
分切断)2種の第1の断片群6、7を混合した後、94
℃で3分間処理して各断片を完全に変性させる。この
後、室温に混合液をおきゆっくり液温を下げる。こうし
て温度を下げていく間に、変性処理によって完全に1本
鎖状態になったDNA断片は、再び相補鎖を形成してい
く(再相補鎖形成反応:rehybridizatio
n)。この再相補鎖形成反応による生成物が、2本鎖の
第2の断片群8である。第2の断片群の中で、断片9は
野生型試料DNAに由来する断片同士の間での再相補鎖
形成反応により、断片10は変異型試料DNAに由来す
る断片同士の間での再相補鎖形成反応により、断片11
は野生型試料DNAに由来する断片と変異型試料DNA
に由来する断片との間での再相補鎖形成反応により、各
々形成される。
(Hybridization and Single-Strand Partial Cleavage) After mixing the two first fragment groups 6 and 7, 94
Each fragment is completely denatured by treatment at 3 ° C. for 3 minutes. Thereafter, the mixture is placed at room temperature and the temperature is slowly lowered. While the temperature is lowered in this manner, the DNA fragment completely denatured by the denaturation treatment forms a complementary strand again (recomplementary strand formation reaction: rehybridizatio).
n). The product of this re-complementary strand formation reaction is the double-stranded second fragment group 8. In the second fragment group, fragment 9 was recomplemented between fragments derived from the mutated sample DNA, and fragment 10 was recomplemented between fragments derived from the mutated sample DNA. By the chain formation reaction, fragment 11
Is the fragment derived from the wild-type sample DNA and the mutant sample DNA
Are formed by a recomplementary strand formation reaction with the fragment derived from

【0022】第2の断片群8の中の断片11以外の断片
では、センス鎖とアンチセンス鎖の配列は互いに完全に
相補的であり、断片の全長に渡って正確に相補鎖を形成
している。断片11は、変異部分3以外の部分では完全
に相補鎖を形成しているが、変異部分3は、野生型試料
DNAに由来するセンス鎖12と変異型試料DNAに由
来するアンチセンス鎖13の間で配列が異なり相補鎖を
形成できず1本鎖状態の部分14となっている。この1
本鎖状態の部分14のみを特異的に分解切断することに
より、2本鎖の第3の断片群15を得ることができる。
即ち、1本鎖特異的認識酵素S1ヌクレアーゼを用い
て、37℃条件下で30分処理した後、酵素の失活、除
去の目的で、フェノール/クロロフォルム抽出、及びエ
タノール沈殿による精製濃縮操作を行った。この結果、
野生型試料DNAに由来する断片と変異型試料DNAに
由来する断片間での再相補鎖形成反応により形成される
断片11から、2つの2本鎖22が形成される。
In the fragments other than the fragment 11 in the second fragment group 8, the sequences of the sense strand and the antisense strand are completely complementary to each other, and form a complementary strand exactly over the entire length of the fragment. I have. Fragment 11 forms a completely complementary strand in portions other than the mutated portion 3, but the mutated portion 3 is composed of the sense strand 12 derived from the wild-type sample DNA and the antisense strand 13 derived from the mutated sample DNA. The sequence differs between them, and a complementary chain cannot be formed, and the single-stranded portion 14 is formed. This one
By specifically decomposing and cleaving only the portion 14 in the main chain state, a double-stranded third fragment group 15 can be obtained.
That is, after treating with a single-strand-specific recognition enzyme S1 nuclease at 37 ° C. for 30 minutes, phenol / chloroform extraction and purification / concentration by ethanol precipitation are performed for the purpose of inactivating and removing the enzyme. Was. As a result,
Two double strands 22 are formed from the fragment 11 formed by the recomplementary strand formation reaction between the fragment derived from the wild-type sample DNA and the fragment derived from the mutant sample DNA.

【0023】(DNA断片両3’末端への既知配列オリ
ゴマーの導入)次ぎに、第3の断片群15をフラグメン
トアナリシス法を用いて解析した。フラグメントアナリ
シスの手順は以下の通りである。第3の断片群15に含
まれる全てのDNA断片の両3’末端に既知の配列を持
つオリゴマー(以下、アダプターと呼ぶ)16をライゲ
ーションにより導入する。DNA断片の両3’末端側に
接する側となるアダプターの5’末端をリン酸化する。
また、第3の断片群に含まれる全てのDNA断片の両
5’末端のリン酸基をCIAP(アルカリフォスファタ
ーゼ)を用いて除去しておく。T4DNAライゲースを
用いて、アダプターと、エタノール沈殿法により濃縮精
製されたDNA断片とを15℃で一晩反応させ結合させ
る。以上のようにして、既知塩基配列を持つアダプター
が導入された2本鎖の第3のDNA断片群17を得る。
(Introduction of Oligomers of Known Sequence into Both 3 'Ends of DNA Fragment) Next, the third fragment group 15 was analyzed by a fragment analysis method. The procedure of fragment analysis is as follows. An oligomer (hereinafter, referred to as an adapter) 16 having a known sequence at both 3 ′ ends of all the DNA fragments included in the third fragment group 15 is introduced by ligation. The 5 'end of the adapter which is in contact with both 3' ends of the DNA fragment is phosphorylated.
In addition, the phosphate groups at both 5 ′ ends of all DNA fragments included in the third fragment group are removed using CIAP (alkaline phosphatase). Using T4 DNA ligase, the adapter is allowed to react with the DNA fragment concentrated and purified by the ethanol precipitation method at 15 ° C. overnight to bind. As described above, a double-stranded third DNA fragment group 17 into which an adapter having a known base sequence has been introduced is obtained.

【0024】図2は、3’末端に2塩基の組合せからな
る16種類の選択プライマーを用いたフラグメントアナ
リシス法の原理を示す図である。既知塩基配列を持つオ
リゴマー(アダプター)が導入された2本鎖の第3のD
NA断片群31の各断片は、両3’末端に導入されたア
ダプター16、制限酵素認識配列32、及び選別に利用
される塩基配列33を持つ。選別に利用される塩基配列
33は選択プライマーが相補鎖を形成して伸長すると
き、伸長反応に大きな影響を与える2塩基(MM、N
N)である。なお、図2に於いて、記号M、Nは塩基
A、C、G、Tの何れかを示す。塩基配列33の長さ
は、1塩基から4塩基の範囲で選択できるが、好ましく
は1塩基から3塩基であり、更に好ましくは2塩基であ
る。ここでは2塩基の例をとり説明する。
FIG. 2 is a diagram showing the principle of the fragment analysis method using 16 kinds of selective primers consisting of a combination of two bases at the 3 'end. Double-stranded third D into which an oligomer (adaptor) having a known base sequence has been introduced
Each fragment of the NA fragment group 31 has an adapter 16, a restriction enzyme recognition sequence 32, and a base sequence 33 used for selection at both 3 ′ ends. The base sequence 33 used for selection has two bases (MM, N, N) that greatly affect the extension reaction when the selection primer forms a complementary strand and extends.
N). In FIG. 2, symbols M and N indicate any of bases A, C, G and T. The length of the base sequence 33 can be selected from a range of 1 to 4 bases, preferably 1 to 3 bases, and more preferably 2 bases. Here, an example of two bases will be described.

【0025】既知塩基配列を持つアダプターが導入され
た第3のDNA断片群31は、複数種類の断片の混合物
である。この混合物中に含まれる各断片の断片長、及び
制限酵素認識配列に続く5’末端側の2塩基の配列をフ
ラグメントアナリシス法にて決定する。フラグメントア
ナリシスでは、5’末端に蛍光標識34を持つ蛍光標識
選択プライマー37を用いる。選択プライマーの3’末
端の2塩基の配列は、A、C、G、Tから選ばれた2塩
基の全ての可能な組み合わせから全部で16種類ある。
蛍光標識選択プライマーの塩基配列のうち、アダプター
16と相補的な部分35、及び制限酵素認識配列32に
相補的な塩基配列36は、アダプターが導入された第3
の断片群の各々のアダプター16、及び制限酵素認識部
分32と完全に相補鎖を形成できる。
The third DNA fragment group 31 into which an adapter having a known base sequence has been introduced is a mixture of a plurality of types of fragments. The fragment length of each fragment contained in this mixture and the sequence of the 2 bases at the 5 ′ end following the restriction enzyme recognition sequence are determined by the fragment analysis method. In the fragment analysis, a fluorescent label selection primer 37 having a fluorescent label 34 at the 5 ′ end is used. There are a total of 16 types of 2 base sequences at the 3 'end of the selection primer from all possible combinations of 2 bases selected from A, C, G and T.
Of the base sequence of the fluorescent label selection primer, a portion 35 complementary to the adapter 16 and a base sequence 36 complementary to the restriction enzyme recognition sequence 32 are the third sequence into which the adapter has been introduced.
Can completely form a complementary strand with the adapter 16 and the restriction enzyme recognition portion 32 of each fragment group.

【0026】蛍光標識選択プライマー37は、3’末端
に2塩基の選択用塩基配列38(図2では、配列AAの
例を示す)を持つ。アダプターが導入された第3の断片
群の断片の制限酵素認識配列32の5’末端側に続く2
塩基と、断片の選別に利用される選択用塩基配列38と
が、(1)完全に相補的である場合39にのみ、選択プ
ライマー37の伸長反応が進み、相補鎖40を形成で
き、(2)相補的でない場合41には、相補鎖伸長反応
は進まない。この(1)と(2)の差を利用して、16
種類の各蛍光標識選択プライマーと完全に相補鎖を形成
できる断片だけを断片の混合物中より選別して、DNA
断片の制限酵素認識配列に続く2塩基の配列を決定でき
る。但し、図1に示す第3の断片群17の中で変異部分
で切断された2本鎖断片20、21は、通常のフラグメ
ントアナリシスと異なり例外となる。
The fluorescent-labeling selection primer 37 has a two-base selection base sequence 38 (FIG. 2 shows an example of the sequence AA) at the 3 ′ end. The second fragment following the 5 'end of the restriction enzyme recognition sequence 32 of the fragment of the third fragment group into which the adapter was introduced.
The extension reaction of the selection primer 37 proceeds to form the complementary strand 40 only when the base and the base sequence for selection 38 used for selection of the fragment are (1) completely complementary to each other. ) If not complementary, the complementary strand extension reaction does not proceed. Using the difference between (1) and (2), 16
Only a fragment capable of completely forming a complementary strand with each type of fluorescently labeled selection primer is selected from the mixture of fragments,
The sequence of two bases following the restriction enzyme recognition sequence of the fragment can be determined. However, the double-stranded fragments 20 and 21 cut at the mutated portion in the third fragment group 17 shown in FIG. 1 are exceptions unlike ordinary fragment analysis.

【0027】図3は、アダプターが導入された第3の断
片群の中の変異部分を含む断片の構造の詳細を説明する
図である。両鎖とも野性型由来の2本鎖断片18、又は
両鎖とも変異型由来の2本鎖断片19である場合、2本
鎖断片18、19の両3’末端は、アダプター配列1
6、及び制限酵素認識配列32を持つ。しかし、野性型
と変異型のハイブリッドのため変異部分で切断された2
本鎖断片20、21は、制限酵素により切断された切断
末端である片側末端71、72に、2本鎖断片18、1
9と同様にアダプター配列16、制限酵素認識配列32
を持つが、S1nucleaseによる切断箇所の片側
末端73、74は、アダプター配列16は有するが、制
限酵素認識配列32は有さない。従って、断片の末端7
3、74の側には、選択プライマーは相補鎖を形成でき
ない。
FIG. 3 is a diagram for explaining the details of the structure of the fragment containing the mutated portion in the third fragment group into which the adapter has been introduced. When both chains are the double-stranded fragment 18 derived from the wild type, or both chains are the double-stranded fragment 19 derived from the mutant type, both 3 ′ ends of the double-stranded fragments 18 and 19 are the adapter sequence 1
6, and a restriction enzyme recognition sequence 32. However, since the hybrid of wild type and mutant type was
The single-stranded fragments 20 and 21 were added to the double-stranded fragments 18 and 1 at the one-side ends 71 and 72, which were the cleavage ends cut by the restriction enzyme.
9. Adapter sequence 16 and restriction enzyme recognition sequence 32
However, one end 73, 74 of the cleavage site by S1 nuclease has the adapter sequence 16 but does not have the restriction enzyme recognition sequence 32. Therefore, the end 7 of the fragment
On the 3,74 side, the selection primer cannot form a complementary strand.

【0028】実際には、以下の方法でフラグメントアナ
リシスを行った。DNA断片の混合物に1種類の蛍光標
識選択プライマー、dATP、dCTP、dGTP、d
TTP、及び、耐熱性DNAポリメラーゼを加えて5サ
イクルの反応を行った。他の全ての15種類の蛍光標識
選択プライマーについても同様の反応を行った。その
後、相補鎖伸長反応による、1本鎖の蛍光標識伸長物を
ゲル電気泳動で分析した。
Actually, fragment analysis was performed by the following method. One kind of fluorescent label selection primer, dATP, dCTP, dGTP, d
TTP and a thermostable DNA polymerase were added to carry out a reaction for 5 cycles. The same reaction was performed for all other 15 types of fluorescently labeled selection primers. Thereafter, the single-stranded fluorescently labeled elongation product obtained by the complementary elongation reaction was analyzed by gel electrophoresis.

【0029】図4は、フラグメントアナリシスの結果を
示す図である。図4(a)は、野生型の試料DNAを短
断片化した後、各断片の両3’末端にアダプターを導入
しフラグメントアナリシスを行って得た結果(電気泳動
パターン)、図4(b)は、野生型、及び変異型の試料
DNAを短断片化した後、各断片の両3’末端にアダプ
ターを導入しフラグメントアナリシスを行って得た結果
(電気泳動パターン)を示す。図4(a)、(b)に於
いて、縦軸101は各選択プライマーの3’末端の2塩
基の配列を、横軸102は塩基長を表す。図(a)、
(b)から、アダプターが導入された第3の断片の混合
物中に含まれる各断片の長さ、及び制限酵素認識配列に
続く5’末端側の2塩基の配列情報が得られる。
FIG. 4 shows the results of fragment analysis. FIG. 4 (a) shows the result obtained by shortening the wild-type sample DNA, introducing adapters into both 3 ′ ends of each fragment and performing fragment analysis (electrophoresis pattern), and FIG. 4 (b). Shows the results (electrophoresis pattern) obtained by shortening wild-type and mutant sample DNAs, introducing adapters into both 3 ′ ends of each fragment, and performing fragment analysis. 4 (a) and 4 (b), the vertical axis 101 shows the sequence of the two bases at the 3 'end of each selected primer, and the horizontal axis 102 shows the base length. Figure (a),
From (b), the length of each fragment contained in the mixture of the third fragment into which the adapter has been introduced, and the sequence information of the 5'-terminal two bases following the restriction enzyme recognition sequence can be obtained.

【0030】例えば、図4(a)に示すように、3’末
端にAGの配列をもつ蛍光標識選択プライマーを用いた
とき検出されるピーク103は、混合物中に制限酵素認
識配列に続く2塩基の配列がTCの断片が存在すること
を示す。このAGの末端配列を持つプライマーが相補鎖
伸長してできたDNA鎖(ピーク103)と同じ長さの
位置に出現するピーク104は、これら断片103、1
04が、相補的な配列を持つ2本鎖DNA断片から各々
生じたことを意味する。
For example, as shown in FIG. 4 (a), the peak 103 detected when a fluorescent-labeled selection primer having the sequence of AG at the 3 ′ end is used is the two bases following the restriction enzyme recognition sequence in the mixture. Indicates that a TC fragment is present. The peak 104 that appears at the same position as the DNA strand (peak 103) formed by extension of the complementary strand of the primer having the AG terminal sequence is the fragment 103, 1
04 means that each was generated from a double-stranded DNA fragment having a complementary sequence.

【0031】図4(a)と図4(b)を比較すると、殆
どのピークは、同じ位置に出現しているが、ピーク10
5、及び106は、図4(b)にのみ出現していること
が分かる。ピーク105、及び106は、図1、図3に
示す断片20、及び21に由来するピークであると考え
られる。このようにして、フラグメントアナリシスの解
析結果を比較する事で容易に変異部分の有無の確認がで
きた。
When comparing FIG. 4A and FIG. 4B, most of the peaks appear at the same position.
5 and 106 appear only in FIG. 4B. Peaks 105 and 106 are considered to be peaks derived from fragments 20 and 21 shown in FIGS. In this way, the presence or absence of the mutated portion could be easily confirmed by comparing the analysis results of the fragment analysis.

【0032】また、変異部分を含む断片、即ち、図1、
図3に示す断片19は、図4(b)のピーク105、及
び106より、断片19の制限酵素認識配列に続く2塩
基がともにTTであることが確認できた。断片19の制
限酵素認識配列に続く2塩基がともにTTであることを
利用して、変異型試料に由来する制限酵素切断断片群中
より容易に変異部分を含む断片をPCRにより増幅が可
能である。この様にして増幅された変異部分を含む断片
のPCR産物は、(本実施例の場合、ピーク105、及
び106の和から約500塩基長)、ピーク107と予
想される。このピーク107の断片を配列決定すること
で変異部分のみの塩基配列決定ができた。
Further, a fragment containing a mutated portion, ie, FIG.
In the fragment 19 shown in FIG. 3, it can be confirmed from the peaks 105 and 106 in FIG. 4B that the two bases following the restriction enzyme recognition sequence of the fragment 19 are both TT. Utilizing the fact that the two bases following the restriction enzyme recognition sequence of fragment 19 are both TT, a fragment containing a mutated portion can be more easily amplified by PCR from a group of restriction enzyme-cleaved fragments derived from a mutant sample. . The PCR product of the fragment containing the mutated portion thus amplified is expected to be peak 107 (in the case of this example, approximately 500 bases from the sum of peaks 105 and 106). By sequencing this fragment of peak 107, the nucleotide sequence of only the mutated portion could be determined.

【0033】[0033]

【発明の効果】本発明では、野生型、及び変異型試料核
酸を予め各々別々に短断片化し第1の断片群の2種を調
製し、2種の断片群を混合して再相補鎖合成(rehy
bridization)を行ない、第2の断片群を調
製する。変異部分を含むハイブリッドの1本鎖部分を酵
素により分解切断し第3の断片群を調製し、第3の断片
群をフラグメントアナリシス法で解析し、野生型試料核
酸に由来する断片のみから得られるフラグメントアナリ
シスの結果と比較解析することで、第3の断片群中に含
まれる変異部分の有無の確認ができる。また、フラグメ
ントアナリシスの結果をもとに変異部分を含む断片のみ
を選択プライマーを用いて選択的にPCR増幅し塩基配
列決定できる。本発明では、1k塩基長以上の核酸に於
ける変異の検出が可能であり、変異部分のみを容易に塩
基配列決定できる。
According to the present invention, the wild-type and mutant-type sample nucleic acids are separately short-fragmented separately, two types of first fragments are prepared, and the two types of fragments are mixed to re-complement the complementary strand. (Rehy
and a second set of fragments is prepared. The single-stranded portion of the hybrid containing the mutated portion is decomposed and cleaved with an enzyme to prepare a third fragment group, and the third fragment group is analyzed by a fragment analysis method, and is obtained only from a fragment derived from a wild-type sample nucleic acid. By comparing and analyzing the results of the fragment analysis, the presence or absence of a mutated portion contained in the third fragment group can be confirmed. Also, based on the results of the fragment analysis, only the fragment containing the mutated portion can be selectively amplified by PCR using a selection primer to determine the nucleotide sequence. In the present invention, it is possible to detect a mutation in a nucleic acid having a length of 1 k bases or more, and it is possible to easily determine the base sequence of only the mutated portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に於ける、野生型試料DNA、
及び変異型試料DNAより第1、第2、及び第3の断片
群を調製する工程を説明する図。
FIG. 1 shows a wild-type sample DNA,
FIG. 4 is a diagram illustrating a step of preparing first, second, and third fragment groups from a mutated sample DNA.

【図2】本発明の実施例に於ける、16種類の選択プラ
イマーを用いたフラグメントアナリシス法の原理を示す
図。
FIG. 2 is a diagram showing the principle of a fragment analysis method using 16 types of selective primers in an example of the present invention.

【図3】本発明の実施例に於ける、第3の断片群中の変
異部分を含む断片の構造の詳細を説明する図。
FIG. 3 is a view for explaining details of the structure of a fragment containing a mutated portion in a third fragment group in an example of the present invention.

【図4】本発明の実施例に於けるフラグメントアナリシ
スの結果を示す図。
FIG. 4 is a diagram showing the results of fragment analysis in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…試料DNA(野生型p53遺伝子の挿入されたpu
c19DNA)、2…試料DNA(変異型p53遺伝子
の挿入されたpuc19DNA)、3…変異部分、4…
試料DNA1より調製された2本鎖の第1の断片群、5
…試料DNA2より調製された2本鎖の第1の断片群、
6…第1の断片群4の両末端の長さを揃えた2本鎖断片
群、7…第1の断片群5の両末端の長さを揃えた2本鎖
断片群、8…2本鎖の第2の断片群、9…野生型試料D
NAに由来する断片同士の間での再相補鎖形成反応生成
物、10…変異型試料DNAに由来する断片同士の間で
の再相補鎖形成反応生成物、11…野生型試料DNAに
由来する断片と変異型試料DNAに由来する断片との間
の再相補鎖形成反応生成物、12…野生型試料DNAに
由来するセンス鎖、13…変異型試料DNAに由来する
アンチセンス鎖、14…1本鎖状態の部分、15…2本
鎖の第3の断片群、16…アダプター、17…既知塩基
配列を持つアダプターが導入された2本鎖の第3のDN
A断片群、18…両鎖とも野性型由来の2本鎖断片、1
9…両鎖とも変異型由来の2本鎖断片、20、21…変
異部分で切断された2本鎖断片22…断片11から形成
される2つの2本鎖、31…オリゴマーの導入された第
3の断片群、32…制限酵素認識配列、33…選別に利
用される塩基配列、34…蛍光標識、35…アダプター
に相補的な塩基配列、36…制限酵素認識配列に相補的
な塩基配列、37…蛍光標識選択プライマー、38…2
塩基の選択用塩基配列、39…完全に相補的である場
合、40…相補鎖、41…相補的でない場合、71、7
2…制限酵素により切断された切断末端、73、74…
S1 nucleaseによる切断末端、101…縦軸
(各選択プライマーの3’末端の2塩基の塩基配列)、
102…横軸(塩基長)、103、104、105、1
06、107…検出されたピーク。
1: Sample DNA (pu with inserted wild-type p53 gene)
c19 DNA), 2 ... sample DNA (puc19 DNA with mutant p53 gene inserted), 3 ... mutated part, 4 ...
The first group of double-stranded fragments prepared from sample DNA 1, 5
... a first group of double-stranded fragments prepared from the sample DNA 2,
6: a double-stranded fragment group having the same length at both ends of the first fragment group 4, 7: a double-stranded fragment group having the same length at both ends of the first fragment group 5, 8 ... 2 Second fragment group of chain, 9 ... wild-type sample D
Re-complementary strand formation reaction product between fragments derived from NA, 10... Re-complementary strand formation reaction product between fragments derived from mutant sample DNA, 11... Derived from wild-type sample DNA Re-complementary strand formation reaction product between the fragment and the fragment derived from the mutant sample DNA, 12: sense strand derived from wild-type sample DNA, 13 ... antisense strand derived from mutant sample DNA, 14 ... 1 A part in a single-stranded state, 15... A third fragment group of a double-stranded substance, 16... An adapter, 17... A double-stranded third DN into which an adapter having a known base sequence is introduced.
A fragment group, 18 ... double-stranded fragments derived from wild type in both chains, 1
9 ... a double-stranded fragment derived from the mutant type in both chains, 20, 21 ... a double-stranded fragment 22 ... cleaved at the mutated portion, two double-stranded fragments formed from fragment 11, 31 ... 3 fragments, 32: restriction enzyme recognition sequence, 33: base sequence used for selection, 34: fluorescent label, 35: base sequence complementary to adapter, 36: base sequence complementary to restriction enzyme recognition sequence, 37 ... fluorescent label selection primer, 38 ... 2
Base sequence for base selection, 39: when completely complementary, 40: complementary strand, 41: when not complementary, 71, 7
2 ... cleaved ends cut by restriction enzymes, 73, 74 ...
S1 nuclease cleaved end, 101 ... vertical axis (base sequence of 2 bases at 3 'end of each selected primer),
102 ... horizontal axis (base length), 103, 104, 105, 1
06, 107... Detected peaks.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】(1)2本鎖の第1の核酸試料、及び2本
鎖の第2の核酸試料を、それぞれ制限酵素により断片化
して、前記第1、及び第2の核酸試料に由来する2種の
2本鎖の第1の断片群を得る工程と、(2)前記2種の
第1の断片群を混合して、全断片を変性した後に相補鎖
形成反応を行ない、2本鎖の第2の断片群を得る工程
と、(3)工程(2)で生じる1本鎖部分を酵素により
分解して2本鎖の第3の断片群を得る工程と、(4)前
記第3の断片群の各断片の相補鎖を電気泳動して断片長
の分布を得る工程とを有することを特徴とする核酸配列
比較分析方法。
(1) A double-stranded first nucleic acid sample and a double-stranded second nucleic acid sample are each fragmented with a restriction enzyme to be derived from the first and second nucleic acid samples. (2) mixing the two first-fragment groups to denature all fragments and then performing a complementary strand formation reaction after the denaturation of all fragments; A step of obtaining a second fragment group of the chain; (3) a step of decomposing the single-stranded portion produced in the step (2) with an enzyme to obtain a third group of double-stranded chains; Obtaining a distribution of fragment lengths by electrophoresing the complementary strands of each fragment of the 3 fragment groups.
【請求項2】請求項1に記載の核酸配列比較分析方法に
於いて、前記工程(1)、及び(2)に代えて、前記第
1、及び第2の核酸試料を予め混合し、前記第1、及び
第2の核酸試料を変性した後に相補鎖形成反応を行な
い、相補鎖形成反応生成物を前記制限酵素により断片化
して前記第2の断片群を得る工程を有すること特徴とす
る核酸配列比較分析方法。
2. The method according to claim 1, wherein the first and second nucleic acid samples are mixed in advance in place of the steps (1) and (2). A nucleic acid comprising a step of performing a complementary strand formation reaction after denaturing the first and second nucleic acid samples, and fragmenting the complementary strand formation reaction product with the restriction enzyme to obtain the second fragment group. Sequence comparison analysis method.
【請求項3】請求項1に記載の核酸配列比較分析方法に
於いて、前記第1又は第2の核酸試料を前記制限酵素で
断片化して得る断片群の各断片をゲル電気泳動して得る
断片長の分布と、前記工程(4)で得る前記断片長の分
布とを比較することを特徴とする核酸配列比較分析方
法。
3. The method according to claim 1, wherein each fragment of a fragment group obtained by fragmenting the first or second nucleic acid sample with the restriction enzyme is obtained by gel electrophoresis. A method for comparing and analyzing nucleic acid sequences, comprising comparing the distribution of fragment lengths with the distribution of fragment lengths obtained in the step (4).
【請求項4】請求項1に記載の核酸配列比較分析方法に
於いて、前記第1、第2の核酸試料の塩基配列の間で
の、点変異、挿入、又は欠出による塩基配列の差を検出
することを特徴とする核酸配列比較分析方法。
4. The nucleic acid sequence comparison analysis method according to claim 1, wherein the nucleotide sequence difference between the nucleotide sequences of the first and second nucleic acid samples due to point mutation, insertion or deletion. A nucleic acid sequence comparison analysis method, characterized by detecting
【請求項5】請求項1に記載の核酸配列比較分析方法に
於いて、前記工程(3)に続いて、既知の塩基配列を持
つオリゴマーを前記第3の断片群の各断片の両3’末端
にライゲーションにより導入する工程を有することを特
徴とする核酸配列比較分析方法。
5. The method for comparing and analyzing nucleic acid sequences according to claim 1, wherein, after the step (3), an oligomer having a known base sequence is added to both 3 ′ of each fragment of the third fragment group. A method for comparative analysis of nucleic acid sequences, which comprises a step of introducing a compound into a terminal by ligation.
【請求項6】請求項1に記載の核酸配列比較分析方法に
於いて、前記工程(3)に続いて、前記第3の断片群の
各断片の両3’末端にポリA、ポリU、又はポリTをタ
ーミナルデオキシヌクレオチジルトランスフェラーゼを
使用して導入する工程を有することを特徴とする核酸配
列比較分析方法。
6. The method for comparing and analyzing nucleic acid sequences according to claim 1, wherein, after the step (3), poly A, poly U, Alternatively, a method for comparing and analyzing nucleic acid sequences, comprising a step of introducing poly-T using terminal deoxynucleotidyl transferase.
【請求項7】請求項1に記載の核酸配列比較分析方法に
於いて、前記工程(3)に続いて、既知の塩基配列を持
つオリゴマーを前記第3の断片群の各断片の両3’末端
にライゲーションにより導入する工程と、5’末端が標
識され前記オリゴマーの塩基配列の少なくとも一部に相
補な第1の塩基配列と、該第1の塩基配列の3’末端に
続く前記制限酵素の制限酵素認識配列に相補な第2の塩
基配列と、該第2の塩基配列の3’末端に続く1塩基か
ら3塩基からなる第3の塩基配列を有するプイライマー
を用いて、前記第3の断片群の各断片を鋳型として相補
鎖伸張反応を行なう工程とを有し、前記工程(4)に於
いて、相補鎖伸張反応生成物を電気泳動することを特徴
とする核酸配列比較分析方法。
7. The method for comparing and analyzing nucleic acid sequences according to claim 1, wherein, after the step (3), an oligomer having a known base sequence is added to both 3 ′ of each fragment of the third fragment group. A step of introducing the terminal into the terminal by ligation, a first base sequence labeled at the 5 ′ end and complementary to at least a part of the base sequence of the oligomer, and a restriction enzyme of the restriction enzyme following the 3 ′ end of the first base sequence. Using a primer having a second base sequence complementary to the restriction enzyme recognition sequence and a third base sequence consisting of 1 to 3 bases following the 3 ′ end of the second base sequence, the third fragment Performing a complementary chain extension reaction using each fragment of the group as a template, and electrophoresing the complementary chain extension reaction product in the step (4).
【請求項8】請求項1に記載の核酸配列比較分析方法に
於いて、前記工程(3)の前記酵素は、S1ヌクレアー
ゼ、マグビーンヌクレアーゼ、リボヌクレアーゼA、T
4エンドヌクレーアゼVIIの何れかであることを特徴
とする核酸配列比較分析方法。
8. The method according to claim 1, wherein the enzyme in the step (3) is S1 nuclease, Magbean nuclease, ribonuclease A, T
4. A method for comparative analysis of nucleic acid sequences, which is any one of 4 endonuclease VII.
【請求項9】請求項1に記載の核酸配列比較分析方法に
於いて、前記第1、第2の試料核酸はDNA又はRNA
であることを特徴とする核酸配列比較分析方法。
9. The method according to claim 1, wherein said first and second sample nucleic acids are DNA or RNA.
A nucleic acid sequence comparative analysis method, characterized in that:
【請求項10】請求項1に記載の核酸配列比較分析方法
に用いる試薬キットであり、前記第1、第2の試料核酸
を断片化する制限酵素と、2本鎖の核酸断片の1本鎖部
分を分解する酵素と、少なくともライゲース又はターミ
ナルデオキシヌクレオチジルトランスフェラーゼを含む
前記第3の断片群の各断片の両3’末端へ既知の塩基配
列を持つオリゴマーを導入するための試薬と、前記オリ
ゴマーの塩基配列の少なくとも一部に相補な塩基配列を
持つ5’末端が標識されるプライマーとを含むことを特
徴とする試薬キット。
10. A reagent kit for use in the method for comparing and analyzing nucleic acid sequences according to claim 1, wherein a restriction enzyme for fragmenting the first and second sample nucleic acids and a single strand of a double-stranded nucleic acid fragment are provided. An enzyme that decomposes a portion, a reagent for introducing an oligomer having a known base sequence to both 3 ′ ends of each fragment of the third fragment group containing at least ligase or terminal deoxynucleotidyl transferase, A primer having a base sequence complementary to at least a part of the base sequence, the primer being labeled at the 5 ′ end.
【請求項11】(1)2本鎖の第1の核酸試料、及び2
本鎖の第2の核酸試料を、それぞれ制限酵素により断片
化して、前記第1、及び第2の核酸試料に由来する2種
の2本鎖の第1の断片群を得る工程と、(2)前記2種
の第1の断片群の各断片群の各断片の両3’末端のOH
基を修飾する工程と、(3)両3’末端がOH基により
修飾された前記2種の第1の断片群を混合して、全断片
を変性した後に相補鎖形成反応を行ない、2本鎖の第2
の断片群を得る工程と、(4)工程(3)で生じる1本
鎖部分を酵素により分解して2本鎖の第3の断片群を得
る工程と、(5)前記工程(4)で前記酵素により切断
された末端の3’末端を標識する工程と、(6)3’末
端が標識された断片をゲル電気泳動により検出する工程
とを有することを特徴とする核酸配列比較分析方法。
(1) a double-stranded first nucleic acid sample;
Fragmenting the single-stranded second nucleic acid sample with restriction enzymes to obtain two types of double-stranded first fragment groups derived from the first and second nucleic acid samples, and (2) ) OH at both 3 ′ ends of each fragment of each of the two first fragment groups
A step of modifying a group; and (3) mixing the two kinds of first fragment groups whose both 3 ′ ends are modified with an OH group, denaturing all the fragments, and then performing a complementary strand forming reaction. Second of the chain
(4) a step of (4) decomposing the single-stranded portion produced in step (3) with an enzyme to obtain a double-stranded third fragment group; and (5) the step (4). A method for comparing and analyzing nucleic acid sequences, comprising the steps of: labeling the 3 'end of the end cleaved by the enzyme; and (6) detecting the fragment labeled at the 3' end by gel electrophoresis.
【請求項12】請求項11に記載の核酸配列比較分析方
法に於いて、前記工程(5)での標識は、ターミナルデ
オキシヌクレオチジルトランスフェラーゼを用いて付加
された蛍光標識ヌクレオチドであることを特徴とする核
酸配列比較分析方法。
12. The method according to claim 11, wherein the label in the step (5) is a fluorescently labeled nucleotide added using terminal deoxynucleotidyl transferase. Nucleic acid sequence analysis method.
【請求項13】請求項11に記載の核酸配列比較分析方
法に於いて、前記工程(5)での標識は、ライゲーショ
ン法を用いて付加された蛍光標識ヌクレオチドであるこ
とを特徴とする核酸配列比較分析方法。
13. The nucleic acid sequence according to claim 11, wherein the label in the step (5) is a fluorescently labeled nucleotide added using a ligation method. Comparative analysis method.
【請求項14】請求項11に記載の核酸配列比較分析方
法に於いて、前記第1、第2の核酸試料の塩基配列の間
での、点変異、挿入、又は欠出による塩基配列の差を検
出することを特徴とする核酸配列比較分析方法。
14. The nucleic acid sequence comparative analysis method according to claim 11, wherein the nucleotide sequence difference between the nucleotide sequences of the first and second nucleic acid samples due to point mutation, insertion or deletion. A nucleic acid sequence comparison analysis method, characterized by detecting
【請求項15】請求項11に記載の核酸配列比較分析方
法に於いて、前記工程(4)の前記酵素は、S1ヌクレ
アーゼ、マグビーンヌクレアーゼ、リボヌクレアーゼ
A、T4エンドヌクレーアゼVIIの何れかであること
を特徴とする核酸配列比較分析方法。
15. The method according to claim 11, wherein the enzyme in the step (4) is any one of S1 nuclease, Magbean nuclease, ribonuclease A, and T4 endonuclease VII. A method for comparing and analyzing nucleic acid sequences.
【請求項16】請求項11に記載の核酸配列比較分析方
法に於いて、前記第1、第2の試料核酸はDNA又はR
NAであることを特徴とする核酸配列比較分析方法。
16. The nucleic acid sequence analysis method according to claim 11, wherein the first and second sample nucleic acids are DNA or R.
A nucleic acid sequence comparative analysis method characterized by being NA.
【請求項17】請求項11に記載の方法に用いる試薬キ
ットであり、前記第1、第2の試料核酸を断片化する制
限酵素と、該制限酵素により生じる2本鎖断片の3’末
端を修飾する酵素と、2本鎖の核酸断片の1本鎖部分を
分解する酵素と、少なくともライゲース又はターミナル
デオキシヌクレオチジルトランスフェラーゼを含み前記
第3の断片群の前記酵素による断片の3’末端を標識す
るための試薬とを含むことを特徴とする試薬キット。
17. A reagent kit used for the method according to claim 11, wherein a restriction enzyme for fragmenting the first and second sample nucleic acids and a 3 ′ end of a double-stranded fragment generated by the restriction enzyme are used. An enzyme to be modified, an enzyme that degrades a single-stranded portion of a double-stranded nucleic acid fragment, and a label containing at least ligase or terminal deoxynucleotidyltransferase and labeling the 3 ′ end of the fragment of the third fragment group with the enzyme A reagent kit comprising:
JP10161800A 1998-06-10 1998-06-10 Comparative analysis of nucleic acid sequence and reagent kit therefor Pending JPH11346766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10161800A JPH11346766A (en) 1998-06-10 1998-06-10 Comparative analysis of nucleic acid sequence and reagent kit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10161800A JPH11346766A (en) 1998-06-10 1998-06-10 Comparative analysis of nucleic acid sequence and reagent kit therefor

Publications (1)

Publication Number Publication Date
JPH11346766A true JPH11346766A (en) 1999-12-21

Family

ID=15742161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10161800A Pending JPH11346766A (en) 1998-06-10 1998-06-10 Comparative analysis of nucleic acid sequence and reagent kit therefor

Country Status (1)

Country Link
JP (1) JPH11346766A (en)

Similar Documents

Publication Publication Date Title
US10988807B2 (en) Sequence based genotyping based on oligonucleotide ligation assays
US20230392191A1 (en) Selective degradation of wild-type dna and enrichment of mutant alleles using nuclease
CN107109401B (en) Polynucleotide enrichment Using CRISPR-CAS System
US20190153534A1 (en) High throughput screening of populations carrying naturally occurring mutations
JP5237126B2 (en) Methods for detecting gene-related sequences based on high-throughput sequences using ligation assays
AU2022201907A1 (en) Method for identification and enumeration of nucleic acid sequence, expression, copy, or dna methylation changes, using combined nuclease, ligase, polymerase, and sequencing reactions
EP2302070B1 (en) Strategies for high throughput identification and detection of polymorphisms
US11384383B2 (en) In vitro isolation and enrichment of nucleic acids using site-specific nucleases
US7014994B1 (en) Coupled polymerase chain reaction-restriction-endonuclease digestion-ligase detection reaction process
US20210355485A1 (en) Methods for targeted nucleic acid library formation
US20220389408A1 (en) Methods and compositions for phased sequencing
US20210198660A1 (en) Compositions and methods for making guide nucleic acids
US20090068659A1 (en) Method for identifying the sequence of one or more variant nucleotides in a nucleic acid molecule
US7749708B2 (en) Method for identifying the sequence of one or more variant nucleotides in a nucleic acid molecule
US20220220542A1 (en) Capture and analysis of target genomic regions
CN115461457A (en) Double-stranded nucleic acid molecule and method for removing GLASS adaptor in DNA library by using same
EP1165838B1 (en) Coupled polymerase chain reaction-restriction endonuclease digestion-ligase detection reaction process
KR20230124636A (en) Compositions and methods for highly sensitive detection of target sequences in multiplex reactions
JPH11346766A (en) Comparative analysis of nucleic acid sequence and reagent kit therefor
JP2005530508A (en) Methods and compositions for monitoring primer extension reactions and polymorphism detection reactions
JPH11299485A (en) Method for amplifying nucleic acid and amplification primer for said method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226