JPH11344597A - Decontamination method - Google Patents

Decontamination method

Info

Publication number
JPH11344597A
JPH11344597A JP14954198A JP14954198A JPH11344597A JP H11344597 A JPH11344597 A JP H11344597A JP 14954198 A JP14954198 A JP 14954198A JP 14954198 A JP14954198 A JP 14954198A JP H11344597 A JPH11344597 A JP H11344597A
Authority
JP
Japan
Prior art keywords
decontamination
oxalic acid
reducing
dissolving
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14954198A
Other languages
Japanese (ja)
Other versions
JP3417296B2 (en
Inventor
Tadashi Tamagawa
忠 玉川
Hiroo Yoshikawa
博雄 吉川
Makoto Nagase
誠 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Kurita Engineering Co Ltd
Original Assignee
Hitachi Ltd
Kurita Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kurita Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP14954198A priority Critical patent/JP3417296B2/en
Publication of JPH11344597A publication Critical patent/JPH11344597A/en
Application granted granted Critical
Publication of JP3417296B2 publication Critical patent/JP3417296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination method having high crud dissolving power, capable of reducing corrosivity to a metallic material and being excellent in workability by dissolving/removing metallic oxide sticking in a nuclear reac tor cooling water system by using a reducing acid solution by setting a specific concentration oxalic acid solution containing hydrazine to a specific pH value. SOLUTION: A reducing acid solution (a reducing decontamination agent) is adjusted to pH 2 to 3 by adding hydrazine to a low concentration oxalic acid aqueous solution having the oxalic acid concentration of 0.05 to 0.3 wt.%. Crud dissolving power lacks when the oxalic acid concentration is less than 0.05 wt.%, and corrosivity increases when the concentration exceeds 0.3 wt.%. The crud dissolving power lacks when pH of the reducing decontamination agent is larger than 3, and the corrosivity increases when the pH is smaller than 2. A temperature when dissolving iron oxide by using such a reducing decontamination agent is suitably about 80 deg.C or more. Thus, since the oxalic acid concentration is low and hydrazine is contained as well, while the corrosivity is relieved, reduction in dissolving power can be compensated by the dissolution promoting action by increasing the pH.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉冷却水系内
に付着している金属酸化物を溶解除去する除染方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decontamination method for dissolving and removing metal oxides adhering in a reactor cooling water system.

【0002】[0002]

【従来の技術】原子炉一次冷却水系の機器・配管等の金
属材料表面には、マグネタイト(Fe34)、ヘマタイ
ト(Fe23)、ニッケルフェライト(NiFe24
などに代表される鉄系金属酸化物(クラッド)ならびに
一部3価のクロムを含有するクロムフェライト(FeC
24)が付着する。そして、これらの結晶格子中に、
60Co,58Co,54Mnなどの放射性核種が取り込まれ
て蓄積し、原子力発電所従事者の被爆量増大の原因とな
る。このため、この放射性クラッドを取り除くいわゆる
除染が必要となり、特に化学除染剤を用いてクラッドを
溶解除去する化学除染技術の開発が進み、いくつかの技
術が実用化されている。
2. Description of the Related Art The surfaces of metallic materials such as equipment and piping of a primary cooling water system of a nuclear reactor are magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ), nickel ferrite (NiFe 2 O 4 ).
Chromium ferrite containing some trivalent chromium (FeC)
r 2 O 4 ). And in these crystal lattices,
60 Co, 58 Co, 54 radionuclides are accumulated incorporated such Mn, causing exposure amount increases in nuclear power plants workers. For this reason, so-called decontamination for removing the radioactive cladding is required. In particular, the development of a chemical decontamination technique for dissolving and removing the cladding using a chemical decontamination agent has been advanced, and several techniques have been put into practical use.

【0003】これら化学除染技術においては、上記のよ
うな放射性クラッドを、効率良く溶解除去できることは
もちろん重要であるが、加えて構成材料の母材金属に腐
食損傷を与えないことも極めて重要となる。更に最近で
は、除染により発生する放射性廃棄物の低減が重視さ
れ、除染効果、材料健全性、廃棄物低減の総合的観点か
ら、優れた除染技術の開発が望まれている。
In these chemical decontamination techniques, it is of course important that the above-mentioned radioactive cladding can be efficiently dissolved and removed, but it is also extremely important that the base metal of the constituent material is not damaged by corrosion. Become. More recently, reduction of radioactive waste generated by decontamination has been emphasized, and development of excellent decontamination technology has been desired from the comprehensive viewpoint of decontamination effect, material integrity, and waste reduction.

【0004】一般に、鉄系金属酸化物の溶解にはクエン
酸、シュウ酸などの有機酸やエチレンジアミン四酢酸
(EDTA)のようなキレート剤を含む還元性溶液が有
効であり、一方で、3価のクロムを含む酸化物の溶解に
は、過マンガン酸塩のような酸化剤を含む溶液で、3価
クロムを6価クロムに酸化して溶解する方法が有効であ
ることから、これらの還元溶解と酸化溶解を繰り返して
行う方法が実際に採用されている。
In general, a reducing solution containing an organic acid such as citric acid or oxalic acid or a chelating agent such as ethylenediaminetetraacetic acid (EDTA) is effective for dissolving an iron-based metal oxide. In order to dissolve oxides containing chromium, a method of oxidizing and dissolving trivalent chromium to hexavalent chromium with a solution containing an oxidizing agent such as permanganate is effective. In practice, a method of repeatedly performing oxidation and dissolution is adopted.

【0005】とりわけ、還元性溶解剤としては、鉄系酸
化物の溶解力が最も優れるシュウ酸を含む除染剤が数多
く提案されている(特公昭45−37360号公報、特
公平1−19473号公報、特公平1−53440号公
報、特開昭57−9885号公報)。
[0005] In particular, as a reducing solubilizer, many decontaminants containing oxalic acid, which have the best dissolving power of iron oxides, have been proposed (JP-B-45-37360, JP-B-1-19473). Gazette, Japanese Patent Publication No. 1-53440, and JP-A-57-9885).

【0006】また、酸化除染剤としては、過マンガン酸
塩にアルカリ剤を加えたもの(特公昭45−37360
号公報)や、過マンガン酸塩に硝酸のような酸を加えて
酸性としたもの(特公平1−53440号公報)が、酸
化力が強く、クロムの溶解に有効であるとされている。
As the oxidative decontamination agent, a permanganate to which an alkali agent is added (Japanese Patent Publication No. 45-37360)
Japanese Patent Application Laid-Open No. HEI 5-53440) and an acid obtained by adding an acid such as nitric acid to a permanganate (Japanese Patent Publication No. 1-53440) has a strong oxidizing power and is effective for dissolving chromium.

【0007】一方、除染廃棄物量の低減の観点からは、
溶解した金属イオンをイオン交換樹脂で捕捉して、少量
の固体廃棄物に減容化する方法が専ら採用されている。
On the other hand, from the viewpoint of reducing the amount of decontamination waste,
A method of capturing dissolved metal ions with an ion-exchange resin and reducing the volume to a small amount of solid waste is exclusively adopted.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、シュウ
酸は、鉄系酸化物の溶解力が極めて優れる反面、金属材
料、特に鋭敏化されたステンレス材(溶接熱影響部等)
に対する腐食性が強いという欠点がある。このため、ア
ルカリ剤を添加して溶液のpHを上昇させたり、除染剤
濃度、除染温度や除染時間を制限するなど、シュウ酸の
腐食性を緩和する工夫が必要とされているが、溶液pH
の上昇は、腐食性が緩和されると同時に、金属酸化物の
溶解力も低減されてしまう問題があり、除染剤濃度、除
染温度、除染時間の緩和も、酸化物の溶解力にとっては
マイナス因子となる。
However, although oxalic acid has a very good dissolving power for iron-based oxides, oxalic acid is a metal material, particularly a sensitized stainless material (such as a weld heat affected zone).
There is a disadvantage that it is highly corrosive to water. For this reason, there is a need for measures to reduce the corrosiveness of oxalic acid, such as increasing the pH of the solution by adding an alkaline agent, or limiting the concentration of the decontaminant, the decontamination temperature and the decontamination time. , Solution pH
The rise in the temperature has the problem that the dissolving power of metal oxides is reduced at the same time as the corrosiveness is alleviated.The relaxation of the decontamination agent concentration, decontamination temperature and decontamination time also This is a negative factor.

【0009】また、特開昭57−9885号公報には、
pHを上昇しても酸化物の溶解力を低下させない手段と
して、5%程度のシュウ酸溶液にヒドラジンを加えて、
pH=3〜4.5に調整する方法が提案されているが、
pHが3以上のシュウ酸ヒドラジン溶液は、水に対する
溶解度が低いため、高濃度の溶液を調製する現場作業性
に問題がある上、薬剤の使用濃度が高いため、薬剤コス
トが嵩むと共に廃棄物量が多くなるという欠点がある。
Further, Japanese Patent Application Laid-Open No. 57-9885 discloses that
Hydrazine is added to an oxalic acid solution of about 5% as a means of not lowering the dissolving power of the oxide even when the pH is increased,
A method of adjusting the pH to 3 to 4.5 has been proposed,
A hydrazine oxalate solution having a pH of 3 or more has low solubility in water, so there is a problem in the on-site workability of preparing a high-concentration solution. In addition, since the use concentration of the drug is high, the cost of the drug increases and the amount of waste is increased. There is a disadvantage that it increases.

【0010】更に、特公平1−19473号公報には、
1〜10%のマロン酸とシュウ酸の混合溶液に、ヒドラ
ジンを500〜5000mg/L添加し、これに別のア
ルカリ剤を加えてpH=2.5〜6(好ましくは3〜
4.5)に調整した組成物が提案されているが、このも
のも薬剤の使用濃度が高いため、薬剤コストが嵩む上、
廃棄物量が多くなるという欠点がある。
Furthermore, Japanese Patent Publication No. 1-19473 discloses that
Hydrazine is added to a mixed solution of malonic acid and oxalic acid of 1 to 10% in an amount of 500 to 5000 mg / L, and another alkali agent is added thereto to adjust the pH to 2.5 to 6 (preferably 3 to 10).
A composition adjusted to 4.5) has been proposed, but this composition also has a high use concentration of the drug, so that the cost of the drug increases and
There is a disadvantage that the amount of waste increases.

【0011】一方、酸化除染剤においては、過マンガン
酸塩にアルカリ(例えばKOH)を加えたものでは、ア
ルカリ由来のイオン、例えばK+イオンが、廃棄物処理
に用いるイオン交換樹脂の負荷を増大させ、廃棄物量が
多くなる欠点を有し、過マンガン酸塩に酸(例えばHN
3)を加えたものでは、酸由来のイオン、例えばNO3
-イオンがイオン交換樹脂の負荷を増大させるばかりで
なく、酸性の過マンガン酸塩溶液は、各種の材料に対す
る腐食性が高いという欠点を有している。
On the other hand, in the case of an oxidative decontamination agent, in a case where an alkali (eg, KOH) is added to a permanganate, ions derived from the alkali, eg, K + ions, impose a load on an ion exchange resin used for waste treatment. The disadvantage of increasing the amount of waste and increasing the amount of waste.
O 3 ) is added to ions derived from an acid, for example, NO 3
In addition to the ions increasing the load on the ion exchange resin, acidic permanganate solutions have the disadvantage of being highly corrosive to various materials.

【0012】本発明は、上記従来の問題点を解決し、高
いクラッド溶解力を有し、かつ金属材料に対する腐食性
が小さく、現場作業性が良好で、除染廃棄物量が少ない
還元除染剤を用いた、経済性に優れた除染方法を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems, has a high clad dissolving power, has low corrosiveness to metal materials, has good on-site workability, and has a small amount of decontamination waste. It is an object of the present invention to provide a decontamination method which is excellent in economical efficiency.

【0013】[0013]

【課題を解決するための手段】本発明の除染方法は、原
子炉冷却水系内に付着している金属酸化物をシュウ酸溶
液で溶解除去する工程を含む除染方法において、該シュ
ウ酸溶液は、シュウ酸濃度が0.05〜0.3重量%で
あり、ヒドラジンを含み、pHが2〜3の還元性酸溶液
であることを特徴とする。
The decontamination method of the present invention comprises a step of dissolving and removing metal oxides adhering in a reactor cooling water system with an oxalic acid solution. Is a reducing acid solution having an oxalic acid concentration of 0.05 to 0.3% by weight, containing hydrazine and having a pH of 2 to 3.

【0014】本発明に係る還元性酸溶液では、シュウ酸
の濃度が低く、しかもヒドラジンを含むため、シュウ酸
のみの溶液に比べて材料に及ぼす腐食性が著しく緩和さ
れる一方で、pHを上昇したことによる金属酸化物の溶
解力の減少を、ヒドラジンの溶解促進作用で補うことが
可能である。
In the reducing acid solution according to the present invention, since the concentration of oxalic acid is low and hydrazine is contained, the corrosiveness on the material is remarkably reduced as compared with the solution containing only oxalic acid, but the pH is increased. It is possible to compensate for the decrease in the dissolving power of the metal oxide by the dissolution promoting action of hydrazine.

【0015】本発明では、前記金属酸化物を還元性酸溶
液で溶解除去する還元溶解(以下「還元除染」と称す場
合がある。)工程の前又は後に、過マンガン酸塩溶液で
該金属酸化物中のクロムを6価クロムに酸化溶解する酸
化溶解(以下「酸化除染」と称す場合がある。)工程を
行うのが好ましく、とりわけ、還元溶解工程と酸化溶解
工程とを交互に少なくとも各工程2回繰り返すことによ
り、優れた除染効果を得ることができる。
In the present invention, the metal oxide is dissolved with a permanganate solution before or after the step of dissolving and removing the metal oxide with a reducing acid solution (hereinafter sometimes referred to as “reduction decontamination”). It is preferable to perform an oxidative dissolution step of oxidizing and dissolving chromium in the oxide to hexavalent chromium (hereinafter, may be referred to as “oxidative decontamination”). In particular, the reduction dissolution step and the oxidation dissolution step are alternately performed at least. By repeating each step twice, an excellent decontamination effect can be obtained.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0017】本発明で用いる還元性酸溶液(以下「還元
除染剤」と称す場合がある。)は、例えばシュウ酸濃度
が0.05〜0.3重量%の低濃度シュウ酸水溶液にヒ
ドラジンを加えてpH2〜3に調整することにより調製
される。
The reducing acid solution (hereinafter sometimes referred to as "reducing decontaminant") used in the present invention is prepared by, for example, adding hydrazine to a low-concentration aqueous solution of oxalic acid having an oxalic acid concentration of 0.05 to 0.3% by weight. To adjust the pH to 2-3.

【0018】還元除染剤中のシュウ酸濃度が0.05重
量%未満ではクラッド溶解力が不足し、0.3重量%を
超えると腐食性が高くなる恐れがある。
If the oxalic acid concentration in the reductive decontamination agent is less than 0.05% by weight, the clad dissolving power is insufficient, and if it exceeds 0.3% by weight, the corrosiveness may be increased.

【0019】また、還元除染剤のpHが3より大きいと
クラッド溶解力が不足し、また、pHが2より小さいと
腐食性が高くなる。
When the pH of the reducing and decontaminating agent is higher than 3, the dissolving power of the clad becomes insufficient, and when the pH is lower than 2, the corrosiveness increases.

【0020】このような還元除染剤を用いて鉄系酸化物
を溶解するときの温度は、80℃以上が適しており、除
染効果と加熱操作の作業性等を考慮すると85〜95℃
が最適である。通常の場合、1回の還元除染工程はこの
ような温度において2〜8時間程度実施される。
The temperature at which the iron-based oxide is dissolved using such a reducing decontamination agent is preferably 80 ° C. or more, and in consideration of the decontamination effect and the workability of the heating operation, the temperature is 85 to 95 ° C.
Is optimal. Usually, one reduction decontamination step is performed at such a temperature for about 2 to 8 hours.

【0021】還元除染工程の前又は後で実施される酸化
除染工程に用いる酸化除染剤としては、過マンガン酸塩
の中性溶液を使用することが好ましい。即ち、従来、ク
ロム酸化物中の3価クロムを6価クロムに酸化して溶解
する能力は、液性を酸性にするかもしくはアルカリ性に
する方が強いとされていたが、比較的クロムの含有量が
少ない酸化物、例えばBWR(沸騰水型原子炉)のよう
に母材近傍の酸化物中にクロムが濃縮されているような
クラッドの場合は、中性の過マンガン酸塩水溶液でも十
分効果を発揮する。そして、中性の過マンガン酸塩水溶
液を用いることにより、後のイオン交換樹脂による除染
廃液の処理において、余分な酸やアルカリ成分に由来す
るイオン交換負荷を低減することにより廃棄物量を低減
することができ、極めて有利である。
As the oxidative decontamination agent used in the oxidative decontamination step performed before or after the reduction decontamination step, it is preferable to use a neutral solution of permanganate. That is, conventionally, the ability to oxidize and dissolve trivalent chromium in chromium oxide to hexavalent chromium has been considered to be stronger when the liquid property is made acidic or alkaline, but the chromium content is relatively high. In the case of a small amount of oxide, for example, a clad in which chromium is concentrated in an oxide near the base material such as a BWR (boiling water reactor), a neutral aqueous solution of permanganate is sufficiently effective. Demonstrate. Then, by using a neutral aqueous solution of permanganate, the amount of waste is reduced by reducing the ion exchange load derived from excess acids and alkali components in the subsequent treatment of the decontamination waste liquid with the ion exchange resin. Can be very advantageous.

【0022】酸化除染剤の過マンガン酸塩としては、過
マンガン酸のナトリウム塩、カリウム塩、リチウム塩等
のアルカリ金属の中性塩を用いることができる。また、
過マンガン酸塩の使用濃度は、0.01〜0.1重量
%、特に0.03〜0.06重量%が好ましい。
As the permanganate of the oxidative decontamination agent, neutral salts of alkali metals such as sodium, potassium and lithium salts of permanganate can be used. Also,
The use concentration of permanganate is preferably 0.01 to 0.1% by weight, particularly preferably 0.03 to 0.06% by weight.

【0023】このような酸化除染剤による酸化除染処理
温度は、80℃以上が適しており、除染効果と加熱操作
の作業性等を考慮すると85〜95℃が最適である。通
常の場合、1回の酸化除染工程はこのような温度におい
て2〜4時間程度実施される。
The temperature of the oxidative decontamination treatment using such an oxidative decontamination agent is preferably 80 ° C. or higher, and is most preferably 85 to 95 ° C. in consideration of the decontamination effect and the workability of the heating operation. Usually, one oxidative decontamination step is performed at such a temperature for about 2 to 4 hours.

【0024】本発明の除染方法を実際の原子炉冷却水系
の除染に適用する際の実施要領は次の通りである。
The procedure for applying the decontamination method of the present invention to actual decontamination of a reactor cooling water system is as follows.

【0025】対象がBWRプラントの場合、初めに還元
除染を行い、その後還元除染剤に含まれる除染剤成分と
溶解してきた金属イオン及び放射性イオンを、イオン交
換樹脂で捕捉・浄化する。引き続き酸化除染を行った
後、ヒドラジンとシュウ酸を含む還元除染剤を加えて過
マンガン酸塩を分解し、引き続き2回目の還元除染を実
施する。この段階で放射性イオンの除去が不十分な場合
は、更に酸化除染と還元除染を繰り返せば良い。一方、
PWR(加圧水型原子炉)プラントの場合は、クラッド
の全層にわたってクロム酸化物が分布するため、初めに
酸化除染を行い、以降、還元除染、酸化除染、還元除染
の手順で実施すれば良い。
When the target is a BWR plant, reductive decontamination is first performed, and then the decontaminant components contained in the reductive decontaminant and dissolved metal ions and radioactive ions are captured and purified by an ion exchange resin. After performing oxidative decontamination, a permanganate is decomposed by adding a reducing decontaminating agent containing hydrazine and oxalic acid, and then a second reduction decontamination is performed. If the removal of radioactive ions is not sufficient at this stage, the oxidative decontamination and reduction decontamination may be repeated. on the other hand,
In the case of a PWR (Pressurized Water Reactor) plant, since chromium oxide is distributed over all layers of the cladding, oxidative decontamination is performed first, and then performed in the order of reduction decontamination, oxidative decontamination, and reduction decontamination. Just do it.

【0026】なお、除染廃液の処理において、イオン交
換樹脂の負荷を低減するため、還元除染剤のシュウ酸及
びヒドラジン成分を酸化剤やUV処理等の既存の方法で
分解処理することも可能である。
In the treatment of the decontamination waste liquid, the oxalic acid and hydrazine components of the reducing decontamination agent can be decomposed by an existing method such as an oxidizing agent or UV treatment in order to reduce the load on the ion exchange resin. It is.

【0027】[0027]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0028】実施例1〜3、比較例1 0.2重量%シュウ酸水溶液(pH=1.8)(比較例
1)、及びこれにヒドラジンを加えてpHを2.0(実
施例1)、2.2(実施例2)、2.5(実施例3)に
それぞれ調整した溶液500mLに、腐食試験片とし
て、650℃で3時間熱処理を施した鋭敏化SUS30
4材及び炭素鋼(STPT42)を各々2枚づつ浸漬
し、95℃で撹拌下8時間保持して腐食試験を行った。
Examples 1 to 3, Comparative Example 1 0.2 wt% oxalic acid aqueous solution (pH = 1.8) (Comparative Example 1), and hydrazine was added to adjust the pH to 2.0 (Example 1). Sensitized SUS30 prepared by subjecting 500 mL of the solution adjusted to 2.2 (Example 2) and 2.5 (Example 3) to heat treatment at 650 ° C. for 3 hours as a corrosion test piece.
The four materials and carbon steel (STPT42) were immersed two by two, and kept at 95 ° C. with stirring for 8 hours to conduct a corrosion test.

【0029】その結果、図1(a)に示すように、鋭敏
化SUS304材は、pH無調整の場合に腐食が加速さ
れたのに対し、ヒドラジンでpH=2〜2.5に調整す
ると腐食は殆ど進行しないことが確認された。また、図
1(b)に示すように、炭素鋼の場合は、pHの上昇と
共に腐食速度が低減されることが明らかであった。
As a result, as shown in FIG. 1A, the corrosion of the sensitized SUS304 material was accelerated when the pH was not adjusted, whereas the corrosion was accelerated when the pH was adjusted to 2 to 2.5 with hydrazine. Was found to hardly progress. Further, as shown in FIG. 1 (b), in the case of carbon steel, it was clear that the corrosion rate decreased with increasing pH.

【0030】実施例4〜6、比較例2 BWRにおける水素注入模擬環境の試験ループ(トレー
サーとして58Coを使用)で、SUS304試験片表面
にクラッド模擬皮膜を生成させ、以下の除染条件で除染
試験を行った。
[0030] In Examples 4-6, the test loop of the hydrogen injection simulated environment in Comparative Example 2 BWR (using 58 Co as a tracer), to produce a clad simulated film on SUS304 specimen surface, divided by the following decontamination conditions A dyeing test was performed.

【0031】[除染条件] 1回目還元除染:0.2重量%シュウ酸水溶液(p
H=1.8)(比較例2)、及びこれにヒドラジンを加
えてpHを2.0(実施例4)、2.5(実施例5)、
3.0(実施例6)にそれぞれ調整した溶液500mL
に、模擬皮膜付き試験片を各々1枚浸漬して95℃で2
時間除染処理後水洗した。 酸化除染:試験片を0.05重量%過マンガン酸カ
リウム水溶液に移し、95℃で1時間除染処理後水洗し
た。 2回目還元除染:1回目還元除染と同一条件で行っ
た。
[Decontamination conditions] First reduction decontamination: 0.2 wt% oxalic acid aqueous solution (p
H = 1.8) (Comparative Example 2), and hydrazine was added thereto to adjust the pH to 2.0 (Example 4), 2.5 (Example 5),
500 mL of each solution adjusted to 3.0 (Example 6)
Each of the test pieces with the simulated film was immersed in the
After the decontamination treatment for a time, it was washed with water. Oxidative decontamination: The test piece was transferred to a 0.05% by weight aqueous solution of potassium permanganate, decontaminated at 95 ° C. for 1 hour, and washed with water. The second reduction decontamination was performed under the same conditions as the first reduction decontamination.

【0032】試験後、各試験片の放射線量当量率を測定
し、試験前の値との比(除染係数=DF)を算出した。
After the test, the radiation dose equivalent ratio of each test piece was measured, and the ratio to the value before the test (decontamination coefficient = DF) was calculated.

【0033】その結果、図2に示すように、pH2.5
付近にDF(除染効果)のピークがあり、シュウ酸の一
部をヒドラジンで中和することにより、材料の腐食環境
を緩和しながら、除染性能を維持ないし増強できること
が確認された。
As a result, as shown in FIG.
There is a peak of DF (decontamination effect) in the vicinity, and it was confirmed that by neutralizing a part of oxalic acid with hydrazine, the decontamination performance can be maintained or enhanced while mitigating the corrosive environment of the material.

【0034】実施例7 実機BWRプラントの再循環系から切り出した配管材料
を試験片として、本発明の方法による除染試験を行っ
た。
Example 7 A decontamination test according to the method of the present invention was performed using pipe materials cut out from the recirculation system of an actual BWR plant as test pieces.

【0035】試験は、まず500mLのビーカに、ヒド
ラジンでpH=2.5に調整した0.18重量%シュウ
酸水溶液を300mL入れ、試験片を浸漬して95℃で
4時間還元除染処理した(1回目還元除染)。その後、
試験片を取り出して放射線量当量率を測定して、除染効
果(DF)を求めた。引き続き、試験片を0.05重量
%過マンガン酸カリウム水溶液に移し、95℃で2時間
酸化除染処理(1回目酸化除染)を行った。この操作を
繰り返して、各工程後のDFを求めた。
In the test, 300 mL of a 0.18% by weight oxalic acid aqueous solution adjusted to pH = 2.5 with hydrazine was placed in a 500 mL beaker, and the test piece was immersed and subjected to reduction decontamination treatment at 95 ° C. for 4 hours. (First reduction decontamination). afterwards,
The test piece was taken out and the radiation dose equivalent rate was measured to determine the decontamination effect (DF). Subsequently, the test piece was transferred to a 0.05% by weight aqueous solution of potassium permanganate, and subjected to oxidative decontamination treatment (first oxidative decontamination) at 95 ° C. for 2 hours. This operation was repeated to obtain the DF after each step.

【0036】その結果、表1に示すように、最初の還元
除染ですでに17の高いDFが得られ、更に酸化除染と
還元除染の繰り返しにより、より高いDFが得られるこ
とが確認された。
As a result, as shown in Table 1, it was confirmed that a high DF of 17 was already obtained by the first reduction decontamination, and a higher DF was obtained by repeating oxidative decontamination and reduction decontamination. Was done.

【0037】この結果から、本発明の方法によれば、対
象物の放射線量に応じて、また期待する除染効果(D
F)に応じて、還元除染の一工程のみで目的が達せられ
る場合もあり、必要に応じて酸化除染と組み合わせれば
より一層良好な除染効果が得られることが分かる。
From these results, according to the method of the present invention, the expected decontamination effect (D
Depending on F), the objective may be achieved only by one step of reductive decontamination, and it can be seen that a better decontamination effect can be obtained by combining with oxidative decontamination as required.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】以上詳述した通り、本発明の除染方法に
よれば、原子炉冷却水系内に付着している金属酸化物を
構成材料の母材金属に腐食損傷を与えることなく、効率
的に還元除染することができる。
As described above in detail, according to the decontamination method of the present invention, the metal oxide adhering in the reactor cooling water system can be efficiently used without causing corrosion damage to the base metal of the constituent material. It can be decontaminated by reduction.

【0040】特に、請求項2、とりわけ、請求項3の除
染方法によれば、還元除染と酸化除染とを交互に繰り返
すことにより、高い除染効果を得ることができる。
In particular, according to the decontamination method of the present invention, a high decontamination effect can be obtained by alternately repeating reduction decontamination and oxidative decontamination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜3及び比較例1の結果を示すグラフ
である。
FIG. 1 is a graph showing the results of Examples 1 to 3 and Comparative Example 1.

【図2】実施例4〜6及び比較例2の結果を示すグラフ
である。
FIG. 2 is a graph showing the results of Examples 4 to 6 and Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 博雄 大阪府大阪市中央区北浜2−2−22 栗田 エンジニアリング株式会社内 (72)発明者 長瀬 誠 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroo Yoshikawa 2-2-22 Kitahama, Chuo-ku, Osaka-shi, Osaka Inside Kurita Engineering Co., Ltd. (72) Inventor Makoto Nagase 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原子炉冷却水系内に付着している金属酸
化物をシュウ酸溶液で溶解除去する工程を含む除染方法
において、 該シュウ酸溶液は、シュウ酸濃度が0.05〜0.3重
量%であり、ヒドラジンを含み、pHが2〜3の還元性
酸溶液であることを特徴とする除染方法。
1. A decontamination method comprising a step of dissolving and removing metal oxides adhering in a reactor cooling water system with an oxalic acid solution, wherein the oxalic acid solution has an oxalic acid concentration of 0.05 to 0.1. A decontamination method comprising 3% by weight, a hydrazine-containing reducing acid solution having a pH of 2 to 3.
【請求項2】 請求項1において、前記金属酸化物を還
元性酸溶液で溶解除去する還元溶解工程の前又は後に、
過マンガン酸塩溶液で該金属酸化物中のクロムを6価ク
ロムに酸化溶解する酸化溶解工程を含むことを特徴とす
る除染方法。
2. The method according to claim 1, wherein before or after a reduction dissolution step of dissolving and removing the metal oxide with a reducing acid solution,
A decontamination method comprising an oxidative dissolution step of oxidizing and dissolving chromium in the metal oxide into hexavalent chromium with a permanganate solution.
【請求項3】 請求項2において、前記還元溶解工程と
酸化溶解工程とを交互に少なくとも各工程2回繰り返す
ことを特徴とする除染方法。
3. The decontamination method according to claim 2, wherein the reduction-dissolution step and the oxidation-dissolution step are alternately repeated at least twice for each step.
JP14954198A 1998-05-29 1998-05-29 Decontamination method Expired - Lifetime JP3417296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14954198A JP3417296B2 (en) 1998-05-29 1998-05-29 Decontamination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14954198A JP3417296B2 (en) 1998-05-29 1998-05-29 Decontamination method

Publications (2)

Publication Number Publication Date
JPH11344597A true JPH11344597A (en) 1999-12-14
JP3417296B2 JP3417296B2 (en) 2003-06-16

Family

ID=15477409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14954198A Expired - Lifetime JP3417296B2 (en) 1998-05-29 1998-05-29 Decontamination method

Country Status (1)

Country Link
JP (1) JP3417296B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074887A (en) * 1999-09-09 2001-03-23 Hitachi Ltd Chemical decontamination method
JP2013513098A (en) * 2009-12-04 2013-04-18 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface decontamination method
JP2018173391A (en) * 2017-03-31 2018-11-08 三菱重工業株式会社 Decontamination processing water processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074887A (en) * 1999-09-09 2001-03-23 Hitachi Ltd Chemical decontamination method
US6549603B1 (en) * 1999-09-09 2003-04-15 Hitachi, Ltd. Method of chemical decontamination
JP2013513098A (en) * 2009-12-04 2013-04-18 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface decontamination method
JP2018173391A (en) * 2017-03-31 2018-11-08 三菱重工業株式会社 Decontamination processing water processing method

Also Published As

Publication number Publication date
JP3417296B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
US11289232B2 (en) Chemical decontamination method using chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface
EP2596502B1 (en) Reactor decontamination system and process
US7622627B2 (en) System and method for chemical decontamination of radioactive material
US4587043A (en) Decontamination of metal surfaces in nuclear power reactors
JP5602241B2 (en) Surface decontamination method
EP0174317A1 (en) Decontamination of pressurized water reactors.
JPS608479B2 (en) Method of chemical decontamination of nuclear reactor structural parts
KR101523763B1 (en) Oxidation decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and oxidation decontamination method using the same
KR102400299B1 (en) Method for removing Mn in solution and SP-HyBRID decontamination comprising the same
KR930005582B1 (en) Hypohalite oxidation in decontaminating nuclear reators
JP3849925B2 (en) Chemical decontamination method
Murray A chemical decontamination process for decontaminating and decommissioning nuclear reactors
EP0416756A2 (en) Method for decontaminating a pressurized water nuclear reactor system
JP2007064634A (en) Method and device for chemical decontamination
JP3417296B2 (en) Decontamination method
JPH0765204B2 (en) Method for dissolving and removing iron oxide
KR101601201B1 (en) Chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and chemical decontamination method using the same
JP2018173391A (en) Decontamination processing water processing method
JPH0699193A (en) Chemical decontamination
JPH0119473B2 (en)
Kim et al. Establishment of an optimal decontamination process by the newly designed semi-pilot equipment
CN113737191A (en) Decontamination method of low-carbon martensite nickel-chromium stainless steel
KR20230117896A (en) Oxidizing chemical agent for decontamination of primary system facilities of nuclear power plant and decontamination method using the same
Pick Decontamination of PWR structural surfaces
JPH0430560B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term