JPH11343589A - Production of high-purity cobalt - Google Patents

Production of high-purity cobalt

Info

Publication number
JPH11343589A
JPH11343589A JP15127398A JP15127398A JPH11343589A JP H11343589 A JPH11343589 A JP H11343589A JP 15127398 A JP15127398 A JP 15127398A JP 15127398 A JP15127398 A JP 15127398A JP H11343589 A JPH11343589 A JP H11343589A
Authority
JP
Japan
Prior art keywords
cobalt
purity
electrolyte
electrolytic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15127398A
Other languages
Japanese (ja)
Other versions
JP4049886B2 (en
Inventor
Kuniteru Suzuki
邦輝 鈴木
Takumi Murai
匠 村井
Toshiaki Matsuda
敏紹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP15127398A priority Critical patent/JP4049886B2/en
Publication of JPH11343589A publication Critical patent/JPH11343589A/en
Application granted granted Critical
Publication of JP4049886B2 publication Critical patent/JP4049886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain high-purity Co at a low cost by electrolytically extracting cobalt from an electrolyte contg. cobalt sulfate, regulating the electrolyte tailings with cobalt hydroxide, removing the insoluble impurities to purify it and recycling the purified electrolyte tailings. SOLUTION: Co is electrolytically extracted from an electrolyte contg. CoSO4 . The electrolyte tailings are regulated to the same performance as the original injection soln. contg. 50-90 g/L Co and kept at pH 2-4 by the use of Co(OH)2 . The Co(OH)2 is preferably prepared by adding aq. ammonia to an aq. CoSO4 soln. and blowing ammonia gas into the soln. Further, the insoluble impurities contg. Ni, Fe, Mn, Al, Cu, Cd, etc., formed in the electrolysis and regulation are filtered off from the tailings. Consequently, the highly refined electrolyte tailings are recycled as an electrolyte. A high-purity >=5 N Co of a sputtering target material is efficiently obtained by such a simple process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造用のコ
バルトスパッタリングターゲット材等として重要な電解
採取による5Nレベルの高純度コバルトの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing 5N-level high-purity cobalt by electrolytic extraction, which is important as a material for a cobalt sputtering target for semiconductor production.

【0002】[0002]

【従来の技術】半導体デバイスのゲート電極材料として
近年コバルト(Co)が検討されている。しかし、半導
体デバイスはスパッタリング法により目的の電極、ゲー
ト、配線その他を形成し製造するが、スパッタリング法
に用いられるスパッタリングターゲットの材料としては
5N以上の高純度Coが要求される。現在、5N以上の
高純度Coの製造方法である電解法として、電解精製
法、溶媒抽出法を組み合わせた方法及び電解採取法を挙
げることができる。電解精製法は、不純物を含むCo金
属をアノードとし、アノードを電解液中で溶解しながら
カソードに精製したCoを電析するものである。しか
し、標準電極電位がCoに近い不純物、例えばニッケル
(Ni)や鉄(Fe)は分離が困難である。この問題点
を解決するために、例えば特開平6−192879号公
報には、電解精製法と溶媒抽出法を組み合わせ、電解精
製で分離の困難な金属を溶媒抽出で除去する電解液を用
いて高純度Coを得る方法が提案されている。一方、電
解採取法は、Co水溶液に不溶性アノードを用いて、カ
ソードに電解液中のCoを電析させる方法である。とく
に、電解精製法と比較して、粗金属のような中間段階を
経ないで一挙に高純度の金属を得ることができ、また電
解液の循環利用ができる等の利点があるため金属Coの
製造法として広く利用されている。しかし、Coを精製
する場合、得られるCoの純度は3N程度であった。純
度を上げるために高純度に精製された電解液を用いる必
要がある。このため、例えば特開平7−3486号公報
には電解の各段階でNi、Fe等の不純物を段階的に溶
媒抽出で除去する方法が提案されている。しかしなが
ら、高純度のCoを安定して容易に製造するために、炭
酸コバルトを添加して電解液のCo濃度とPHの調整す
るなどの工夫が必要である。
2. Description of the Related Art In recent years, cobalt (Co) has been studied as a gate electrode material for semiconductor devices. However, a semiconductor device is manufactured by forming target electrodes, gates, wirings, and the like by a sputtering method, and high purity Co of 5N or more is required as a material of a sputtering target used in the sputtering method. At present, as an electrolysis method which is a method for producing high-purity Co of 5N or more, a method combining an electrolytic refining method, a solvent extraction method, and an electrowinning method can be exemplified. In the electrolytic refining method, Co metal containing impurities is used as an anode, and purified Co is deposited on a cathode while the anode is dissolved in an electrolytic solution. However, impurities having a standard electrode potential close to Co, such as nickel (Ni) and iron (Fe), are difficult to separate. In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 6-192879 discloses a combination of an electrolytic refining method and a solvent extraction method, which employs an electrolytic solution that removes metals difficult to separate by electrolytic refining by solvent extraction. A method for obtaining the purity Co has been proposed. On the other hand, the electrowinning method is a method of using an insoluble anode in a Co aqueous solution and depositing Co in an electrolytic solution on a cathode. In particular, compared with the electrolytic refining method, it is possible to obtain a high-purity metal at once without passing through an intermediate step such as a crude metal, and there are advantages such as the circulating use of an electrolytic solution. Widely used as a manufacturing method. However, when Co was purified, the purity of the obtained Co was about 3N. In order to increase the purity, it is necessary to use a highly purified electrolytic solution. For this reason, for example, Japanese Patent Application Laid-Open No. 7-3486 proposes a method of removing impurities such as Ni and Fe stepwise by solvent extraction at each stage of electrolysis. However, in order to stably and easily produce high-purity Co, it is necessary to add cobalt carbonate to adjust the Co concentration and PH of the electrolytic solution.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記提
案の方法では、以下のような問題がある。電解採取によ
る高純度Coの製造工程中に、溶媒抽出工程を付加す
る、又は挿入することは工程が複雑であり、コストが高
くなり実用性に乏しいものである。また、添加するため
の炭酸コバルトを作製するためには、炭酸コバルト形成
剤としてこれまで炭酸アンモニウムが用いられている。
炭酸アンモニウムを調整剤として用いる電解液により電
解採取すると、一部アンモニウム錯体を形成し収率が下
がる。一方、炭酸コバルト形成剤としてアンモニア水を
用いる場合よりもより収率が高くなる。その反面、炭酸
アンモニア使用の場合CO2 のぬけかたに時間を要し、
液が不安定になり、さらに生成する炭酸コバルトの沈殿
が微細で濾過が遅く生産効率が低くなるという問題があ
る。さらに使用薬品費が約10倍となるため回収できる
Coのコストが非常に高くなるという問題がある。従っ
て、基本的に電解法で5N以上の高純度Coを製造する
ことは困難であった。
However, the method proposed above has the following problems. Adding or inserting a solvent extraction step during the production process of high-purity Co by electrowinning is complicated, increases the cost, and is not practical. Further, in order to produce cobalt carbonate to be added, ammonium carbonate has been used as a cobalt carbonate-forming agent.
When electrowinning is performed with an electrolytic solution using ammonium carbonate as an adjusting agent, an ammonium complex is partially formed and the yield is reduced. On the other hand, the yield is higher than when ammonia water is used as the cobalt carbonate forming agent. On the other hand, when using ammonium carbonate, it takes time to remove CO 2 ,
There is a problem that the liquid becomes unstable, and that the produced cobalt carbonate precipitates finely, slows down filtration and lowers production efficiency. Further, there is a problem in that the cost of Co that can be recovered is extremely high because the cost of chemicals used is about 10 times. Therefore, it was basically difficult to produce high purity Co of 5N or more by the electrolytic method.

【0004】本発明は、上記の問題点を鑑みてなされた
ものであり、その課題は、ターゲット材に適した5Nレ
ベルの高純度Coの高い製造効率を得るために、電解尾
液及び電解液を調整又精製する単純な工程を付加する電
解採取による高純度Coの製造方法を提供することであ
る。更に、電解採取の過程で不純物が除去された電解液
を用いて、電解尾液のCo濃度とPHを調整し不純物の
少ない電解液を作製し利用する電解採取による高純度C
oの製造方法を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to obtain an electrolytic tail solution and an electrolytic solution in order to obtain a high production efficiency of high-purity 5N-level Co suitable for a target material. To provide a method for producing high-purity Co by electrolytic extraction, which adds a simple step of adjusting or purifying Co. Further, using the electrolytic solution from which impurities have been removed in the course of electrolytic sampling, the Co concentration and PH of the electrolytic tail solution are adjusted to produce and use an electrolytic solution with less impurities.
to provide a manufacturing method of o.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1に記載の発明は、硫酸コバルトを含有す
る水溶液を電解液として電解採取するCoの製造方法に
おいて、電解尾液のCo濃度とPHを水酸化コバルトを
用いて調整し、電解時と調整時に不溶性不純物を除去精
製し、電解液として循環して使用する高純度Coの製造
方法である。請求項2に記載の発明は、請求項1に記載
の高純度Coの製造方法において、前記不溶性不純物が
Ni、Fe、Mn、Al、Cuである高純度Coの製造
方法である。請求項3に記載の発明は、請求項1又は2
に記載の高純度Coの製造方法において、前記水酸化コ
バルトが硫酸コバルトにアンモニア水を添加して又はア
ンモニアガスを吹き込むことにより作製される高純度C
oの製造方法である。請求項4に記載の発明は、請求項
1ないし3に記載の高純度Coの製造方法において、前
記電解液のCo濃度が50〜90g/Lで、PHが2〜
4である高純度Coの製造方法である。本発明におい
て、電解液及び電解尾液は硫酸等の酸性水溶液を用いる
ことが好ましい。
Means for Solving the Problems In order to solve the above-mentioned problems, the invention according to claim 1 provides a method for producing Co by electrolytically collecting an aqueous solution containing cobalt sulfate as an electrolytic solution. This is a method for producing high-purity Co in which Co concentration and PH are adjusted using cobalt hydroxide, and insoluble impurities are removed and refined during electrolysis and adjustment, and circulated and used as an electrolytic solution. The invention according to claim 2 is the method for producing high-purity Co according to claim 1, wherein the insoluble impurities are Ni, Fe, Mn, Al, and Cu. The invention described in claim 3 is the invention according to claim 1 or 2
The method for producing high-purity Co according to the above, wherein the cobalt hydroxide is prepared by adding ammonia water to cobalt sulfate or blowing ammonia gas.
This is a manufacturing method of o. According to a fourth aspect of the present invention, in the method for producing high-purity Co according to the first to third aspects, the electrolytic solution has a Co concentration of 50 to 90 g / L and a PH of 2 to 90 g / L.
4 is a method for producing high-purity Co. In the present invention, it is preferable to use an acidic aqueous solution such as sulfuric acid as the electrolytic solution and the electrolytic tail solution.

【0006】本発明は、電解尾液に可溶性でCo濃度及
びPHを上げる調整剤として、炭酸コバルトの代わりに
水酸化コバルトを用いるものである。電解槽より排出さ
れる電解尾液は連続的に注入される電解液に比べ、Co
濃度及びPHの低い液が排出されるが、この尾液は電解
液として循環使用するためには元の注液と同じCo濃度
及びPHに調整する。
In the present invention, cobalt hydroxide is used in place of cobalt carbonate as a regulator that is soluble in the electrolytic tail solution and increases the Co concentration and pH. The electrolytic tail solution discharged from the electrolytic cell has a higher Co content than the electrolytic solution continuously injected.
A liquid having a low concentration and low pH is discharged, but this tail liquid is adjusted to the same Co concentration and PH as the original injection liquid in order to be circulated and used as an electrolyte.

【0007】さらに、本発明は、Coとともに電析する
主な元素としてFe、Ni、Cu、Cd及び電着(電
析)せずに不溶物として電解液中に存在するものとして
Mn、Alを除去精製するものである。Mn、Alは、
Coとともに電解槽及びアノードでCoOOHとともに
酸化されて不溶物として生成する又は電解尾液調整時に
電解液中に不溶物として生成する。この不溶物を濾過し
て除去することができる。Feは、電解液中に生成する
不溶物及び電解尾液を水酸化コバルトで調整するときに
生ずる不溶物とともに濾過除去され、電解液中のFe濃
度を極微量まで低下することができる。Niは、電解中
の生成物にNiOOHとして、また電解尾液調整時にN
i(OH)2 として、また水酸化コバルト作製時に錯体
として系外に出されるため電解液中のNi濃度を極微量
まで低下することができる。Cu、Cdについては初期
電解が起こり電解液は循環を繰り返すごとに精製される
ため、電解液を循環使用することにより電解液中の濃度
を低減することができる。
Further, the present invention provides Fe, Ni, Cu, Cd as main elements to be deposited together with Co, and Mn and Al as those present in the electrolyte as insoluble substances without electrodeposition (electrodeposition). It is to be removed and purified. Mn and Al are
It is oxidized with CoOOH in the electrolytic cell and the anode together with Co and is generated as an insoluble substance, or is generated as an insoluble substance in the electrolytic solution at the time of adjusting the electrolytic tail solution. This insoluble matter can be removed by filtration. Fe is removed by filtration together with insolubles generated in the electrolytic solution and insolubles generated when the electrolytic tail solution is adjusted with cobalt hydroxide, so that the Fe concentration in the electrolytic solution can be reduced to a trace amount. Ni is added to the product during electrolysis as NiOOH and N
Since i (OH) 2 and a complex are taken out of the system during the production of cobalt hydroxide, the Ni concentration in the electrolytic solution can be reduced to an extremely small amount. Initial electrolysis occurs for Cu and Cd, and the electrolytic solution is purified each time the circulation is repeated. Therefore, by circulating and using the electrolytic solution, the concentration in the electrolytic solution can be reduced.

【0008】かくして電解液作製に用いた硫酸コバルト
溶液にアンモニア水を添加して又はアンモニアガスを吹
き込むことにより得られた水酸化コバルトを用い、電解
尾液のCo濃度及びPHを目標値に調整し、さらに電解
中生成した不溶物及び水酸化コバルト中で一部酸化され
た少量の不溶物及びPH調整時に生成する不溶物を濾過
することにより高度に生成された電解循環液を得ること
ができ、これを電解することにより高純度Coを効率よ
く安定に製造することができる。
Thus, the cobalt concentration and PH of the electrolytic tail solution are adjusted to target values by using cobalt hydroxide obtained by adding ammonia water to the cobalt sulfate solution used for preparing the electrolytic solution or by blowing ammonia gas. In addition, by filtering insolubles generated during electrolysis and a small amount of insolubles partially oxidized in cobalt hydroxide and insolubles generated at the time of pH adjustment, a highly generated electrolysis circulating liquid can be obtained, By electrolyzing this, high-purity Co can be efficiently and stably produced.

【0009】[0009]

【発明の実施の形態】本発明は、電解液のCo濃度及び
PH調整のために用いる調整剤として水酸化コバルトを
用いる。水酸化コバルトを作成する方法として、苛性ソ
ーダ等の苛性アルカリを使用する方法とアンモニア水又
はアンモニアガスを使用する方法がある。苛性ソーダを
用いた場合Coの収率は高いが、濾過性が悪く、洗浄に
手間がかかりNaの残留が問題となる。アンモニア水を
直接添加する場合とアンモニアガスを酸性水溶液中に吹
き込みアンモニア水を形成する場合と作用は同様で、C
oの一部が錯体を形成し液中に溶解するためにCoの収
率が悪くなるが、水酸化コバルトの濾過性は非常に良
く、更にアンモニアと錯体を形成するCu、Ni等を低
減させる方向に作用する。ここに用いられる調整剤はス
タート時に電解液作製に用いられたコバルト塩の純度と
同等以上であることが望まれる。これらの望まれる調整
剤が得られない場合、電解液を作製したコバルト塩より
水酸化コバルトを作製すること、または、電解尾液の一
部を濾過した後に水酸化コバルトを作製することが好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, cobalt hydroxide is used as an adjusting agent for adjusting the Co concentration and pH of an electrolytic solution. As a method for producing cobalt hydroxide, there are a method using caustic alkali such as caustic soda and a method using ammonia water or ammonia gas. When caustic soda is used, the yield of Co is high, but the filterability is poor, washing is troublesome, and there is a problem of residual Na. The operation is the same as when the ammonia water is directly added and when the ammonia gas is blown into the acidic aqueous solution to form the ammonia water.
Although a part of o forms a complex and dissolves in the liquid, the yield of Co is deteriorated, but the filtering property of cobalt hydroxide is very good, and further reduces Cu, Ni, etc. which form a complex with ammonia. Acts in the direction. It is desired that the adjusting agent used here has a purity equal to or higher than the purity of the cobalt salt used for preparing the electrolytic solution at the start. When these desired regulators cannot be obtained, it is preferable to prepare cobalt hydroxide from the cobalt salt from which the electrolytic solution was prepared, or to prepare cobalt hydroxide after filtering a part of the electrolytic tail solution.

【0010】さらに、本発明は、電解液が電解時と調整
時に生成する不溶性不純物を除去精製するものである。
Coともに電析する主な元素としてFe、Ni、Cu、
Cd等があり、電着(電析)せずに不溶物として電解液
中に生成するものとしてMn、Alがある。これのいず
れについても除去精製しなければ高純度Coを製造する
ことができない。Coの電着速度に対してNiは約1/
10、Feは約2倍の速度で電着する。Mn、Alは電
解槽及びアノードに少量酸化されて生成するCoOOH
とともに、液中に少量不溶物として生成し、また、電解
尾液調整時に不溶物として生成するので、濾過除去する
ことにより容易に精製することができる。FeはCoと
電着速度が近いために、製品中の割合は電解液のCoの
濃度比とほぼ同じになるが、本法を用いることにより電
解液中に生成する不溶物及び電解尾液を水酸化コバルト
で調整するときに生ずる不溶物とともに濾過除去され、
結果として電析Co中には、0.6ppm以下(検出限
界以下)と極微量まで低下する。NiはCoに対し約1
/10の電着速度であるために電解液の濃度比より電析
Co中の方が低くなる。Niは電解液中に濃縮されるた
めに、水酸化コバルトで調整することによりFeと同じ
ように電解中の生成物にNiOOHとして、また電解尾
液調整時にNi(OH)2 として、また水酸化コバルト
作製時に複錯体化合物として系外に出されるため電析C
o中のNi濃度は一定に安定している。
Further, the present invention is to remove and purify insoluble impurities generated during the electrolysis and during the adjustment of the electrolytic solution.
Fe, Ni, Cu, and
There are Cd and the like, and Mn and Al are formed in the electrolyte as insolubles without being electrodeposited (deposited). Without removing and purifying any of these, high-purity Co cannot be produced. Ni is about 1 /
10. Fe is electrodeposited at about twice the speed. Mn and Al are oxidized in a small amount in the electrolytic cell and anode.
At the same time, it is produced as a small amount of insoluble matter in the solution, and is produced as an insoluble matter at the time of adjusting the electrolytic tail solution, so that it can be easily purified by filtration and removal. Since Fe has a similar electrodeposition rate to Co, the ratio in the product is almost the same as the concentration ratio of Co in the electrolytic solution. However, by using this method, insoluble matters and electrolytic tail solution generated in the electrolytic solution are reduced. It is removed by filtration together with insolubles generated when adjusting with cobalt hydroxide,
As a result, the content in the deposited Co is as low as 0.6 ppm or less (below the detection limit), which is a very small amount. Ni is about 1 for Co
Since the electrodeposition rate is / 10, the concentration in the deposited Co is lower than the concentration ratio of the electrolytic solution. Since Ni is concentrated in the electrolytic solution, by adjusting with cobalt hydroxide, NiOOH is added to the product being electrolyzed in the same manner as Fe, and Ni (OH) 2 is used in the preparation of the electrolytic tail solution. Electrodeposited C because it is taken out of the system as a complex compound during the production of cobalt
The Ni concentration in o is constant and stable.

【0011】さらに、Cu、CdはCoの電着速度に対
して7〜10倍であり、電解液のCoの対する濃度比に
対し、電析Co中で7〜10倍となる。Cu、Cdは初
期電析が起こり電解液は循環を繰り返すごとに精製され
るため、電解液を循環使用することにより電析Co中の
Cu、Cdの濃度を低下させることができる。これらの
ことから本発明により電解液を効率的に循環しながら高
純度Coを安定して製造することができる。
Further, Cu and Cd are 7 to 10 times the electrodeposition rate of Co, and 7 to 10 times as high as the concentration ratio of Co in the electrolytic solution in electrodeposited Co. Initial deposition of Cu and Cd occurs, and the electrolytic solution is purified each time the circulation is repeated. Therefore, by circulating and using the electrolytic solution, the concentrations of Cu and Cd in the deposited Co can be reduced. From these facts, according to the present invention, high-purity Co can be stably produced while efficiently circulating the electrolytic solution.

【0012】(実施例)電解槽は直方体でその壁上に共
通の導体を置き、これに導電用棹につり下げた不溶性陽
極と陰極を交互にを配置する。電解槽は鉄鋼材料で溶接
したものに塩化ビニール、強化プラスチックで内張りを
する。隔膜を電極間に使用するものであってもよい。浸
出した電解尾液を水酸化コバルト水溶液で調整し6時間
静置させたものの上澄み液を電解液とし、Coの電解採
取をする。また、ここで静置したものをフィルター濾過
して電解液として使用してもよい。不純物は沈殿物又は
濾過残渣中に濃縮されて、溢流は循環させて電解尾液と
して使用する。なお、ここで使用する水酸化コバルト
は、Co濃度が70g/Lの硫酸コバルト溶液1Lに対
して、29%のアンモニア水140gを添加することに
より作製したものである。電解条件は、陽極を不溶性
に、陰極にAl箔を巻いたSUS板を用いる。建浴時、
電解液の主成分はCoSO4 とH2 SO4 である。注入
する水酸化コバルトの水溶液はCo濃度は70g/L、
PHは3である。電解採取の電流密度は150〜350
A/m2 、浴電圧2〜6Voltで、操業中の温度は45〜
65℃でおこなう。得られたCoの主要な不純物の濃度
を以下の表に示す。
(Embodiment) The electrolytic cell is a rectangular parallelepiped and a common conductor is placed on its wall, and an insoluble anode and a cathode suspended from a conductive rod are alternately arranged on the common conductor. The electrolytic cell is lined with vinyl chloride and reinforced plastic on a welded steel material. A diaphragm may be used between the electrodes. The leached electrolytic tail solution was adjusted with an aqueous solution of cobalt hydroxide and allowed to stand for 6 hours, and the supernatant was used as the electrolytic solution, and Co was sampled by electrolysis. In addition, what is left here may be filtered and used as an electrolyte. The impurities are concentrated in the sediment or the filtration residue, and the overflow is circulated and used as an electrolytic tail solution. The cobalt hydroxide used here was prepared by adding 140 g of 29% ammonia water to 1 L of a cobalt sulfate solution having a Co concentration of 70 g / L. As the electrolysis conditions, a SUS plate in which an anode is insoluble and an aluminum foil is wound on a cathode is used. At the time of bathing,
The main components of the electrolyte are CoSO 4 and H 2 SO 4 . The aqueous solution of cobalt hydroxide to be injected has a Co concentration of 70 g / L,
PH is 3. Current density of electrowinning is 150-350
A / m 2 , bath voltage 2-6 Volt, operating temperature 45-
Perform at 65 ° C. The following table shows the concentrations of the main impurities of Co thus obtained.

【0013】[0013]

【表1】 なお、アンモニアガスの場合は、溶液1L当たり100
%のNH3 ガスを120L/分で25〜30分吹き込む
ことにより作製されるものを用いることができる。いず
れの水酸化コバルトを用いても同様の不純物濃度とな
る。
[Table 1] In the case of ammonia gas, 100 L per 1 L of solution is used.
% NH 3 gas is blown at 120 L / min for 25 to 30 minutes. The same impurity concentration is obtained by using any of the cobalt hydroxides.

【0014】(比較例)実施例1と同様の電解尾液を水
酸化コバルトを含む水溶液で調整せず、さらに循環しな
いで、Coの電解採取をする。得られたCoの不純物濃
度を表2に示す。
(Comparative Example) The same electrolytic tail solution as in Example 1 was not adjusted with an aqueous solution containing cobalt hydroxide, and Co was sampled without circulation. Table 2 shows the obtained Co impurity concentrations.

【表2】 [Table 2]

【0015】この電解採取中に、陽極表面に付着する黒
色物を分離回収して分析した。また、電解槽底に沈降す
る黒色物を濾過分離して回収し同様に分析した。分析装
置はX線回折装置を用いた。陽極付着物は、(Co,M
n)OOH、CoOOHである。また、電解槽沈殿黒色
物は、(Co,Mn)OOH、CoOOH、AlOOH
である。これにより、Mn,Alを不溶物として濾過に
より分離回収できることがわかる。
During the electrowinning, black matter adhering to the anode surface was separated and collected for analysis. Further, a black substance settling at the bottom of the electrolytic cell was separated by filtration, collected and analyzed in the same manner. The analyzer used was an X-ray diffractometer. The anode deposit is (Co, M
n) OOH, CoOOH. In addition, black matter deposited in the electrolytic cell is (Co, Mn) OOH, CoOOH, AlOOH
It is. This indicates that Mn and Al can be separated and recovered by filtration as insolubles.

【0016】ここで、電解液は硫酸を使用する。Co等
の鉱石に酸化鉱、硫化鉱が多く、または硫酸等の酸浸出
の方が反応が早く、さらに硫酸の入手が容易だからであ
る。電解液中のCo濃度は50〜90g/Lがよい。5
0g/L以下及び90g/L以上では電流効率が低下す
るためである。とくに、60〜80g/Lの範囲が好ま
しい。電解液のPHは、2〜4の範囲がよい。PHが2
以下では電流効率が低下し、4以上ではCoの残渣ロス
が大きくなるためである。とくに、2.5〜3.5の範
囲が好ましい。
Here, sulfuric acid is used as the electrolyte. This is because an ore such as Co contains a large amount of oxidized ore or sulfide ore, or acid leaching with sulfuric acid or the like is faster in reaction and further facilitates the acquisition of sulfuric acid. The Co concentration in the electrolyte is preferably 50 to 90 g / L. 5
This is because the current efficiency decreases at 0 g / L or less and 90 g / L or more. In particular, a range of 60 to 80 g / L is preferable. The pH of the electrolyte is preferably in the range of 2 to 4. PH is 2
This is because the current efficiency is reduced below, and the residue loss of Co is increased above 4 when it is 4 or more. In particular, a range of 2.5 to 3.5 is preferable.

【0017】[0017]

【発明の効果】本発明は特殊な薬品を使用することな
く、かつ精製のための特別な工程を経ることがないため
設備的にも安価に、電解採取により高純度Coを製造す
ることができる。さらに、電解液の循環使用により、高
度に精製された電解液の電解採取により高純度Coを安
定して製造することができる。
According to the present invention, it is possible to produce high-purity Co by electrowinning at low cost in terms of equipment without using a special chemical and without passing through a special step for purification. . In addition, by circulating the electrolyte, it is possible to stably produce high-purity Co by electrowinning a highly purified electrolyte.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硫酸コバルトを含む電解液からの電解採
取によるコバルトの製造方法において、 電解尾液のコバルト濃度とPHを水酸化コバルトを用い
て調整し、電解時と調整時に生成する不溶性不純物を除
去精製し、電解液として循環使用することを特徴とする
高純度コバルトの製造方法。
1. A method for producing cobalt by electrolytic extraction from an electrolytic solution containing cobalt sulfate, wherein the cobalt concentration and PH of an electrolytic tail solution are adjusted using cobalt hydroxide to remove insoluble impurities generated during electrolysis and during the adjustment. A method for producing high-purity cobalt, comprising removing and purifying and circulating and using it as an electrolyte.
【請求項2】 請求項1に記載の高純度コバルトの製造
方法において、 前記不溶性不純物がニッケル(Ni)、鉄(Fe)、マ
ンガン(Mn)、アルミニウム(Al)、銅(Cu)で
あることを特徴とする高純度コバルトの製造方法。
2. The method for producing high-purity cobalt according to claim 1, wherein the insoluble impurities are nickel (Ni), iron (Fe), manganese (Mn), aluminum (Al), and copper (Cu). A method for producing high-purity cobalt, characterized by the following.
【請求項3】 請求項1又は2に記載の高純度コバルト
の製造方法において、前記水酸化コバルトを硫酸コバル
ト水溶液にアンモニア水を添加して又はアンモニアガス
を吹き込むことにより作製することを特徴とする高純度
コバルトの製造方法。
3. The method for producing high-purity cobalt according to claim 1, wherein the cobalt hydroxide is produced by adding ammonia water to a cobalt sulfate aqueous solution or by blowing ammonia gas. Production method of high purity cobalt.
【請求項4】 請求項1ないし3のいずれかに記載の高
純度コバルトの製造方法において、 前記電解液のコバルト濃度を50〜90g/Lで、PH
が2〜4にすることを特徴とする高純度コバルトの製造
方法。
4. The method for producing high-purity cobalt according to claim 1, wherein the electrolytic solution has a cobalt concentration of 50 to 90 g / L and a pH of PH.
Is 2 to 4. A method for producing high-purity cobalt.
JP15127398A 1998-06-01 1998-06-01 Method for producing high purity cobalt Expired - Fee Related JP4049886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15127398A JP4049886B2 (en) 1998-06-01 1998-06-01 Method for producing high purity cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15127398A JP4049886B2 (en) 1998-06-01 1998-06-01 Method for producing high purity cobalt

Publications (2)

Publication Number Publication Date
JPH11343589A true JPH11343589A (en) 1999-12-14
JP4049886B2 JP4049886B2 (en) 2008-02-20

Family

ID=15515077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15127398A Expired - Fee Related JP4049886B2 (en) 1998-06-01 1998-06-01 Method for producing high purity cobalt

Country Status (1)

Country Link
JP (1) JP4049886B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950598A (en) * 2018-07-13 2018-12-07 有研亿金新材料有限公司 Preparation method of electrolytic cobalt with low gas content
CN110669931A (en) * 2019-09-25 2020-01-10 宁波弗镁瑞环保科技有限公司 Method for removing cobalt by oxidizing nickel sulfate solution
CN113186409A (en) * 2021-04-29 2021-07-30 金川集团镍盐有限公司 Method for deeply removing cadmium from cobalt sulfate solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950598A (en) * 2018-07-13 2018-12-07 有研亿金新材料有限公司 Preparation method of electrolytic cobalt with low gas content
CN108950598B (en) * 2018-07-13 2020-03-27 有研亿金新材料有限公司 Preparation method of electrolytic cobalt with low gas content
CN110669931A (en) * 2019-09-25 2020-01-10 宁波弗镁瑞环保科技有限公司 Method for removing cobalt by oxidizing nickel sulfate solution
CN110669931B (en) * 2019-09-25 2021-04-27 宁波弗镁瑞环保科技有限公司 Method for removing cobalt by oxidizing nickel sulfate solution
CN113186409A (en) * 2021-04-29 2021-07-30 金川集团镍盐有限公司 Method for deeply removing cadmium from cobalt sulfate solution
CN113186409B (en) * 2021-04-29 2022-11-25 金川集团镍盐有限公司 Method for deeply removing cadmium from cobalt sulfate solution

Also Published As

Publication number Publication date
JP4049886B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP6356137B2 (en) Recovery of lead from mixed oxide materials.
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
JP5539851B2 (en) Method for preparing purified nickel solution, method for producing nickel metal, and method for producing nickel carbonate
JPH0382720A (en) Method for recovering indium
US5569370A (en) Electrochemical system for recovery of metals from their compounds
US3743585A (en) Metal recovery process
EP3581666A1 (en) Method for recycling copper-indium-gallium-selenium waste
EP0253783B1 (en) Process for refining gold and apparatus employed therefor
US4030989A (en) Electrowinning process
US3677918A (en) Method for directly electrochemically extracting gallium from a circulating aluminate solution in the bayer process by eliminating impurities
CN111826525B (en) Method for producing metal cobalt by sulfuric acid system electrodeposition
EP0235999A1 (en) Electrolytic process
US3983018A (en) Purification of nickel electrolyte by electrolytic oxidation
JP3882608B2 (en) Method and apparatus for electrolytic purification of high purity tin
CN111826527A (en) Method for recovering copper indium gallium selenide material
CN113026056B (en) Method for producing electrolytic cobalt by adopting secondary electrolysis of cobalt intermediate product
JP4049886B2 (en) Method for producing high purity cobalt
US4151257A (en) Processing nonferrous metal hydroxide sludge wastes
CA1125227A (en) Process for recovering cobalt electrolytically
US1887037A (en) Process of refining nickel bearing materials
US4274930A (en) Process for recovering cobalt electrolytically
CA2214879A1 (en) Polyacrylic acid additives for copper electrorefining and electrowinning
JPS6350411B2 (en)
AU654774B2 (en) Electrochemical system for recovery of metals from their compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141207

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees