JPH11342464A - Cooling method for mold and casting device - Google Patents

Cooling method for mold and casting device

Info

Publication number
JPH11342464A
JPH11342464A JP14746198A JP14746198A JPH11342464A JP H11342464 A JPH11342464 A JP H11342464A JP 14746198 A JP14746198 A JP 14746198A JP 14746198 A JP14746198 A JP 14746198A JP H11342464 A JPH11342464 A JP H11342464A
Authority
JP
Japan
Prior art keywords
mold
casting
gas
chamber
pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14746198A
Other languages
Japanese (ja)
Other versions
JP3299506B2 (en
Inventor
Susumu Ishiguro
進 石黒
Atsushi Tomioka
篤 富岡
Toyomaru Hanazawa
豊丸 花澤
Tsuneaki Nishikawa
恒明 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14746198A priority Critical patent/JP3299506B2/en
Publication of JPH11342464A publication Critical patent/JPH11342464A/en
Application granted granted Critical
Publication of JP3299506B2 publication Critical patent/JP3299506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the life of a mold for a large ingot by swinging a jet gas from a plurality of jet nozzles arranged in a casting chamber or a casting pit on an outer periphery of the mold, and reducing the time when an inner face of the mold is held at more than a given temperature. SOLUTION: For example, a mold 1 is installed on a stand board 4 in a vacuum chamber 6 arranged in a pit, and a feeder frame 3 is disposed thereon for carrying out vacuum casting. Eight gas jet nozzles 5 are arranged inside the vacuum chamber 6 at equal intervals in a manner to surround the mold 1, and gas jet nozzle groups 5a, 5b, 5c are arranged in three lines in a height direction. The jet direction of the gas jet nozzle groups is 45 deg. towards a center portion of the vacuum chamber 6 to the tangent of the inner perimeter of the vacuum chamber 6. The jet gases from the gas jet nozzle groups are swung in the same direction between the inner face of the casting chamber and the outer peripheral part of the mold after casting, so as to reduce the time when the mold inner face is held above 650 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型の冷却方法お
よび鋳造装置に関するもので、特に、大型鋼塊用(11
0トン以上の鋼塊)の鋳型の冷却方法および鋳造装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a casting mold and a casting apparatus, and more particularly to a method for cooling a large ingot (11).
The present invention relates to a method for cooling a mold of 0 ton or more steel ingot) and a casting apparatus.

【0002】[0002]

【従来の技術】従来、タービンロータ、大型反応容器
(シェル)等用の鋼塊は鋳造により製造されている。そ
の後、この鋼塊は鍛造、熱処理、機械加工等の製造工程
を経て最終製品に加工されている。前記鋳造工程では、
電気炉等により所定の成分に調整された溶湯が、鋳鉄製
の鋳型に上注ぎされ、この鋳込まれた溶湯は鋳型内で凝
固、冷却されて鋼塊が製造される。鋼塊、特に大型鋼塊
の鋳造工程は、図10に示すような、真空鋳造法が用い
られることが多い。この真空鋳造法は、真空チャンバー
6内に鋳型1を配設し、真空排気口14から図示しない
大型の真空ポンプ又はスチームエジェクタにより排気し
ながら、溶湯を鋳型1に注入するものである。このと
き、溶湯は細かい粒滴11となり、溶湯中の有害ガス
(主に水素ガス)が除去される。鋼塊中に、水素が残留
すると水素割れ原因となり、特に、大型鋼塊は割れ感受
性が高く、さらに割れた場合の影響も大きい。このた
め、大型鋼塊の製造には真空鋳造法が用いられている。
そして、この大型鋼塊は、鋳型とともに、真空チャンバ
ー内に所定の時間静置後、鍛錬のために加熱炉で加熱す
るのが通常である。
2. Description of the Related Art Conventionally, steel ingots for turbine rotors, large reaction vessels (shells) and the like have been manufactured by casting. After that, the steel ingot is processed into a final product through manufacturing processes such as forging, heat treatment, and machining. In the casting step,
The molten metal adjusted to a predetermined component by an electric furnace or the like is poured over a cast iron mold, and the cast molten metal is solidified and cooled in the mold to produce a steel ingot. In the casting process of a steel ingot, particularly a large steel ingot, a vacuum casting method as shown in FIG. 10 is often used. In this vacuum casting method, molten metal is injected into the mold 1 while disposing the mold 1 in a vacuum chamber 6 and evacuating from a vacuum exhaust port 14 using a large-sized vacuum pump or a steam ejector (not shown). At this time, the molten metal becomes fine droplets 11, and harmful gas (mainly hydrogen gas) in the molten metal is removed. If hydrogen remains in the steel ingot, it causes hydrogen cracking. In particular, large steel ingots have high cracking susceptibility, and the effect of cracking is large. For this reason, the vacuum casting method is used for the production of large steel ingots.
Then, the large steel ingot is usually left in a vacuum chamber together with the mold for a predetermined time and then heated in a heating furnace for forging.

【0003】[0003]

【発明が解決しようとする課題】ところが、これら鋼塊
の鋳造に用いられる鋳型の寿命は、表1に示すように、
鋼塊が大型化するほどに低下する傾向がある。ここで、
表1はタービンロータ、大型反応容器(シェル)等に用
いられる大型鋼塊用鋳型の寿命までの使用回数を示すも
のである。このように、鋼塊が大型化することにより、
それに用いる鋳型の寿命が低下して早期に廃却しなけば
ならないのが現状である。さらに、100トン以上の鋼
塊用鋳型の寿命は、数トンから数十トンクラスの鋼塊用
鋳型の寿命(約100ch以上)に比べて著しく低くな
る問題がある。さらに、このような大型鋼塊用鋳型の製
作費は高価なものであり、大型鋼塊の製造コストをさら
に高くする問題がある。このため、大型鋼塊用鋳型の省
資源化および大型鋼塊の製造コストの低減のために大型
鋼塊用鋳型の高寿命化が要望されている。
However, the life of the mold used for casting these ingots is as shown in Table 1.
It tends to decrease as the steel ingot becomes larger. here,
Table 1 shows the number of times the mold for a large steel ingot used for a turbine rotor, a large reaction vessel (shell) and the like has been used until the life thereof. In this way, as the steel ingot becomes larger,
At present, the life of the mold used for this purpose is shortened and must be discarded at an early stage. Furthermore, there is a problem that the life of a mold for ingots of 100 tons or more is significantly shorter than the life (about 100 ch or more) of molds for ingots of several to several tens tons class. Furthermore, the production cost of such a large ingot mold is expensive, and there is a problem that the production cost of the large ingot is further increased. For this reason, there is a demand for extending the life of the mold for large ingots in order to save resources of the mold for large ingots and reduce the production cost of large ingots.

【0004】[0004]

【表1】 [Table 1]

【0005】この大型鋼塊用鋳型の寿命低下の原因は、
鋼塊の大型化に伴い、鋳型が高温で保持される時間が長
くなったために生じたものと考えられる。しかしなが
ら、従来、鋳型を冷却することにより鋳型寿命の向上を
図ることは考慮されていなかった。
[0005] The cause of the shortening of the life of the mold for large ingots is as follows.
It is considered that this occurred because the time during which the mold was held at a high temperature became longer with the increase in the size of the steel ingot. However, conventionally, it has not been considered to improve the life of the mold by cooling the mold.

【0006】なぜなら、溶湯が注入された状態での大型
鋼塊用鋳型の冷却を効率よく冷却することが困難であ
る。すなわち、溶湯が注入された状態での大型鋼塊用鋳
型は、重量が大きいため熱容量が多く、かつ、単重量当
たりの表面積が小さいので、外部からの冷却効果が少な
いためである。このような溶湯が注入された状態での大
型鋼塊用鋳型を効率よく冷却するためには、例えば、冷
却ガスを送風するための大容量の送風機を多数設ける
と、冷却設備の投資に多大の費用を必要とすることとな
る。さらに、大型鋼塊は真空鋳造法で主に製造されるの
で、真空チャンバー内にこれら冷却設備を設ける必要が
ある。しかし、真空チャンバー内に送風機等を設けるス
ペースがなく、たとえ、設けることができたとしても、
真空チャンバーの有効容積を減少させるという問題も生
じる。
[0006] This is because it is difficult to efficiently cool the large steel ingot mold in a state where the molten metal is poured. That is, the large ingot mold in a state in which the molten metal is poured has a large heat capacity due to its large weight, and has a small surface area per unit weight, so that the cooling effect from the outside is small. In order to efficiently cool the large steel ingot mold in a state where such a molten metal is injected, for example, if a large number of large-capacity blowers for blowing a cooling gas are provided, a large amount of investment in cooling equipment is required. You will need to pay for it. Furthermore, since large steel ingots are mainly produced by a vacuum casting method, it is necessary to provide these cooling facilities in a vacuum chamber. However, there is no space for installing a blower or the like in the vacuum chamber, and even if it can be provided,
There is also the problem of reducing the effective volume of the vacuum chamber.

【0007】そこで、本発明は、大型鋼塊用鋳型の寿命
を向上させるために、真空鋳造法で用いる鋳造用チャン
バー又は鋳造用ピット内に、簡便な冷却設備を設けるこ
とができ、そして、この冷却設備によって鋳型を効率よ
く冷却し、鋳型寿命を向上できる鋳型の冷却方法および
鋳造装置を提供することを目的とするものである。
Therefore, the present invention can provide a simple cooling facility in a casting chamber or a casting pit used in a vacuum casting method in order to improve the life of a large ingot mold. It is an object of the present invention to provide a mold cooling method and a casting apparatus capable of efficiently cooling a mold by cooling equipment and improving a mold life.

【0008】[0008]

【課題を解決するための手段】前述した目的を達成する
ために、本発明のうちで請求項1記載の発明は、鋳造用
チャンバー又は鋳造用ピット内に配設された鋳型内へ溶
湯を鋳造した後の鋼塊の冷却に際して、前記鋳造用チャ
ンバー又は鋳造用ピット内に複数のガス噴射ノズルを設
け、この複数のガス噴射ノズルからの噴射ガスを前記鋳
型の外周部で旋回させて、鋳型内面が650℃以上の温
度で保持される時間を短縮することを特徴とするもので
ある。鋳造用チャンバー又は鋳造用ピット内に複数のガ
ス噴射ノズルを設け、この複数のガス噴射ノズルからの
噴射ガスを、前記鋳造用チャンバー又は鋳造用ピットの
内面と前記鋳型の外周部との間で同一方向へ旋回させる
ことによって、噴射ガスと鋳型の外周面との間の熱交換
を促進させて鋳型を効率よく冷却できる。そして、鋳型
を効率よく冷却することによって、鋳型の寿命低下に大
きな影響をあたえる温度領域(650℃以上)に、鋼塊
と接する鋳型内面が保持される時間を短縮することがで
き、鋳型寿命を向上できる。
In order to achieve the above-mentioned object, according to the present invention, a molten metal is cast into a mold provided in a casting chamber or a casting pit. At the time of cooling the ingot after the casting, a plurality of gas injection nozzles are provided in the casting chamber or the casting pit, and the injection gas from the plurality of gas injection nozzles is swirled around the outer periphery of the mold to form an inner surface of the mold. Is reduced at a temperature of 650 ° C. or more. A plurality of gas injection nozzles are provided in the casting chamber or the casting pit, and the injection gas from the plurality of gas injection nozzles is the same between the inner surface of the casting chamber or the casting pit and the outer periphery of the mold. By turning in the direction, heat exchange between the injection gas and the outer peripheral surface of the mold is promoted, and the mold can be cooled efficiently. By efficiently cooling the mold, the time for which the inner surface of the mold in contact with the steel ingot is maintained in a temperature range (650 ° C. or higher) which greatly affects the life of the mold can be reduced, and the life of the mold can be shortened. Can be improved.

【0009】また、請求項2記載の発明は、請求項1記
載の発明の構成のうち、鋳型の外周部で旋回させる噴射
ガスの流速を5m/秒以上にすることを特徴とするもの
である。鋳型の外周部で旋回させる噴射ガスの流速を5
m/秒以上にすることによって、噴射ガスと鋳型の外周
部との間の熱交換をより促進させて鋳型をさらに効率よ
く冷却できる。
According to a second aspect of the present invention, in the configuration of the first aspect, the flow rate of the injection gas swirled around the outer periphery of the mold is set to 5 m / sec or more. . The flow velocity of the injection gas swirled around the outer periphery of the mold is 5
By setting it to m / sec or more, heat exchange between the injection gas and the outer peripheral portion of the mold is further promoted, and the mold can be cooled more efficiently.

【0010】また請求項3記載の発明は、請求項1又は
2記載の発明を110トン以上の鋼塊の鋳造用鋳型に用
いることを特徴とするものである。110トン以上の鋼
塊用鋳型の寿命を効果的に向上できる。
The invention according to claim 3 is characterized in that the invention according to claim 1 or 2 is used for a casting mold of a steel ingot of 110 tons or more. The life of a steel ingot mold of 110 tons or more can be effectively improved.

【0011】また請求項4記載の発明は、鋳造用チャン
バー又は鋳造用ピット内に配設された鋳型内へ溶湯を注
入する鋳造装置において、前記鋳造用チャンバー又は鋳
造用ピットの内面側に複数のガス噴射ノズルを設け、こ
の複数のガス噴射ノズルが前記鋳造用チャンバー又は鋳
造用ピット内に設置された前記鋳型の外周部の同一接線
方向にガス噴射できる構造であることを特徴とするもの
である。鋳造用チャンバー又は鋳造用ピットの内面側に
複数のガス噴射ノズルを設け、この複数のガス噴射ノズ
ルが前記鋳造用チャンバー又は鋳造用ピット内に設置さ
れた前記鋳型の外周部の同一接線方向にガス噴射できる
構造とすることにより、前記複数のガス噴射ノズルから
の噴射ガスを前記鋳造用チャンバー又は鋳造用ピットの
内面と前記鋳型の外周部との間の狭い空間で旋回させる
ことができる。この結果、噴射ガスと鋳型の外周面との
間の熱交換を促進させて鋳型を効率よく冷却できると共
に、これら鋳造用チャンバー又は鋳造用ピット内の有効
スペースを殆ど狭めることはない。
According to a fourth aspect of the present invention, there is provided a casting apparatus for injecting molten metal into a casting mold provided in a casting chamber or a casting pit, wherein a plurality of castings are provided on an inner surface side of the casting chamber or the casting pit. Gas injection nozzles are provided, and the plurality of gas injection nozzles have a structure capable of injecting gas in the same tangential direction on the outer peripheral portion of the casting mold installed in the casting chamber or the casting pit. . A plurality of gas injection nozzles are provided on the inner surface side of the casting chamber or the casting pit, and the plurality of gas injection nozzles are provided in the same tangential direction of the outer peripheral portion of the mold provided in the casting chamber or the casting pit. By having a structure capable of injecting, the injection gas from the plurality of gas injection nozzles can be swirled in a narrow space between the inner surface of the casting chamber or the casting pit and the outer peripheral portion of the mold. As a result, heat exchange between the injected gas and the outer peripheral surface of the mold can be promoted to efficiently cool the mold, and the effective space in the casting chamber or the casting pit is hardly narrowed.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図示例によ
り説明する。図1は本発明の鋳造装置の概略を示す図で
あって、a)は鋳型を配設した状態を示す平面図であ
り、b)は鋳型を配設し、真空タンク用蓋を設置した状
態を示すA−A断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to illustrated examples. 1 is a view schematically showing a casting apparatus of the present invention, in which a) is a plan view showing a state where a mold is provided, and b) is a state where a mold is provided and a lid for a vacuum tank is provided. FIG.

【0013】本発明の鋳造装置は、図1に示すような、
ピット内に真空チャンバー6を設けた構造である。この
真空チャンバー6内の台盤4上に、鋳型1が配設され、
さらに、この鋳型1上に押湯枠3が配置される。この状
態で、前述したように真空鋳造が行われる。
[0013] The casting apparatus of the present invention is as shown in FIG.
This is a structure in which a vacuum chamber 6 is provided in the pit. The mold 1 is disposed on the base 4 in the vacuum chamber 6,
Further, a feeder frame 3 is arranged on the mold 1. In this state, vacuum casting is performed as described above.

【0014】本発明の鋳造装置に用いる冷却装置は、図
1(a)に示すように、ガス噴射ノズル5を真空チャン
バー6の内面側に、鋳型1を囲むように、当間隔(45
°置きに8本)に設けるとともに、このガス噴射ノズル
群5a、5b、5cを、図1(b)に示すように、高さ
方向に3列に設けた構造である。これらガス噴射ノズル
群5a、5b、5cのガス噴射方向は、真空チャンバー
6の内円周の接戦に対して、真空チャンバー6の中心部
に向かって45°の方向に向いており、必要に応じて、
これらガス噴射ノズル群5a、5b、5cのガス噴射方
向は可変に動かすことができる構造になっている。そし
て、これらガス噴射ノズル群5a、5b、5cはリング
状ガス配管8に接続され、さらに、このリング状ガス配
管8は図示しないガス供給装置につながるガス配管9に
接続されている。
As shown in FIG. 1 (a), the cooling device used in the casting apparatus of the present invention has a gas injection nozzle 5 on the inner surface side of the vacuum chamber 6 so as to surround the casting mold 1 at an interval (45).
And eight gas injection nozzle groups 5a, 5b, and 5c are provided in three rows in the height direction, as shown in FIG. 1B. The gas injection directions of the gas injection nozzle groups 5a, 5b, and 5c are oriented at 45 ° toward the center of the vacuum chamber 6 with respect to the close contact of the inner circumference of the vacuum chamber 6, and if necessary. hand,
The gas injection directions of the gas injection nozzle groups 5a, 5b, and 5c can be variably moved. The gas injection nozzle groups 5a, 5b, and 5c are connected to a ring-shaped gas pipe 8, and the ring-shaped gas pipe 8 is connected to a gas pipe 9 connected to a gas supply device (not shown).

【0015】この本発明は、この鋳造装置を用いて、種
々の実験および解析を行った結果、「鋳造用チャンバー
内に設けた複数のガス噴射ノズルからの噴射ガスを、鋳
造用チャンバーの内面と鋳造後の鋳型の外周部との間で
同一方向に旋回させて、鋳型内面が650℃以上で保持
される時間を短縮することにより鋳型寿命を向上でき
る」という知見を得たものである。この発明の完成に至
った過程を説明する。
According to the present invention, as a result of conducting various experiments and analyzes using this casting apparatus, it was found that the injection gas from a plurality of gas injection nozzles provided in the casting chamber was By rotating the mold in the same direction with the outer periphery of the mold after casting to shorten the time for keeping the inner surface of the mold at 650 ° C. or higher, the life of the mold can be improved. ” The process leading to the completion of the present invention will be described.

【0016】まず、溶湯を注入した鋳型の温度変化を調
査し、この調査結果と鋳型寿命との関係について検討し
た。このときの鋳造条件を表2および表3に示す。そし
て、鋳型の外周部の測温結果と鋳型の内面の伝熱計算に
よるシミュレーション結果を図2に、鋳型寸法と高温保
持時間との関係を図3に、さらに、鋳型寸法と累積高温
保持時間との関係を図4に示す。
First, the temperature change of the mold into which the molten metal was injected was investigated, and the relationship between the result of the investigation and the life of the mold was examined. Tables 2 and 3 show the casting conditions at this time. FIG. 2 shows the results of the temperature measurement of the outer peripheral portion of the mold and the simulation results obtained by calculating the heat transfer of the inner surface of the mold. FIG. 3 shows the relationship between the mold size and the high-temperature holding time. Is shown in FIG.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】溶湯を注入した鋳型の温度変化の調査は、
前述の真空鋳造装置(図1参照)の真空チャンバー内に
設置した鋳型内に溶湯を注入し、鋳型の中央部の外表面
を測温するとともに、その鋳型の内面の温度を伝熱計算
により演算して求めた。これらの結果を図2に示す。
Investigation of the temperature change of the mold into which the molten metal was poured
The molten metal is poured into a mold placed in a vacuum chamber of the above-mentioned vacuum casting apparatus (see FIG. 1), and the outer surface of the center of the mold is measured, and the temperature of the inner surface of the mold is calculated by heat transfer calculation. I asked. These results are shown in FIG.

【0020】図2に示すように、鋳型の外表面および内
面の温度は、溶湯の注入と同時に急激に高くなり、ある
値で極大を示した後、徐々に低下する。このとき鋳型の
内面温度が極大を示す温度は約780℃であることが判
明した。そして、内面温度が極大を示す温度は、130
T(トン)鋼塊用鋳型、230T鋼塊用鋳型との間で大
差がないが、鋳型の内面が650℃以上の温度で保持さ
れる時間は、130T鋼塊用鋳型に比べて、230T鋼
塊用鋳型の方が長くなっていることが判明した。
As shown in FIG. 2, the temperatures of the outer surface and the inner surface of the mold rise rapidly at the same time as the injection of the molten metal, reach a maximum at a certain value, and then gradually decrease. At this time, it was found that the temperature at which the inner surface temperature of the mold reached a maximum was about 780 ° C. The temperature at which the inner surface temperature shows the maximum is 130
Although there is not much difference between the mold for T (ton) ingot and the mold for 230T ingot, the time during which the inner surface of the mold is kept at a temperature of 650 ° C. or more is shorter than that for 130T ingot. It turned out that the lump mold was longer.

【0021】次に、鋳型の内面の温度が650℃以上で
保持される時間と鋳型寸法との関係を調査し、この結果
を図3に示す。横軸に鋳型寸法、縦軸に各温度以上で保
持される時間を示す。図3に示すように、650℃およ
び700℃以上の温度で保持される時間と鋳型寸法との
間に、比例関係が認められ、鋳型寸法の増加とともに保
持時間が増加することが明らかとなった。
Next, the relationship between the time during which the temperature of the inner surface of the mold was maintained at 650 ° C. or higher and the dimensions of the mold was investigated, and the results are shown in FIG. The horizontal axis shows the dimensions of the mold, and the vertical axis shows the time maintained at each temperature or higher. As shown in FIG. 3, a proportional relationship was observed between the time held at a temperature of 650 ° C. and 700 ° C. or more and the mold size, and it became clear that the holding time increased with the increase in the mold size. .

【0022】そして、前述の表1に示す鋳型寿命を基
に、各鋳型がこの鋳型寿命になるまでに650℃又は7
00℃以上の温度で保持された累積時間を計算した。こ
の結果を図4に示す。図4から明らかなように、鋳型寿
命は、鋳型寸法にかかわらず、ほぼ一定の累積保持時間
で寿命に達すことが判明した。例えば、650℃以上で
保持された累積時間が約950時間に達すると、鋳型は
寿命となり廃却されることとなる。
Then, based on the mold life shown in Table 1 above, each mold is allowed to reach 650.degree.
The cumulative time held at a temperature above 00 ° C. was calculated. The result is shown in FIG. As is clear from FIG. 4, it was found that the life of the mold reached the life with a substantially constant cumulative holding time regardless of the size of the mold. For example, when the cumulative time maintained at 650 ° C. or more reaches about 950 hours, the mold will reach its end of life and will be discarded.

【0023】この現象は、鋳鉄が高温で長時間加熱され
ると不可逆的な体積膨張を生じ、その結果、鋳鉄に割れ
が生ずるものと対応するものである。この現象はパーラ
イト中のCの黒鉛化によるもので、黒鉛化は約480℃
から始まり、温度の上昇とともに増大する傾向がある。
すなわち、高温(例えば、650℃以上)に保持された
時間に比例して、鋳物に割れが発生して、鋳型が寿命に
達したものと考えられる。この結果、鋳型の寿命を向上
させるためには、高温(650℃以上)で鋳型の内面が
保持される時間を短縮することにより達成できるという
知見を得た。
This phenomenon corresponds to a phenomenon in which when the cast iron is heated at a high temperature for a long time, irreversible volume expansion occurs, and as a result, cracks occur in the cast iron. This phenomenon is due to the graphitization of C in pearlite.
And tends to increase with increasing temperature.
That is, it is considered that the casting cracked in proportion to the time maintained at a high temperature (for example, 650 ° C. or higher), and the mold reached its life. As a result, it has been found that the life of the mold can be improved by shortening the time during which the inner surface of the mold is held at a high temperature (650 ° C. or higher).

【0024】さらに、発明者らは、真空鋳造法における
大型鋳型の効率の良い冷却方法を検討し、本発明の鋳型
の冷却方法および冷却に用いる鋳造装置を完成した。こ
の結果を次に示す。大型鋼塊用鋳型の冷却方法を種々検
討した結果、「鋳造用チャンバー内に複数のガス噴射ノ
ズルを設け、この複数のガス噴射ノズルからの噴射ガス
を前記鋳型の外周部で同一方向に旋回させることによ
り、鋳型を効率よく冷却できる」という知見を得た。す
なわち、鋳造用チャンバー内に設けた複数のガス噴射ノ
ズルからの噴射ガスにより、鋳型と鋳造用チャンバーと
の間の狭い空間に、旋回流を生じさせ、この旋回流によ
り鋳型外周部と熱交換を行うものである。
Further, the inventors studied an efficient cooling method for a large mold in a vacuum casting method, and completed a mold cooling method and a casting apparatus used for cooling according to the present invention. The results are shown below. As a result of various studies on the cooling method of the mold for large ingots, it was found that “a plurality of gas injection nozzles are provided in the casting chamber, and the injection gas from the plurality of gas injection nozzles is swirled in the same direction on the outer peripheral portion of the mold. Thereby, the mold can be cooled efficiently ". That is, the injection gas from the plurality of gas injection nozzles provided in the casting chamber causes a swirl flow in a narrow space between the mold and the casting chamber, and the swirl flow causes heat exchange with the outer periphery of the mold. Is what you do.

【0025】この旋回流を生じさせる方法についての検
討結果を図5および図6に示す。図5はガスの流れの数
値計算による検討方法を示す説明図であり、(a)は鋳
型とガス噴射ノズルを配設した状態を示す鋳造用チャン
バーの平面図であり、(b)は鋳型とガス噴射ノズルを
配設した状態を示す鋳造用チャンバーの断面図である。
そして、図6は、ガスの流れの数値計算による結果の一
例を示す説明図である。
FIG. 5 and FIG. 6 show the results of a study on the method of generating this swirling flow. FIGS. 5A and 5B are explanatory diagrams showing a method of studying the flow of gas by numerical calculation. FIG. 5A is a plan view of a casting chamber showing a state in which a mold and a gas injection nozzle are provided, and FIG. It is sectional drawing of the casting chamber which shows the state in which the gas injection nozzle was arrange | positioned.
FIG. 6 is an explanatory diagram showing an example of a result obtained by numerical calculation of a gas flow.

【0026】図5(a)に示すように、ガス噴射ノズル
は鋳造用チャンバー内周面に、同一円周上に45°置き
に設け、そして、図5(b)に示すように、鋳型の高さ
方向に上、中、下の3段に設けた。このときのそれぞれ
のガス噴射ノズルのガス噴射方向は鋳型の外周部の同一
の接線方向とした。図5(b)の斜線部(1/8領域の
周期境界条件)について、汎用流体解析プログラムST
REAMを用いて、鋳型冷却時のガス流れの状況を乱流
モデルを考慮して3次元計算した。このときの、鋳造条
件は前述の表2および表3の条件を用い、噴射ノズルの
空気流量を850Nm3 /hr、冷却空気の温度を20
℃として計算した。
As shown in FIG. 5A, gas injection nozzles are provided on the inner peripheral surface of the casting chamber at every 45 ° on the same circumference, and as shown in FIG. It is provided in three steps, upper, middle, and lower in the height direction. The gas injection direction of each gas injection nozzle at this time was the same tangential direction on the outer peripheral portion of the mold. Regarding the hatched portion (periodic boundary condition of 1/8 region) in FIG.
Using REAM, the three-dimensional calculation of the state of gas flow during cooling of the mold was performed in consideration of the turbulence model. At this time, the casting conditions were the same as those in Tables 2 and 3 above, the air flow rate of the injection nozzle was 850 Nm 3 / hr, and the temperature of the cooling air was 20.
Calculated as ° C.

【0027】図6に示されるように、ガス噴射ノズルか
ら噴射されたガスの流れは、鋳造用チャンバー内周面と
鋳型の外周部との間で旋回する旋回流となることが明ら
かとなった。さらに、解析実験を行った結果、この旋回
流を生じさせるためには、図7に示すように、鋳型の外
周部の接線方向に対して、θ=0〜30°とすることが
必要であることが判明した。
As shown in FIG. 6, it was found that the flow of the gas injected from the gas injection nozzle was a swirling flow swirling between the inner peripheral surface of the casting chamber and the outer peripheral portion of the mold. . Further, as a result of an analysis experiment, in order to generate this swirling flow, it is necessary to set θ = 0 to 30 ° with respect to the tangential direction of the outer peripheral portion of the mold as shown in FIG. It has been found.

【0028】このとき得られる鋳型表面の表面流速と2
30T鋼塊用鋳型における650℃以上の温度で保持さ
れる時間を数値計算により求めた。この結果を図8に示
す。図8において、左端の○、□は自然対流(従来例)
におけるそれぞれ650℃、700℃以上に保持される
時間を示す。例えば、650℃以上の温度で保持される
時間(●)は、冷却ガスの流速が5m/秒の場合には2
5時間から20時間と短縮される。そして、図9に示す
ように、鋳型寿命が35chから42〜50ch程度に
なることが期待される。なお、図9は、前述の図4を基
に、230T鋼塊用鋳型におけるチャージ当たりの65
0℃以上の保持される時間と鋳型寿命の関係を求めたも
のである。また、鋳型の寿命低下に大きな影響をあたえ
る温度領域として、650℃以上の温度の代わりに、7
00℃以上の温度を用いてもよい。
The surface velocity of the mold surface obtained at this time is 2
The time during which the 30T steel ingot was held at a temperature of 650 ° C. or higher was determined by numerical calculation. The result is shown in FIG. In FIG. 8, ○ and □ at the left end indicate natural convection (conventional example).
At 650 ° C. and 700 ° C. respectively. For example, the time (●) at which the temperature is maintained at 650 ° C. or more is 2 when the flow rate of the cooling gas is 5 m / sec.
It is reduced from 5 hours to 20 hours. Then, as shown in FIG. 9, the mold life is expected to be reduced from 35 ch to about 42 to 50 ch. Note that FIG. 9 is based on FIG. 4 described above, and shows that 65 per charge in the mold for 230T steel ingot.
The relationship between the time at which the temperature is maintained at 0 ° C. or higher and the mold life is determined. In addition, as a temperature range that has a significant effect on the reduction in the life of the mold, instead of a temperature of 650 ° C. or higher, 7
You may use the temperature of 00 degreeC or more.

【0029】[0029]

【実施例】さらに、本発明の実施例を図示例により説明
する。本実施例は、新たに、130T、230T、42
0T鋼塊用の鋳型を製作して、図1に示す本発明の鋳造
装置を用いて、これら鋳型を冷却するものである。すな
わち、鋳型に、タービンロータ、大型反応容器(シェ
ル)等の溶湯を真空鋳造後、下記の冷却条件でこれら鋳
型を冷却して、繰り返し使用して実機試験を行ったもの
である。この実機試験の結果を表4に示す。 冷却条件 ・旋回流の流速 :5m/秒 ・噴射ノズルの噴射角度:鋳型の外周部の接線方向に対して、θ=0〜30° ・噴射ノズルの種類 :省エネ、低騒音型エアーノズル ・噴射ガス流量 :874Nm3 /hr ・噴射ガス温度 :20℃ なお、噴射ガスには、空気を使用した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. In this embodiment, 130T, 230T, 42
The molds for the 0T steel ingot are manufactured, and the molds are cooled using the casting apparatus of the present invention shown in FIG. That is, after casting a molten metal such as a turbine rotor and a large reaction vessel (shell) in a mold, the mold was cooled under the following cooling conditions, and an actual machine test was performed by repeatedly using the mold. Table 4 shows the results of the actual test. Cooling conditions • Swirling flow velocity: 5 m / sec • Injection angle of injection nozzle: θ = 0 to 30 ° with respect to tangential direction of outer periphery of mold • Injection nozzle type: Energy-saving, low-noise air nozzle • Injection Gas flow rate: 874 Nm 3 / hr ・ Injection gas temperature: 20 ° C. Air was used as the injection gas.

【0030】[0030]

【表4】 [Table 4]

【0031】表4に示すように、大型鋼塊用鋳型寿命は
約20%向上し、大型鋼塊用鋳型の省資源化および大型
鋼塊の製造コストの低減が達成できることが判明した。
As shown in Table 4, it was found that the life of the mold for large ingot was improved by about 20%, and that the resource saving of the mold for large ingot and the production cost of large ingot could be reduced.

【0032】本発明は、真空チャンバー(鋳造用チャン
バー)内に複数のガス噴射ノズルを設けたが、実施例に
限定されることなく、大気中鋳造の際は使用される鋳造
用ピット内に複数のガス噴射ノズルを設けてもよい。さ
らに、鋳造用チャンバー又は鋳造用ピット内に設けられ
るガス噴射ノズルの数および位置についても、鋳造用チ
ャンバー又は鋳造用ピットの大きさと鋳造する鋼塊の寸
法に応じて、適宜、ガス噴射ノズルの数および位置を変
えることできる。このとき、鋳型の外周部でガス噴射ノ
ズルからの噴射ガスを旋回させればよい。さらに、鋳型
の寸法に限定されることなく、小型の鋼塊の冷却に、本
発明の鋳型の冷却方法および鋳造装置を用いることがで
きる。
In the present invention, a plurality of gas injection nozzles are provided in a vacuum chamber (casting chamber). However, the present invention is not limited to the embodiment, and a plurality of gas injection nozzles are provided in a casting pit used for casting in the atmosphere. May be provided. Further, the number and position of the gas injection nozzles provided in the casting chamber or the casting pits are also appropriately determined according to the size of the casting chamber or the casting pits and the dimensions of the steel ingot to be cast. And can change the position. At this time, the injection gas from the gas injection nozzle may be swirled around the outer periphery of the mold. Further, the cooling method and the casting apparatus of the present invention can be used for cooling a small steel ingot without being limited to the size of the mold.

【0033】[0033]

【発明の効果】以上に説明したように、本発明は、鋳造
用チャンバー又は鋳造用ピット内に複数のガス噴射ノズ
ルを設け、この複数のガス噴射ノズルからの噴射ガスを
前記鋳型の外周部で旋回させることによって、鋳型を効
率よく冷却できる。その結果、鋳型を効率よく冷却する
ことによって、鋼塊と接する鋳型内周面が650℃以上
に保持される時間を短縮することができ鋳型寿命を改善
できる。さらに、本発明の鋳造装置に用いる冷却設備
は、真空チャンバー内の有効容積を減じることなく、簡
単な冷却設備となる。
As described above, according to the present invention, a plurality of gas injection nozzles are provided in a casting chamber or a casting pit, and the injection gas from the plurality of gas injection nozzles is applied to the outer periphery of the mold. By turning, the mold can be cooled efficiently. As a result, by efficiently cooling the mold, the time during which the inner peripheral surface of the mold in contact with the steel ingot is maintained at 650 ° C. or higher can be shortened, and the life of the mold can be improved. Furthermore, the cooling equipment used for the casting apparatus of the present invention is a simple cooling equipment without reducing the effective volume in the vacuum chamber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の鋳造装置の概略を示す図であ
って、(a)は鋳型を配設した状態を示す平面図であ
り、(b)は鋳型を配設し、真空タンク用蓋を設置した
状態を示すA−A断面図である。
FIG. 1 is a schematic view of a casting apparatus according to an embodiment of the present invention, in which (a) is a plan view showing a state in which a mold is provided, and (b) is a view in which a mold is provided and a vacuum tank is provided. It is AA sectional drawing which shows the state which installed the lid for.

【図2】鋳型の外周部の測温結果と鋳型の内面の伝熱計
算結果を示す図であり、(a)は130t鋳型の外周部
の測温結果と内面の伝熱計算結果を示す図であり、
(b)は230t鋳型の測温結果と伝熱計算結果を示す
図である。
FIG. 2 is a diagram illustrating a temperature measurement result of an outer peripheral portion of a mold and a heat transfer calculation result of an inner surface of the mold. FIG. 2A is a diagram illustrating a temperature measurement result of an outer peripheral portion of a 130t mold and a heat transfer calculation result of an inner surface. And
(B) is a figure which shows the temperature measurement result of 230t casting_mold | template, and the heat transfer calculation result.

【図3】鋳型寸法と高温保持時間との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a mold size and a high-temperature holding time.

【図4】鋳型寸法と累積高温保持時間との関係を示す図
である。
FIG. 4 is a diagram showing a relationship between a mold size and an accumulated high-temperature holding time.

【図5】ガスの流れの数値計算による検討方法を示す説
明図であり、(a)は鋳型とガス噴射ノズルを配設した
状態を示す鋳造用チャンバーの平面図であり、(b)は
鋳型とガス噴射ノズルを配設した状態を示す鋳造用チャ
ンバーの断面図である。
FIGS. 5A and 5B are explanatory diagrams showing a method of studying a gas flow by numerical calculation, wherein FIG. 5A is a plan view of a casting chamber showing a state in which a mold and a gas injection nozzle are provided, and FIG. FIG. 2 is a cross-sectional view of a casting chamber showing a state in which a gas injection nozzle is provided.

【図6】ガスの流れの数値計算による結果の一例を示す
説明図である。
FIG. 6 is an explanatory diagram showing an example of a result of numerical calculation of a gas flow.

【図7】ガスノズルの向きを説明する図である。FIG. 7 is a diagram illustrating the direction of a gas nozzle.

【図8】230t鋳型における、冷却ガスの流速と高温
保持時間との関係を示す図である。
FIG. 8 is a diagram showing a relationship between a flow rate of a cooling gas and a high-temperature holding time in a 230t mold.

【図9】230t鋳型における、高温保持時間と鋳型寿
命の関係を示す図である。
FIG. 9 is a diagram showing a relationship between a high-temperature holding time and a mold life in a 230t mold.

【図10】真空鋳造装置の概略を示す図である。FIG. 10 is a view schematically showing a vacuum casting apparatus.

【符号の説明】[Explanation of symbols]

1 鋳型 2 鋼塊 3 押湯枠 4 台盤 5 ガス噴射ノズル 5a、5b、5c ガス噴射ノズル群 6 真空チャンバー 7 真空チャンバー用蓋 8 リング状ガス配管 9 ガス配管 10 溶湯 11 流滴 12 出鋼取鍋 13 中間取鍋 14 真空排気口 15 ストッパー Reference Signs List 1 mold 2 steel ingot 3 feeder frame 4 base plate 5 gas injection nozzles 5a, 5b, 5c gas injection nozzle group 6 vacuum chamber 7 lid for vacuum chamber 8 ring-shaped gas pipe 9 gas pipe 10 molten metal 11 drop 12 welding Pan 13 Intermediate ladle 14 Vacuum exhaust port 15 Stopper

フロントページの続き (72)発明者 西川 恒明 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内Continued on the front page (72) Inventor Tsuneaki Nishikawa 1 Kanazawacho, Kakogawa-shi, Hyogo Kobe Steel, Ltd. Inside the Kakogawa Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋳造用チャンバー又は鋳造用ピット内に
配設された鋳型内へ溶湯を注入した後の鋼塊の冷却に際
して、 前記鋳造用チャンバー又は鋳造用ピット内に複数のガス
噴射ノズルを設け、 この複数のガス噴射ノズルからの噴射ガスを前記鋳型の
外周部で旋回させて、鋳型内面が650℃以上の温度に
保持される時間を短縮することを特徴とする鋳型寿命を
向上させる鋳型の冷却方法。
In cooling a steel ingot after pouring a molten metal into a casting mold provided in a casting chamber or a casting pit, a plurality of gas injection nozzles are provided in the casting chamber or the casting pit. The injection gas from the plurality of gas injection nozzles is swirled around the outer periphery of the mold to shorten the time during which the inner surface of the mold is maintained at a temperature of 650 ° C. or higher. Cooling method.
【請求項2】 前記鋳型の外周部で旋回する噴射ガスの
流速が5m/秒以上である請求項1記載の鋳型寿命を向
上させる鋳型の冷却方法。
2. The method according to claim 1, wherein the flow velocity of the injection gas swirling around the outer periphery of the mold is 5 m / sec or more.
【請求項3】 前記鋳型が110トン以上の鋼塊の鋳造
用に用いられる請求項1又は2記載の鋳型寿命を向上さ
せる鋳型の冷却方法。
3. The method according to claim 1, wherein the mold is used for casting a steel ingot of 110 tons or more.
【請求項4】 鋳造用チャンバー又は鋳造用ピット内に
配設された鋳型内へ溶湯を注入する鋳造装置において、 前記鋳造用チャンバー又は鋳造用ピットの内面側に複数
のガス噴射ノズルを設け、この複数のガス噴射ノズルが
前記鋳造用チャンバー又は鋳造用ピット内に設置された
前記鋳型の外周部の同一接線方向にガス噴射できる構造
であることを特徴とする鋳造装置。
4. A casting apparatus for injecting a molten metal into a casting mold disposed in a casting chamber or a casting pit, wherein a plurality of gas injection nozzles are provided on an inner surface side of the casting chamber or the casting pit. A casting apparatus having a structure in which a plurality of gas injection nozzles are capable of injecting gas in the same tangential direction on an outer peripheral portion of the mold provided in the casting chamber or the casting pit.
JP14746198A 1998-05-28 1998-05-28 Mold cooling method and casting apparatus Expired - Fee Related JP3299506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746198A JP3299506B2 (en) 1998-05-28 1998-05-28 Mold cooling method and casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746198A JP3299506B2 (en) 1998-05-28 1998-05-28 Mold cooling method and casting apparatus

Publications (2)

Publication Number Publication Date
JPH11342464A true JPH11342464A (en) 1999-12-14
JP3299506B2 JP3299506B2 (en) 2002-07-08

Family

ID=15430903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746198A Expired - Fee Related JP3299506B2 (en) 1998-05-28 1998-05-28 Mold cooling method and casting apparatus

Country Status (1)

Country Link
JP (1) JP3299506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180659A (en) * 2016-08-30 2016-12-07 烟台万隆真空冶金股份有限公司 A kind of strand directional solidification and the Combined water chill mould of regional choice cooling
CN112705677A (en) * 2020-12-16 2021-04-27 辽宁科技大学 Device and method for rotary casting of metal ingot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106583693A (en) * 2016-11-30 2017-04-26 北京天宜上佳新材料股份有限公司 Condensation mold system
CN110202121B (en) * 2019-07-15 2020-08-04 上海交通大学 Alloy casting method for obtaining fine secondary dendrite arm spacing by using double cooling conditions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180659A (en) * 2016-08-30 2016-12-07 烟台万隆真空冶金股份有限公司 A kind of strand directional solidification and the Combined water chill mould of regional choice cooling
CN106180659B (en) * 2016-08-30 2018-01-02 烟台万隆真空冶金股份有限公司 A kind of strand directional solidification and the Combined water chill mould of regional choice cooling
CN112705677A (en) * 2020-12-16 2021-04-27 辽宁科技大学 Device and method for rotary casting of metal ingot

Also Published As

Publication number Publication date
JP3299506B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
US2770021A (en) Method of and apparatus for continuous casting
CN108893689B (en) Inconel718 alloy disc forging homogenizing manufacturing method
CN106238705A (en) Large thin-wall impeller manufacture method
US6250370B1 (en) Method for water-cooling hot metal slabs
JP3299506B2 (en) Mold cooling method and casting apparatus
CN109396345A (en) A method of for investment casting formwork part Quench
US4410373A (en) Process for heat treatment of a metal workpiece
CN208532851U (en) Heat treating castings cooling device and heat treating castings cooling system
CN108838350A (en) A kind of round steel cast dies holder device and its application
CN111136227B (en) Cooling process for eliminating steel ingot banded structure
CN108889903A (en) A method of preventing titanium aluminium base alloy casting crack
CN110280745B (en) Multi-source ultrasonic distribution control method for controlling component segregation of 2219 aluminum alloy round ingot with diameter of 1 meter
CN109513887B (en) Treatment method suitable for conventional ingot type steel ingot for ultrahigh-temperature soft core forging
CN110961577A (en) Method for solving shrinkage porosity of investment casting aluminum alloy casting
CN110976815A (en) Die water cooling device and system
CN216705914U (en) Device for improving front edge temperature gradient of solid-liquid interface
CN104959581A (en) Method for cleaning carbon steel casting with weight smaller than 5 tons
CN107988552A (en) Large nuclear-power outer shell method for casting production
CN107716859B (en) Co-tank casting device
CN206763878U (en) A kind of die casting machine protector
JPS62202019A (en) Method and apparatus for hardening metallic material
CN210367816U (en) Sealed annealing frock
CN104801667A (en) Method for preventing generation of casting crack of high temperature alloy mold
CN215288932U (en) Heat treatment equipment for low-pressure cast aluminum alloy shell
CN117505776B (en) Casting process of centrifugal compressor base

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees