JPH11341696A - Charging control method of battery - Google Patents

Charging control method of battery

Info

Publication number
JPH11341696A
JPH11341696A JP10141184A JP14118498A JPH11341696A JP H11341696 A JPH11341696 A JP H11341696A JP 10141184 A JP10141184 A JP 10141184A JP 14118498 A JP14118498 A JP 14118498A JP H11341696 A JPH11341696 A JP H11341696A
Authority
JP
Japan
Prior art keywords
battery
charged
charging
nickel
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10141184A
Other languages
Japanese (ja)
Inventor
Nobuhiro Takano
信宏 高野
Yoshio Iimura
良雄 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP10141184A priority Critical patent/JPH11341696A/en
Publication of JPH11341696A publication Critical patent/JPH11341696A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the cycle life-time characteristic of a charged battery, by changing over its charging current into a second current as responding to its kind, when the differential value of its voltage in the case of charging it by a first charging current exceeds a predetermined value. SOLUTION: When determining that a comparison value ΔVi-06 of a data Vi-06 preceding the present data by six sampling times which are stored in a battery-voltage storing means 531 exceeds a stored data ΔVmin of the minimum voltage increase value associated with the comparison value ΔVi-06 by a value not smaller than a predetermined value K, determining that a charged battery 2 has been charged to the vicinity of its fully charged state, a signal fed from a battery-kind determining means 6 is inputted to an input port 58 of a microcomputer 50 to determine whether the charged battery 2 is a nickel-hydrogen battery or not. When the charged battery 2 is a nickel-hydrogen battery, a signal LOW is inputted to the input port 58 of the microcomputer 50, and reversely, since a signal HIGH is inputted to the input port 58 when being a nickel-cadmium battery, whether the signal LOW is inputted to the input port 58 or not is determined. When determining that the signal LOW is inputted to the input port 58 and the charged battery 2 is a nickel-hydrogen battery, its charging current is reduced to improve the cycle life-time of the charged battery 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はニッケルカドミウム
電池(以下ニッカド電池という)及びニッケル水素電池
等の電池種類の異なる複数の被充電電池を充電すること
ができる電池の充電制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control method for a battery capable of charging a plurality of batteries having different battery types, such as a nickel cadmium battery (hereinafter referred to as a nickel cadmium battery) and a nickel hydride battery.

【0002】[0002]

【従来の技術】近年、電池の高容量化による作業効率の
向上の要望及び耐環境性に優れた電池の要望に対し、近
年では新たにニッケル水素電池が普及し始めている。
2. Description of the Related Art In recent years, nickel-metal hydride batteries have begun to be widely used in recent years in response to demands for improving work efficiency by increasing the capacity of batteries and for batteries having excellent environmental resistance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ニッケ
ル水素電池の充電における負極の水素吸蔵合金の水素吸
蔵反応は、ニッカド電池のカドミウムの溶解析出反応に
比べ遅いため、仮に4C程度の電流で急速充電を行うニ
ッカド電池専用の充電装置によりニッケル水素電池の充
電を行った場合、図6に示すようにサイクル寿命特性
が、ニッカド電池に比べて著しく低減してしまうという
欠点があった。本発明の目的は、上記欠点を解消し、ニ
ッケル水素電池の急速充電においてもサイクル寿命特性
の低減を抑制し、且つ少しでも短時間で充電を完了する
ことができる電池の充電制御方法を提供することであ
る。
However, since the hydrogen storage reaction of the hydrogen storage alloy of the negative electrode in charging a nickel-metal hydride battery is slower than the dissolution and precipitation reaction of cadmium in a nickel cadmium battery, it is assumed that rapid charging is performed with a current of about 4C. When a nickel-metal hydride battery is charged by a dedicated charging device for a nickel-cadmium battery, the cycle life characteristic is significantly reduced as compared with the nickel-cadmium battery as shown in FIG. SUMMARY OF THE INVENTION An object of the present invention is to provide a battery charge control method that solves the above-mentioned drawbacks, suppresses a decrease in cycle life characteristics even in a quick charge of a nickel-metal hydride battery, and can complete the charge in a short time even if it is a little. That is.

【0004】[0004]

【課題を解決するための手段】上記目的は、被充電電池
を第1充電電流で充電すると共に電池電圧を検出し、電
池電圧の時間に対する微分値が所定値以上上昇したなら
ば、被充電電池の電池種類に応じて充電電流を第1充電
電流よりも小さい第2充電電流に切り換えるようにする
ことにより達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to charge a battery to be charged with a first charging current and detect a battery voltage, and when a differential value of the battery voltage with respect to time increases by a predetermined value or more, the battery to be charged is charged. This is achieved by switching the charging current to the second charging current that is smaller than the first charging current according to the battery type.

【0005】[0005]

【発明の実施の形態】図1は本発明電池の充電制御方法
を備えた充電装置の一実施形態を示す回路図である。図
において、1は交流電源、2は複数の充電可能な素電池
を直列に接続した電池組、素電池に接触または近接して
設けられ電池温度を検出する例えばサーミスタ等からな
る電池温度検出手段2A、ニッカド電池またはニッケル
水素電池のどちらかを判別する判別端子2Bを装備して
いる被充電電池であり、本実施形態ではニッケル水素電
池である被充電電池2にのみ判別端子2Bを装備させ、
これにより被充電電池2がニッカド電池であるかニッケ
ル水素電池であるかを判別するようにした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram showing an embodiment of a charging device provided with a battery charging control method according to the present invention. In the figure, 1 is an AC power supply, 2 is a battery set in which a plurality of rechargeable unit cells are connected in series, and a battery temperature detecting means 2A which is provided in contact with or close to the unit cells and detects a battery temperature, for example, a thermistor or the like. The battery to be charged is provided with a determination terminal 2B for determining whether the battery is a nickel-cadmium battery or a nickel-metal hydride battery. In this embodiment, only the battery 2 to be charged, which is a nickel-metal hydride battery, is provided with the determination terminal 2B.
Thus, it is determined whether the battery 2 to be charged is a nickel-cadmium battery or a nickel-metal hydride battery.

【0006】3は被充電電池2に流れる充電電流を検出
する電流検出手段、4は充電の開始及び停止を制御する
信号を伝達する充電制御信号伝達手段、5は充電電流の
信号を後述するPWM制御IC23に帰還する充電電流
信号伝達手段である。充電制御伝達信号手段4と充電電
流信号伝達手段5はホトカプラ等からなる。6は被充電
電池2がニッカド電池かニッケル水素電池かを判別する
電池種類判別手段、7は5Vへのプルアップ用の抵抗で
あり、被充電電池2がニッケル水素電池の場合には判別
端子2Bを装備しているため、マイコン50の入力ポー
ト58にはLOWが入力され、逆にニッカド電池の場合
は入力ポート58にはHIGHが入力される。10は全
波整流回路11と平滑用コンデンサ12からなる整流平
滑回路、20は高周波トランス21、MOSFET22
とPWM制御IC23からなるスイッチング回路であ
る。PWM制御IC23はMOSFET22の駆動パル
ス幅を変えて整流平滑回路10の出力電圧を調整するス
イッチング電源ICである。30はダイオード31、3
2、チョークコイル33と平滑用コンデンサ34からな
る整流平滑回路、40は抵抗41、42、入力保護用ダ
イオード43からなる電池電圧検出手段で、被充電電池
2の端子電圧を分圧する。50は演算手段(CPU)5
1、ROM52、RAM53、タイマ54、A/Dコン
バータ55、出力ポート56a、56b、リセット入力
57、入力ポート58からなるマイコンである。CPU
51は1サンプリング毎に最新の電池電圧または電池温
度と複数サンプリング前の電池電圧または電池温度を比
較する。RAM53は所定数の過去のサンプリング電圧
を記憶する電池電圧記憶手段531、所定数の過去のサ
ンプリング温度を記憶する電池温度記憶手段532を内
蔵する。60は演算増幅器61、62、抵抗63、6
4、65、66からなる充電電流制御手段、70は電源
トランス71、全波整流回路72、平滑コンデンサ7
3、3端子レギュレータ74、リセットIC75からな
る定電圧電源で、マイコン50、充電電流制御手段60
等の電源となる。リセットIC75はマイコン50を初
期状態にするためにリセット入力75にリセット信号を
出力する。80は充電電流を設定する充電電流設定手段
であって、出力ポート56bからの信号に対応して演算
増幅器62の反転入力端に印加する電圧値を変えるもの
である。
Reference numeral 3 denotes a current detecting means for detecting a charging current flowing through the battery 2 to be charged, 4 denotes a charging control signal transmitting means for transmitting a signal for controlling start and stop of charging, and 5 denotes a PWM signal which will be described later. It is a charging current signal transmission unit that returns to the control IC 23. The charging control transmission signal means 4 and the charging current signal transmission means 5 comprise a photocoupler or the like. Reference numeral 6 denotes a battery type discriminating means for discriminating whether the battery 2 to be charged is a nickel cadmium battery or a nickel hydride battery. Reference numeral 7 denotes a pull-up resistor to 5V. LOW is input to the input port 58 of the microcomputer 50, and HIGH is input to the input port 58 for a nickel-cadmium battery. 10 is a rectifying / smoothing circuit including a full-wave rectifying circuit 11 and a smoothing capacitor 12, 20 is a high-frequency transformer 21, MOSFET 22
And a switching circuit comprising a PWM control IC 23. The PWM control IC 23 is a switching power supply IC that adjusts the output voltage of the rectifying and smoothing circuit 10 by changing the drive pulse width of the MOSFET 22. 30 is a diode 31, 3
2. A rectifying / smoothing circuit including a choke coil 33 and a smoothing capacitor 34, and a battery voltage detecting means 40 including resistors 41 and 42 and an input protection diode 43, for dividing the terminal voltage of the battery 2 to be charged. Numeral 50 denotes arithmetic means (CPU) 5
1, a microcomputer comprising a ROM 52, a RAM 53, a timer 54, an A / D converter 55, output ports 56a and 56b, a reset input 57, and an input port 58. CPU
Reference numeral 51 compares the latest battery voltage or battery temperature with the battery voltage or battery temperature before a plurality of samplings for each sampling. The RAM 53 includes a battery voltage storage unit 531 for storing a predetermined number of past sampling voltages and a battery temperature storage unit 532 for storing a predetermined number of past sampling temperatures. Reference numeral 60 denotes operational amplifiers 61 and 62, resistors 63 and 6
A charging current control means consisting of 4, 65, 66; 70 a power transformer 71, a full-wave rectifier circuit 72, a smoothing capacitor 7;
A constant voltage power supply comprising a three-terminal regulator 74 and a reset IC 75;
And so on. The reset IC 75 outputs a reset signal to a reset input 75 to bring the microcomputer 50 into an initial state. Reference numeral 80 denotes charging current setting means for setting a charging current, which changes a voltage value applied to the inverting input terminal of the operational amplifier 62 in accordance with a signal from the output port 56b.

【0007】次に図1の回路図及び図2、図3のフロー
チャートを参照して、本発明電池の充電制御方法の一実
施形態を説明する。電源を投入するとマイコン50は、
被充電電池2の接続待機状態となる(ステップ10
1)。被充電電池2が接続されると、マイコン50はこ
れを電池電圧検出手段40からの信号により判別し、出
力ポート56bより充電制御信号伝達手段4を介しPW
M制御IC23に充電開始信号を伝達すると共に出力ポ
ート56bより充電電流設定手段80を介して、充電電
流設定基準電圧値Vi0を演算増幅器62に印加し、充
電電流I0で充電を開始する(ステップ102)。充電
開始と同時に被充電電池2に流れる充電電流を電流検出
手段3により検出し、この充電電流に対応する電圧と充
電電流設定基準値Vi0との差を充電電流制御手段60
より信号伝達手段5を介してPWM制御IC23に帰還
をかける。すなわち、充電電流が大きい場合はパルス幅
を狭めたパルスを、逆の場合パルス幅を広げたパルスを
高周波トランス21に与え整流平滑回路30で直流に平
滑し、充電電流を一定に保つ。電流検出手段3、充電電
流制御手段60、信号伝達手段5、スイッチング回路2
0、整流平滑回路30を介して充電電流を所定電流値I
0となるように制御する。
Next, an embodiment of the battery charge control method of the present invention will be described with reference to the circuit diagram of FIG. 1 and the flowcharts of FIGS. When the power is turned on, the microcomputer 50
The connected battery 2 enters the connection standby state (step 10).
1). When the battery 2 to be charged is connected, the microcomputer 50 determines this from the signal from the battery voltage detecting means 40, and outputs the PW signal from the output port 56b through the charging control signal transmitting means 4.
A charging start signal is transmitted to the M control IC 23, a charging current setting reference voltage value Vi0 is applied to the operational amplifier 62 from the output port 56b via the charging current setting means 80, and charging is started with the charging current I0 (step 102). ). At the same time as the start of charging, the charging current flowing through the battery 2 to be charged is detected by the current detecting means 3, and the difference between the voltage corresponding to this charging current and the charging current setting reference value Vi0 is determined by the charging current control means 60.
The signal is fed back to the PWM control IC 23 via the signal transmission means 5. That is, when the charging current is large, a pulse with a narrowed pulse width is supplied to the high-frequency transformer 21 when the pulse width is widened. Current detection means 3, charging current control means 60, signal transmission means 5, switching circuit 2
0, the charging current is reduced to a predetermined current value I through the rectifying and smoothing circuit 30.
Control is performed so as to be 0.

【0008】次いで満充電検出制御を行う。電池電圧記
憶手段531の記憶データである6サンプリング前まで
の電圧Vi−06〜Vi−01、最新の電池電圧Vin
と6サンプリング前のデータVi−06との比較値△V
i−06、その比較値における最小電圧上昇値を記憶す
るデータ△Vmin、最大電圧上昇値を記憶するデータ
△Vmax及び最小の電池温度Tminを夫々イニシャ
ルリセットし(ステップ103)、サンプリングタイマ
をスタートさせる(ステップ104)。サンプリングタ
イマ時間△tを経過したら(ステップ105)、再度サ
ンプリングタイマをスタートさせる(ステップ10
6)。
Next, full charge detection control is performed. Voltages Vi-06 to Vi-01 up to six samplings earlier as data stored in the battery voltage storage means 531; latest battery voltage Vin
And the comparison value ΔV between the data Vi-06 before sampling 6 and
i-06, data ΔVmin storing the minimum voltage rise value in the comparison value, data ΔVmax storing the maximum voltage rise value, and the minimum battery temperature Tmin are each initially reset (step 103), and the sampling timer is started. (Step 104). When the sampling timer time Δt has elapsed (step 105), the sampling timer is started again (step 10).
6).

【0009】次いで電池電圧を電池電圧検出手段40で
分圧した分圧値をA/Dコンバータ55でA/D変換
し、電池電圧Vinとして取り込む(ステップ10
7)。そして演算手段51にてVinと6サンプリング
前のデータVi−06との差△Vi−06を求め(ステ
ップ108)、△Vi−06が△Vminより所定値K
(Kは電池電圧をA/Dコンバータを用いデジタル値に
変換した場合、ある所定のビット数である。)だけ大き
くなったか否かの判断、すなわち充電末期の電池電圧の
ピークの出現に対応し、電池電圧の変化量が所定値より
大きくなったか否かの判断を行う(ステップ109)。
△Vi−06−△Vminが所定値Kよりも小さけれ
ば、引き続き△Vin−06が負か否かの判別を行い
(ステップ110)、△Vin−06が負の場合はΔV
minを0として更新し(ステップ111)、△Vi−
06が正の場合はステップ111をスキップし、△Vi
−06と△Vminの比較を行う(ステップ112)。
△Vi−06が△Vminより小さければ、△Vi−0
6の値を△Vminとして更新し(ステップ113)、
Vi−05をVi−06、Vi−04をVi−05、…
…、VinをVi−01と夫々の記憶データを1サンプ
リング前の記憶エリアに移し替え(ステップ114)、
再度ステップ105からの処理を行う。なお、ステップ
112において△Vi−06が△Vminより大きい場
合は、ステップ113をスキップし、前述と同様にステ
ップ114の処理を行う。
Next, the divided voltage value obtained by dividing the battery voltage by the battery voltage detecting means 40 is A / D converted by the A / D converter 55, and is taken in as the battery voltage Vin (step 10).
7). Then, a difference ΔVi−06 between Vin and the data Vi−06 before six samplings is obtained by the calculating means 51 (step 108), and ΔVi−06 is a predetermined value K from ΔVmin.
(K is a predetermined number of bits when the battery voltage is converted into a digital value by using an A / D converter.) It is determined whether the battery voltage has increased by a large amount, that is, when the battery voltage peaks at the end of charging. Then, it is determined whether or not the amount of change in the battery voltage has become larger than a predetermined value (step 109).
If ΔVi−06−ΔVmin is smaller than the predetermined value K, it is determined whether or not ΔVin−06 is negative (step 110). If ΔVin−06 is negative, ΔV−06 is negative.
Min is updated to 0 (step 111), and ΔVi−
If 06 is positive, step 111 is skipped and $ Vi
−06 and ΔVmin are compared (step 112).
If ΔVi-06 is smaller than ΔVmin, ΔVi-0
6 is updated as ΔVmin (step 113),
Vi-05 is Vi-06, Vi-04 is Vi-05, ...
.., Vin is replaced with Vi-01, and the respective storage data are transferred to the storage area one sample before (step 114).
The processing from step 105 is performed again. If 112Vi-06 is larger than △ Vmin in step 112, step 113 is skipped, and the process of step 114 is performed in the same manner as described above.

【0010】ステップ109において△Vi−06が△
Vminよりも所定値K以上大きいと判断したならば、
被充電電池2は満充電近辺まで充電されたと判別し、マ
イコン50の入力ポート58に電池種類判別手段6から
の信号を入力し被充電電池2がニッケル水素電池である
か否かの判別を行う(ステップ115)。被充電電池2
がニッケル水素電池である時にはマイコン50の入力ポ
ート58にはLOWが入力され、逆にニッカド電池であ
る場合には入力ポート58にはHIGHが入力されるた
め、入力ポート58にLOWが入力されているか否かを
判別する。入力ポート58にHIGHが入力されている
場合には、充電電流をI0のまま充電を行う(ステップ
116)。入力ポート58にLOWが入力されており、
被充電電池2がニッケル水素電池であると判別した場合
には、被充電電池2のサイクル寿命特性の向上のため
に、充電電流をI1(I1<I0)に降下させる(ステ
ップ117)。この時電池電圧も降下するので、電池電
圧記憶手段531の記憶データである6サンプリング前
までの電圧Vi−06〜Vi−0及び最新の電池電圧V
inと6サンプリング前のデータVi−06との比較値
△Vi−06を夫々リセットする(ステップ118)。
[0010] In step 109, {Vi-06}
If it is determined that it is larger than Vmin by a predetermined value K or more,
It is determined that the battery 2 has been charged to near full charge, and a signal from the battery type determination means 6 is input to the input port 58 of the microcomputer 50 to determine whether the battery 2 is a nickel-metal hydride battery. (Step 115). Battery 2 to be charged
Is a nickel-metal hydride battery, LOW is input to the input port 58 of the microcomputer 50. Conversely, if the battery is a nickel-cadmium battery, HIGH is input to the input port 58, and LOW is input to the input port 58. Is determined. When HIGH is input to the input port 58, charging is performed with the charging current kept at I0 (step 116). LOW is input to the input port 58,
If it is determined that the battery to be charged 2 is a nickel-metal hydride battery, the charging current is reduced to I1 (I1 <I0) in order to improve the cycle life characteristics of the battery to be charged 2 (step 117). At this time, since the battery voltage also drops, the voltages Vi-06 to Vi-0 up to six samples before and the latest battery voltage V
Reset the comparison value △ Vi-06 between in and the data Vi-06 six samples before (step 118).

【0011】引き続きサンプリングタイマをスタートさ
せる(ステップ119)。サンプリングタイマ時間△t
が経過したならば(ステップ120)、再度サンプリン
グタイマをスタートさせ(ステップ121)、再び電池
電圧を電池電圧検出手段40で分圧した分圧値をA/D
コンバータ55でA/D変換し、電池電圧Vinとして
取り込み(ステップ122)、被充電電池2の電池温度
検出手段2Aの出力をA/Dコンバータ55でA/D変
換し、電池温度Tinとして取り込む(ステップ12
3)。
Subsequently, the sampling timer is started (step 119). Sampling timer time Δt
Has elapsed (step 120), the sampling timer is started again (step 121), and the divided voltage value obtained by dividing the battery voltage by the battery voltage detecting means 40 is again A / D.
A / D conversion is carried out by the converter 55 and taken in as the battery voltage Vin (step 122). The output of the battery temperature detecting means 2A of the battery 2 to be charged is A / D converted by the A / D converter 55 and taken in as the battery temperature Tin (step 122). Step 12
3).

【0012】更に、演算手段51にてVinと6サンプ
リング前のデータVin−06との差△Vi−06を求
め(ステップ124)、△Vi−06と最大電圧上昇値
を記憶するデータ△Vmaxとを比較演算し(ステップ
125)、△Vi−06が△Vmaxより所定値P以上
小さいか否か、すなわち充電末期の電池電圧のピークに
近づくのに対応し、電池電圧の変化量が所定値Pより小
さくなったか否かの判断を行う。△Vmax−ΔVi−
06≧Pである時には、マイコン50は出力ポート56
bより充電制御信号伝達手段4を介して充電停止信号を
PWM制御IC23に伝達し、充電を停止する(ステッ
プ132)。次いで被充電電池2の取り出されるのを判
別し(ステップ133)、被充電電池2が取り出された
ことを判別したならばステップ101に戻り、次の被充
電電池2の充電のための待機をする。
Further, a difference ΔVi−06 between Vin and the data Vin−06 before sampling 6 is obtained by the calculating means 51 (step 124), and ΔVi−06 and data ΔVmax for storing the maximum voltage rise value are obtained. (Step 125), and in response to whether △ Vi-06 is smaller than △ Vmax by a predetermined value P or more, that is, in response to approaching the peak of the battery voltage at the end of charging, the amount of change in the battery voltage becomes the predetermined value P It is determined whether or not it has become smaller. ΔVmax−ΔVi−
When 06 ≧ P, the microcomputer 50 sets the output port 56
b, a charge stop signal is transmitted to the PWM control IC 23 via the charge control signal transmitting means 4 to stop charging (step 132). Next, it is determined that the battery to be charged 2 is taken out (step 133). If it is determined that the battery to be charged 2 is taken out, the process returns to step 101 and waits for charging the next battery to be charged 2. .

【0013】ステップ125において△Vmax−ΔV
i−06≧Pでない時には、演算手段51にて最新の電
池温度Tinと電池温度記憶手段532の記憶データで
ある最小の電池温度Tminとを比較演算し(ステップ
126)、Tin−Tmin≧Sである時、すなわち電
池温度が所定の温度上昇値S以上上昇した時には被充電
電池2は満充電である判断し、前述したステップ13
2、ステップ133の処理を行う。
In step 125, ΔVmax−ΔV
When i−06 ≧ P is not satisfied, the arithmetic means 51 compares the latest battery temperature Tin with the minimum battery temperature Tmin which is the storage data of the battery temperature storage means 532 (step 126), and when Tin−Tmin ≧ S, At a certain time, that is, when the battery temperature rises by a predetermined temperature rise value S or more, it is determined that the battery 2 to be charged is fully charged.
2. The processing of step 133 is performed.

【0014】ステップ126において、Tin−Tmi
n≧Sでないと判別した時には、△Vi−06と△Vm
axの比較を行い(ステップ127)、△Vi−06が
△Vmaxより大きければ、△Vi−06の値を△Vm
axとして更新し(ステップ128)、△Vi−06が
△Vmaxより小さければステップ128はスキップ
し、引き続きTinとTminの比較を行う(ステップ
127)。
In step 126, Tin-Tmi
When it is determined that n ≧ S is not satisfied, ΔVi−06 and ΔVm
ax (step 127), and if △ Vi-06 is larger than △ Vmax, the value of △ Vi-06 is changed to △ Vm.
ax is updated (step 128). If △ Vi-06 is smaller than △ Vmax, step 128 is skipped and Tin and Tmin are compared (step 127).

【0015】ステップ129において、TinがTmi
nより小さいと判別した時には、Tinの値をTmin
として更新し(ステップ128)、TinがTminよ
り大きいと判別した時にはステップ128をスキップ
し、Vi−05をVi−06、Vi−04をVi−0
5、……、VinをVi−01と夫々の記憶データを1
サンプリング前の記憶エリアに移し替え(ステップ13
1)、再度ステップ120からの処理を行う。
In step 129, Tin becomes Tmi
When it is determined to be smaller than n, the value of Tin is set to Tmin
(Step 128), and when it is determined that Tin is larger than Tmin, Step 128 is skipped, and Vi-05 is Vi-06, and Vi-04 is Vi-0.
5,..., Vin is Vi-01 and each stored data is 1
Transfer to storage area before sampling (step 13
1) The processing from step 120 is performed again.

【0016】図4に本発明電池の充電制御方法を備えた
充電装置により充電されたニッケル水素電池の充電特性
を示す。図に示すように充電電流の切り換えは電池電圧
の時間に対する微分値が所定値以上上昇した時点で行
い、充電電流切り換え後、電池電圧の時間に対する微分
値の最大値より所定値降下した時点で充電を停止してい
る。なお、充電の停止は充電電流を切り換えた後、電池
温度が所定値以上上昇した時点で行っても何等問題はな
い。
FIG. 4 shows the charging characteristics of a nickel-metal hydride battery charged by the charging device provided with the battery charging control method of the present invention. As shown in the figure, the switching of the charging current is performed when the differential value of the battery voltage with respect to time rises by a predetermined value or more, and after the charging current is switched, the charging is performed when the predetermined value of the differential value with respect to the battery voltage drops by a predetermined value. Has stopped. It should be noted that there is no problem if charging is stopped when the battery temperature rises by a predetermined value or more after switching the charging current.

【0017】本発明電池の充電制御方法を備えた充電装
置及び従来の充電装置により充電されたニッケル水素電
池である被充電電池2のサイクル寿命特性を図5に示
す。上記したように満充電近辺で充電電流を降下させた
ことにより、図に示すようにサイクル寿命特性が大幅に
向上していることが分かる。
FIG. 5 shows the cycle life characteristics of the battery 2 to be charged, which is a nickel-metal hydride battery charged by the battery charger of the present invention and the conventional battery charger. It can be seen that the cycle life characteristic is greatly improved as shown in the figure by reducing the charging current near the full charge as described above.

【0018】なお、上記実施形態では、電池電圧の時間
に対する微分値が所定値以上上昇したことを判別(ステ
ップ109)した後に電池種類の判別を行うようにした
が、電池種類の判別は電池接続判別を行うステップ10
1から前記ステップ109の間で行われるものであって
も良い。
In the above-described embodiment, the battery type is determined after determining that the differential value of the battery voltage with respect to time has risen by a predetermined value or more (step 109). Step 10 for making a determination
The processing may be performed between 1 and the step 109.

【0019】[0019]

【発明の効果】本発明によれば、ニッケル水素電池の急
速充電においてもサイクル寿命特性の低減を抑制し、且
つ少しでも短時間で充電を完了することができる電池の
充電制御方法を提供することができる。
According to the present invention, there is provided a battery charge control method capable of suppressing a decrease in cycle life characteristics even in a quick charge of a nickel-metal hydride battery and completing the charge in a short time even a little. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の充電制御方法を備えた充電装置の
一実施形態を示す回路図。
FIG. 1 is a circuit diagram showing an embodiment of a charging device provided with a battery charging control method of the present invention.

【図2】本発明電池の充電制御方法の一実施形態を示す
フローチャート。
FIG. 2 is a flowchart showing an embodiment of a battery charge control method according to the present invention.

【図3】本発明電池の充電制御方法の一実施形態を示す
フローチャート。
FIG. 3 is a flowchart illustrating an embodiment of a battery charge control method according to the present invention.

【図4】本発明電池の充電制御方法を備えた充電装置に
より充電されたニッケル水素電池の充電特性を示すグラ
フ。
FIG. 4 is a graph showing charging characteristics of a nickel-metal hydride battery charged by a charging device provided with the battery charging control method of the present invention.

【図5】本発明電池の充電制御方法を備えた充電装置及
び従来の充電装置により充電されたニッケル水素電池で
ある被充電電池のサイクル寿命特性を示すグラフ。
FIG. 5 is a graph showing cycle life characteristics of a battery to be charged, which is a nickel-metal hydride battery charged by a battery charger provided with the battery charge control method of the present invention and a conventional battery charger.

【図6】従来の充電装置により充電された被充電電池の
サイクル寿命特性を示すグラフ。
FIG. 6 is a graph showing cycle life characteristics of a charged battery charged by a conventional charging device.

【符号の説明】[Explanation of symbols]

2は被充電電池、2Aは電池温度検出手段、6は電池種
類判別手段、40は電池電圧検出手段、50はマイコ
ン、60は充電電流制御手段、80は充電電流設定手段
である。
2 is a battery to be charged, 2A is a battery temperature detecting means, 6 is a battery type determining means, 40 is a battery voltage detecting means, 50 is a microcomputer, 60 is a charging current control means, and 80 is a charging current setting means.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池種類の異なる複数の被充電電池を充
電する充電制御方法であって、 前記被充電電池を第1充電電流で充電すると共に電池電
圧を検出し、電池電圧の時間に対する微分値が所定値以
上上昇したならば、被充電電池の電池種類に応じて充電
電流を第1充電電流よりも小さい第2充電電流に切り換
えるようにしたことを特徴とする電池の充電制御方法。
1. A charging control method for charging a plurality of charged batteries of different battery types, wherein the charged battery is charged with a first charging current, a battery voltage is detected, and a differential value of the battery voltage with respect to time is provided. A charge current is switched to a second charge current smaller than the first charge current in accordance with the type of the battery to be charged, when the battery charge rises by more than a predetermined value.
【請求項2】 前記被充電電池はニッケルカドミウム電
池とニッケル水素電池であり、被充電電池がニッケルカ
ドミウム電池であると判別している時には充電電流を切
り換えずに、被充電電池がニッケル水素電池であると判
別している時に充電電流を切り換えるようにしたことを
特徴とする請求項1記載の電池の充電制御方法。
2. The battery to be charged is a nickel cadmium battery and a nickel hydride battery. When it is determined that the battery to be charged is a nickel cadmium battery, the battery to be charged is a nickel hydride battery without switching the charging current. 2. The method according to claim 1, wherein the charging current is switched when it is determined that the battery is present.
【請求項3】 前記充電電流を切り換えた後に、被充電
電池の電池温度を検出し、電池温度が所定値以上上昇し
たならば充電を停止するようにしたことを特徴とする請
求項1あるいは請求項2記載の電池の充電制御方法。
3. The method according to claim 1, wherein after switching the charging current, the battery temperature of the battery to be charged is detected, and if the battery temperature rises by a predetermined value or more, the charging is stopped. Item 3. The battery charge control method according to Item 2.
【請求項4】 前記充電電流を切り換えた後に、被充電
電池の電池電圧を検出し、電池電圧の時間に対する微分
値が最大値から所定値以上低下したならば充電を停止す
るようにしたことを特徴とする請求項1〜請求項3のい
ずれか1項記載の電池の充電制御方法。
4. The method according to claim 1, wherein after switching the charging current, the battery voltage of the battery to be charged is detected, and the charging is stopped if a differential value of the battery voltage with respect to time falls from a maximum value by a predetermined value or more. The battery charging control method according to any one of claims 1 to 3, characterized in that:
JP10141184A 1998-05-22 1998-05-22 Charging control method of battery Withdrawn JPH11341696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10141184A JPH11341696A (en) 1998-05-22 1998-05-22 Charging control method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10141184A JPH11341696A (en) 1998-05-22 1998-05-22 Charging control method of battery

Publications (1)

Publication Number Publication Date
JPH11341696A true JPH11341696A (en) 1999-12-10

Family

ID=15286117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10141184A Withdrawn JPH11341696A (en) 1998-05-22 1998-05-22 Charging control method of battery

Country Status (1)

Country Link
JP (1) JPH11341696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049916A (en) * 2008-08-21 2010-03-04 Sanyo Electric Co Ltd Method for controlling charge of secondary battery and secondary battery device
JP2010518805A (en) * 2007-02-12 2010-05-27 エクサー コーポレーション Battery charging method using constant current adapted to keep constant rate of change of open circuit battery voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518805A (en) * 2007-02-12 2010-05-27 エクサー コーポレーション Battery charging method using constant current adapted to keep constant rate of change of open circuit battery voltage
JP2010049916A (en) * 2008-08-21 2010-03-04 Sanyo Electric Co Ltd Method for controlling charge of secondary battery and secondary battery device

Similar Documents

Publication Publication Date Title
US7592780B2 (en) Battery charging apparatus
JP4406932B2 (en) Charger
JPH06315233A (en) Battery charge control method
JP3161272B2 (en) Battery charger
JP2003333762A (en) Voltage level equalization device for battery pack
JP4434108B2 (en) Charger
JP3772665B2 (en) Battery charger
JP3637758B2 (en) Battery charging method
JP2006166641A (en) Battery charger
JP3695266B2 (en) Full charge detection method
JPH11150879A (en) Charging device of battery
US8344696B2 (en) Battery charger including a comparator
JP3951297B2 (en) Charger
JPH11341696A (en) Charging control method of battery
JP3268866B2 (en) Rechargeable battery charging method
JPH1127866A (en) Method of charging battery
JP3656379B2 (en) Battery charger
JP3738532B2 (en) Battery charger
Mammano Portable power-a designer’s guide to battery management
JP3722091B2 (en) Battery assembly life discriminator for charger
JPH11191936A (en) Battery charger
JP3951296B2 (en) Charger
JP3298276B2 (en) Battery charging apparatus and charging method
JP3635900B2 (en) Battery charger
JPH11185825A (en) Charging method of battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802