JPH11340393A - Power-converting device - Google Patents

Power-converting device

Info

Publication number
JPH11340393A
JPH11340393A JP10145393A JP14539398A JPH11340393A JP H11340393 A JPH11340393 A JP H11340393A JP 10145393 A JP10145393 A JP 10145393A JP 14539398 A JP14539398 A JP 14539398A JP H11340393 A JPH11340393 A JP H11340393A
Authority
JP
Japan
Prior art keywords
receiving member
heat receiving
power converter
semiconductor
reception member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10145393A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
敦 鈴木
Kaname Sasaki
要 佐々木
Heikichi Kuwabara
平吉 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10145393A priority Critical patent/JPH11340393A/en
Publication of JPH11340393A publication Critical patent/JPH11340393A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve radiation performance to reduce the size, and to improve the reliability of a semiconductor mounting structure in a power-converting device. SOLUTION: In semiconductor module 101, a semiconductor switching element 1 and a diode 2 are soldered to a heat reception member 6 that is made of copper as a material with solder 4 and 5 through an insulating substrate 3. The heat reception member 6 is composed of a base thickness part and a fin 7, and nickel plating or tin plating is preferably performed at least at a side for mounting the element. On each of six insulating substrates 3, a main circuit part corresponding to the upper or lower arm of two phases out of three ones is mounted. In this embodiment, two semiconductor switching elements and two diodes are mounted onto one insulating substrate 3. Six insulating substrates with such a configuration are mounted to one heat reception member 6, and a three-phase inverter main circuit is constituted to reduce the size. On the lower surface of the heat reception member 6, the fin 7 is formed in a direction vertical to the element-mounting surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力変換装置に関
するものであり、例えば、電動機の制御を目的に電気自
動車等に設置する電力変換装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter, for example, a power converter installed in an electric vehicle or the like for controlling an electric motor.

【0002】[0002]

【従来の技術】従来の電力変換装置としては、例えば特
開平7−211832 号公報に記載されているように、ベース
および蓋によって構成される金属マトリクス材液体冷却
ヒートシンク構造、前記金属マトリクス材液体冷却ヒー
トシンク構造の上に位置する絶縁層であって、前記絶縁
層は、前記金属マトリクス材液体冷却ヒートシンク構造
と一体的に形成される絶縁層、および、前記絶縁層の上
に位置する電子回路によって構成されたものが公知であ
る。
2. Description of the Related Art As a conventional power converter, for example, as described in JP-A-7-211832, a metal matrix material liquid cooling heat sink structure comprising a base and a lid, the metal matrix material liquid cooling An insulating layer overlying the heat sink structure, the insulating layer comprising an insulating layer integrally formed with the metal matrix material liquid cooling heat sink structure, and an electronic circuit overlying the insulating layer. What is done is publicly known.

【0003】[0003]

【発明が解決しようとする課題】かかる電力変換装置に
よれば、受熱部材として用いられる金属マトリクス材
は、銅と比較して熱伝導率は1/2以下と小さく、受熱
部材部の熱抵抗が大きかった。また、これを補うために
フィン等を設ける場合においても、熱伝導率が小さいこ
とから所謂フィン効率が小さいため、やはり熱抵抗が大
きかった。しかも、金属マトリクス部材の主たる構成元
素であるアルミニウムは、液体として最も冷却能力に優
れ、一般的に使用されている水に対し腐食性が大きく、
最悪の場合には金属マトリクス部材に穴が空いて電気部
品に障害を与えてしまうため、信頼性に問題があった。
According to such a power conversion device, the metal matrix material used as the heat receiving member has a heat conductivity of less than half that of copper, and the heat resistance of the heat receiving member portion is low. It was big. In addition, when fins and the like are provided to compensate for this, the so-called fin efficiency is low due to low thermal conductivity, so that the thermal resistance is also high. Moreover, aluminum, which is a main constituent element of the metal matrix member, has the best cooling ability as a liquid, and is highly corrosive to commonly used water,
In the worst case, a hole is formed in the metal matrix member, causing an obstacle to the electric components, and thus there is a problem in reliability.

【0004】本発明の目的は、電力変換装置において、
信頼性が高く、かつ放熱性能を著しく向上することがで
きる電力変換装置を得ることにある。
An object of the present invention is to provide a power conversion device,
An object of the present invention is to provide a power converter that has high reliability and can significantly improve heat radiation performance.

【0005】[0005]

【課題を解決するための手段】上記目的は、数の半導体
素子,絶縁層,受熱部材および蓋を有している電力変換
装置において、複数の前記半導体素子は絶縁層の一側に
熱的に接続して取り付けられ、受熱部材は銅により構成
されており、前記絶縁層の他側に熱的に接続して取り付
けられ、前記受熱部材において絶縁層が形成される面の
反対側の面にはフィンが形成されており、前記蓋を前記
受熱部材にはめ合せることにより、外部から液体を流す
ための流路が形成される構成にすることにより達成され
る。
The object of the present invention is to provide a power converter having a number of semiconductor elements, an insulating layer, a heat receiving member and a lid, wherein a plurality of the semiconductor elements are thermally connected to one side of the insulating layer. Connected and attached, the heat receiving member is made of copper, and is thermally connected and attached to the other side of the insulating layer, and the heat receiving member has a surface opposite to the surface on which the insulating layer is formed. Fins are formed, and the lid is fitted to the heat receiving member to achieve a configuration in which a flow path for flowing liquid from outside is formed.

【0006】上記目的は、数の半導体素子,絶縁層,受
熱部材および蓋を有している電力変換装置において、複
数の前記半導体素子は絶縁層の一側に熱的に接続して取
り付けられ、受熱部材は銅により構成されており、前記
絶縁層の他側に熱的に接続して取り付けられ、前記受熱
部材において絶縁層が形成される面の反対側の面にはフ
ィンが形成されており、前記蓋を前記受熱部材にはめ合
せることにより、外部から液体を流すための流路が形成
され、受熱部材の材料として銅を用い、かつ前記受熱部
材の電気絶縁板取り付け面からフィン根本面までの厚さ
が3mm以上とする構成により達成される。
The object is to provide a power conversion device having a number of semiconductor elements, an insulating layer, a heat receiving member, and a lid, wherein the plurality of semiconductor elements are thermally connected to one side of the insulating layer. The heat receiving member is made of copper, is thermally connected to and attached to the other side of the insulating layer, and a fin is formed on a surface of the heat receiving member opposite to a surface on which the insulating layer is formed. By fitting the lid to the heat receiving member, a flow path for flowing a liquid from the outside is formed, copper is used as the material of the heat receiving member, and from the surface of the heat receiving member to which the electric insulating plate is attached to the fin root surface. This is achieved by a configuration in which the thickness is 3 mm or more.

【0007】[0007]

【発明の実施の形態】以下、図1〜図6に基づいて、本
発明の実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0008】まず、図6を用いて本発明の電力変換装置
を説明する。図6は、電気自動車用の電力変換装置にお
ける主回路図を示す。本実施例の電力変換装置は、バッ
テリー201からの直流電流をインバータ回路を介して
可変電圧可変周波数の交流電流に変換して3相交流電動
機206を制御するものである。インバータ回路205u,
205v,205wの直流側には、バッテリー201か
らの直流電流のリップル成分を除去するためのフィルタ
コンデンサ202が接続される。また、インバータ回路
の主回路は、例えばIGBTといった半導体スイッチン
グ素子203やフリーホイールダイオード204により
構成されている。
First, a power converter according to the present invention will be described with reference to FIG. FIG. 6 shows a main circuit diagram of a power conversion device for an electric vehicle. The power converter of the present embodiment converts a DC current from a battery 201 into an AC current having a variable voltage and a variable frequency via an inverter circuit to control a three-phase AC motor 206. Inverter circuit 205u,
A filter capacitor 202 for removing a ripple component of the DC current from the battery 201 is connected to the DC side of 205v and 205w. The main circuit of the inverter circuit includes a semiconductor switching element 203 such as an IGBT and a freewheel diode 204, for example.

【0009】インバータ回路は、入力された直流を正・
負2つのレベルを有するパルスを出力することによりP
WM変調された可変電圧可変周波数の3相交流を出力す
る。3相電動機206は、可変電圧可変周波数の交流を
入力することによってその回転が制御され、自動車が力
行する。また、電動機206が発電機として動作する回
生時は、上記力行時とは反対にエネルギーがバッテリー
201に流れる。
The inverter circuit corrects the input direct current
By outputting a pulse having two negative levels, P
A WM-modulated variable voltage variable frequency three-phase alternating current is output. The rotation of the three-phase motor 206 is controlled by inputting an alternating current having a variable voltage and a variable frequency, so that the automobile runs. Also, at the time of regenerative operation in which the electric motor 206 operates as a generator, energy flows to the battery 201 contrary to the above-described power running.

【0010】以上説明した電力変換装置を構成する各素
子のなかでも、特に半導体スイッチング素子203やダ
イオード204の発熱量が大きいため、冷却器を大型化
せざるを得なかった。また、走行モードに応じて発熱量
が変化するため、各素子から電気を取り出すワイヤの接
合部や、各部品を接合する半田部に温度サイクルがかか
ることによって、各接合部に疲労破壊が発生し、信頼性
向上の妨げとなってきた。以下に説明する本実施形態に
よるコンデンサは、これらの要請に応じ得るものであ
る。
[0010] Among the elements constituting the power converter described above, the heat generated by the semiconductor switching element 203 and the diode 204 is particularly large, so that the size of the cooler must be increased. In addition, since the amount of heat generated varies depending on the running mode, a temperature cycle is applied to the joints of the wires that take out electricity from each element and the soldering parts that join each component, causing fatigue fracture at each joint. , Which has hindered the improvement of reliability. The capacitor according to the present embodiment described below can meet these requirements.

【0011】次に、図1乃至図4を用いて、本発明の電
力変換装置を説明する。図1は本発明の電力変換装置の
側面断面図、図2は図1のA方向から見た側面図、図3
は図1のB方向から見た側面図、図4は図1のC−C断
面図である。
Next, a power converter according to the present invention will be described with reference to FIGS. FIG. 1 is a side sectional view of the power converter of the present invention, FIG. 2 is a side view seen from the direction A in FIG.
1 is a side view seen from the direction B in FIG. 1, and FIG. 4 is a cross-sectional view taken along the line CC in FIG.

【0012】本実施形態における半導体モジュール10
1は、銅を材料とする受熱部材6に対し、半導体スイッ
チング素子1およびダイオード2が、絶縁基板3を介
し、半田4,5を用いて接合されている。受熱部材6は
図中の寸法線で示されるベース部とフィン7で構成さ
れ、少なくとも素子搭載面側にはニッケルメッキまたは
スズメッキを施すことが望ましい。半田を絶縁基板3の
種類としては、例えば、チッ化アルミやアルミナ等が用
いられる。絶縁基板は全部で6枚であり、各基板上に
は、3相のうち、2相の上アームあるいは下アームに相
当する主回路部品が搭載される。
The semiconductor module 10 according to the present embodiment
Reference numeral 1 denotes a semiconductor switching element 1 and a diode 2 joined to a heat receiving member 6 made of copper using solders 4 and 5 via an insulating substrate 3. The heat receiving member 6 is composed of a base portion and fins 7 indicated by dimension lines in the drawing, and it is desirable that at least the element mounting surface side be plated with nickel or tin. As the type of the insulating substrate 3 using solder, for example, aluminum nitride or alumina is used. There are a total of six insulating boards, and on each board, main circuit components corresponding to the two-phase upper arm or lower arm of the three phases are mounted.

【0013】本実施例においては、1枚の絶縁基板3上
に、半導体スイッチング素子が2枚、ダイオードが2枚
搭載されている。このような構成の絶縁基板の6枚が1
つの受熱部材6に搭載し、3相のインバータ主回路を構
成することで、小型化を可能としている。受熱部材6の
下面には、素子実装面に対し垂直な方向にフィン7が形
成される。
In this embodiment, two semiconductor switching elements and two diodes are mounted on one insulating substrate 3. Six of the insulating substrates having such a configuration are 1
By mounting on three heat receiving members 6 to form a three-phase inverter main circuit, miniaturization is possible. Fins 7 are formed on the lower surface of the heat receiving member 6 in a direction perpendicular to the element mounting surface.

【0014】フィン7は受熱部材6から一体物で成形さ
れるか、あるいはろう付等の方法で接合される。液体が
流れる流路10は、フランジ13,蓋9,フィン7およ
び受熱部材6との組み合わせにより形成される。
The fins 7 are integrally formed from the heat receiving member 6 or joined by a method such as brazing. The flow path 10 through which the liquid flows is formed by a combination of the flange 13, the lid 9, the fin 7, and the heat receiving member 6.

【0015】なお、本実施例においてフランジは受熱部
材側にあるが、蓋側にあってもよい。この場合、例えば
蓋9をアルミで構成することで、半導体モジュール10
1の軽量化が可能となる。液体の流入口11aおよび流
出口12aは、それぞれ接続パイプ8と連結しており、
液体は、パイプ8および流入口11aを介して分岐バッ
ファ12aに到達し、ここから各流路10に分岐し、流
路上で発熱する半導体1,2の発熱を吸熱しながら下流
へ流れる。さらに液体は、合流バッファ12bおよび流
出口11bを介して半導体モジュール101から出て行
く。ここで冷却に用いる液体の種類としては、冷却性能
の高い水、あるいは寒冷地での使用を考慮して、エチレ
ングリコール水溶液等がある。
In this embodiment, the flange is on the heat receiving member side, but may be on the lid side. In this case, for example, by forming the lid 9 from aluminum, the semiconductor module 10
1 can be reduced in weight. The liquid inlet 11a and the liquid outlet 12a are connected to the connection pipe 8, respectively.
The liquid reaches the branch buffer 12a via the pipe 8 and the inflow port 11a, branches into the respective channels 10 from there, and flows downstream while absorbing the heat generated by the semiconductors 1 and 2 that generate heat in the channels. Further, the liquid leaves the semiconductor module 101 via the merging buffer 12b and the outlet 11b. Here, as the type of liquid used for cooling, there are water having high cooling performance and an ethylene glycol aqueous solution in consideration of use in cold regions.

【0016】次に、図5を用いて、本発明の電力変換装
置における半導体モジュール101に用いられる受熱部
材のベース厚さと冷却性能の関係について説明する。図
5のグラフは、受熱部材6およびフィンの構成材料を銅
または、アルミ−炭化珪素とし、受熱部材6のベース厚
さを変えた場合の半導体スイッチング素子から冷却液ま
での熱抵抗を示したものである。熱抵抗は、アルミ−炭
化珪素(熱伝導率約160W/mK)を用いて厚さ1mm
の場合の熱抵抗を基準とした比率で示している。これに
よると、アルミ−炭化珪素を用いた場合には、ベース厚
さを大きくしていくと熱抵抗も増加していく。
Next, the relationship between the base thickness of the heat receiving member used for the semiconductor module 101 in the power converter of the present invention and the cooling performance will be described with reference to FIG. The graph of FIG. 5 shows the thermal resistance from the semiconductor switching element to the cooling liquid when the heat receiving member 6 and the fins are made of copper or aluminum-silicon carbide and the base thickness of the heat receiving member 6 is changed. It is. Thermal resistance is 1mm thick using aluminum-silicon carbide (thermal conductivity about 160W / mK)
The ratio is shown based on the thermal resistance in the case of (1). According to this, when aluminum-silicon carbide is used, the thermal resistance increases as the base thickness increases.

【0017】一方、銅を用いた場合には、「バスタブ」
状の曲線を描いており、3〜7mmの範囲で概ね最小値を
とっている。これは、受熱部材6の材料として熱伝導率
の良い銅(熱伝導率約400W/mK)を用いた場合に
は、厚さが増すことにより、取り付け面垂直方向の距離
が増加して温度差が生じる以上に、取り付け面に対し水
平な方向への熱拡散が良好となる厚さの領域が存在する
ためである。このことは熱伝導率の高い材料で顕著に示
される傾向であり、実用上は銅が最も顕著である。
On the other hand, when copper is used, a "bathtub"
The curve is shaped like a circle, and has a minimum value in the range of 3 to 7 mm. This is because, when copper having good thermal conductivity (heat conductivity of about 400 W / mK) is used as the material of the heat receiving member 6, the thickness in the vertical direction increases due to the increase in thickness, and the temperature difference increases. This is because there is a region having a thickness where heat diffusion in the direction parallel to the mounting surface is good, in addition to the occurrence of. This tendency is remarkably exhibited by a material having a high thermal conductivity, and copper is most remarkable in practical use.

【0018】上記電力変換装置によれば、半導体モジュ
ール101は、銅を材料とする受熱部材6に対し、半導
体スイッチング素子1およびダイオード2が、絶縁基板
3を介し、半田4,5を用いて接合されており、熱伝導
率の優れた材料を受熱部材およびフィンとして構成して
いることから、冷却性能を向上することができる。
According to the power converter, the semiconductor switching element 1 and the diode 2 are joined to the heat receiving member 6 made of copper using the solders 4 and 5 via the insulating substrate 3. Since the heat receiving member and the fin are made of a material having excellent thermal conductivity, the cooling performance can be improved.

【0019】さらに上記の構成において、受熱部材6の
ベース厚さを3mm以上とすることで、冷却性能は更に向
上し、装置の小型化および実装部の信頼性を向上するこ
とができる。
Further, in the above configuration, by setting the base thickness of the heat receiving member 6 to 3 mm or more, the cooling performance can be further improved, and the size of the device can be reduced and the reliability of the mounting portion can be improved.

【0020】以上は、電気自動車を対象に誘導電動機を
駆動するインバータ装置における電力変換装置について
の実施例を説明したが、本発明はこれに限定されず、例
えば鉄道車両を対象に直流をき電して誘導電動機を駆動
するインバータシステムにおいても適用することができ
る。また、上記説明したインバータはコンバータは2レ
ベルの電力変換器としたが3レベル電力変換器であって
も構わない。更に、スイッチング素子としてIGBTを
採用した構成についてのみ説明したが、パワートランジ
スタやMOSFET等の平面実装かつ片面冷却のパッケ
ージ構造を採用するスイッチング素子全般について適用
できる。
Although the embodiment of the power conversion device in the inverter device for driving the induction motor for the electric vehicle has been described above, the present invention is not limited to this, and for example, direct current is supplied to a railway vehicle. Thus, the present invention can also be applied to an inverter system that drives an induction motor. In the inverter described above, the converter is a two-level power converter, but may be a three-level power converter. Furthermore, although only the configuration employing an IGBT as the switching element has been described, the invention can be applied to all switching elements employing a planar mounting and single-sided cooling package structure such as a power transistor or MOSFET.

【0021】[0021]

【発明の効果】本発明の電力変換装置によれば、放熱性
能が著しく向上し、小型で長寿命な電力変換装置が提供
できる。半導体実装構造の信頼性を著しく向上すること
ができる。
According to the power converter of the present invention, it is possible to provide a small and long-life power converter having remarkably improved heat radiation performance. The reliability of the semiconductor mounting structure can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態における電力変換装置の
側面断面図である。
FIG. 1 is a side sectional view of a power converter according to a first embodiment of the present invention.

【図2】図1のA方向平面図である。FIG. 2 is a plan view in the direction A of FIG. 1;

【図3】図1のB方向側面図である。FIG. 3 is a side view in the B direction of FIG. 1;

【図4】図1のC−C線断面図である。FIG. 4 is a sectional view taken along line CC of FIG. 1;

【図5】本発明の作用を説明する計算結果を示したグラ
フである。
FIG. 5 is a graph showing calculation results for explaining the operation of the present invention.

【図6】本発明の電力変換装置の主回路図である。FIG. 6 is a main circuit diagram of the power converter of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体スイッチング素子、2…ダイオード、3…絶
縁基板、4,5…半田、6…受熱部材、7…フィン、8
…接続用パイプ、9…蓋、10…流路、11a…液体流
入口、11b…液体流出口、12a…分岐バッファ、1
2b…合流バッファ、13…フランジ、101…半導体
モジュール、201…バッテリー、202…フィルタコン
デンサ、203…半導体スイッチング素子、204…ダ
イオード、205u…インバータU相、205v…イン
バータV相、205w…インバータW相、206…3相
電動機。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor switching element, 2 ... Diode, 3 ... Insulating board, 4, 5 ... Solder, 6 ... Heat receiving member, 7 ... Fin, 8
... Connection pipe, 9 ... Lid, 10 ... Flow path, 11a ... Liquid inlet, 11b ... Liquid outlet, 12a ... Branch buffer, 1
2b: merge buffer, 13: flange, 101: semiconductor module, 201: battery, 202: filter capacitor, 203: semiconductor switching element, 204: diode, 205u: inverter U phase, 205v: inverter V phase, 205w: inverter W phase , 206 ... three-phase motor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の半導体素子,絶縁層,受熱部材およ
び蓋を有している電力変換装置において、複数の前記半
導体素子は絶縁層の一側に熱的に接続して取り付けら
れ、受熱部材は銅により構成されており、前記絶縁層の
他側に熱的に接続して取り付けられ、前記受熱部材にお
いて絶縁層が形成される面の反対側の面にはフィンが形
成されており、前記蓋を前記受熱部材にはめ合せること
により、外部から液体を流すための流路が形成されるこ
とを特徴とする電力変換装置。
1. A power converter having a plurality of semiconductor elements, an insulating layer, a heat receiving member, and a lid, wherein the plurality of semiconductor elements are thermally connected to one side of the insulating layer. Is made of copper, is thermally connected to and attached to the other side of the insulating layer, and a fin is formed on a surface of the heat receiving member opposite to a surface on which the insulating layer is formed, A power converter, wherein a flow path for flowing a liquid from outside is formed by fitting a lid to the heat receiving member.
JP10145393A 1998-05-27 1998-05-27 Power-converting device Pending JPH11340393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10145393A JPH11340393A (en) 1998-05-27 1998-05-27 Power-converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10145393A JPH11340393A (en) 1998-05-27 1998-05-27 Power-converting device

Publications (1)

Publication Number Publication Date
JPH11340393A true JPH11340393A (en) 1999-12-10

Family

ID=15384231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10145393A Pending JPH11340393A (en) 1998-05-27 1998-05-27 Power-converting device

Country Status (1)

Country Link
JP (1) JPH11340393A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142472A (en) * 2007-02-26 2007-06-07 Hitachi Ltd Inverter
JP2010187435A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Power conversion device, motor with built-in drive circuit using the power conversion device, indoor unit of air conditioner using the motor with built-in drive circuit, air conditioner, ventilation fan, pump, and equipment and water heater using the pump
JP2011103369A (en) * 2009-11-11 2011-05-26 Nippon Inter Electronics Corp Power semiconductor module and method of manufacturing the same
WO2011125784A1 (en) * 2010-03-31 2011-10-13 株式会社 東芝 Electric vehicle control device
DE112006002839B4 (en) * 2005-10-28 2012-04-26 Toyota Jidosha Kabushiki Kaisha Arrangement of an electrical device and a cooling structure for the electrical device
JP2016015466A (en) * 2014-06-13 2016-01-28 日産自動車株式会社 Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006002839B4 (en) * 2005-10-28 2012-04-26 Toyota Jidosha Kabushiki Kaisha Arrangement of an electrical device and a cooling structure for the electrical device
US8789578B2 (en) 2005-10-28 2014-07-29 Toyota Jidosha Kabushiki Kaisha Cooling structure for electric device
JP2007142472A (en) * 2007-02-26 2007-06-07 Hitachi Ltd Inverter
JP2010187435A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Power conversion device, motor with built-in drive circuit using the power conversion device, indoor unit of air conditioner using the motor with built-in drive circuit, air conditioner, ventilation fan, pump, and equipment and water heater using the pump
JP2011103369A (en) * 2009-11-11 2011-05-26 Nippon Inter Electronics Corp Power semiconductor module and method of manufacturing the same
WO2011125784A1 (en) * 2010-03-31 2011-10-13 株式会社 東芝 Electric vehicle control device
JP2011229372A (en) * 2010-03-31 2011-11-10 Toshiba Corp Electric vehicle control device
CN102821998A (en) * 2010-03-31 2012-12-12 株式会社东芝 Electric vehicle control device
US8847521B2 (en) 2010-03-31 2014-09-30 Kabushiki Kaisha Toshiba Electric-vehicle control apparatus
US8890455B2 (en) 2010-03-31 2014-11-18 Kabushiki Kaisha Toshiba Electric vehicle control device
EP2555409A4 (en) * 2010-03-31 2017-12-27 Kabushiki Kaisha Toshiba Electric vehicle control device
JP2016015466A (en) * 2014-06-13 2016-01-28 日産自動車株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP4284625B2 (en) Three-phase inverter device
WO2015079643A1 (en) Method of manufacturing cooler for semiconductor module, cooler for semiconductor module, semiconductor module, and electrically driven vehicle
EP1858313A1 (en) Power inverter
EP1843392A1 (en) Electronics assembly having heat sink substrate disposed in cooling vessel
JP6642731B2 (en) Semiconductor module and power converter
US20070097627A1 (en) Electronics assembly having multiple side cooling and method
JPH11346480A (en) Inverter device
US11322432B2 (en) Semiconductor module and power conversion apparatus
EP3641121A1 (en) Cooling structure of power conversion device
CN114725076B (en) Power module and three-phase motor driver
US20230308026A1 (en) Air-cooled power converter
JP2000092858A (en) Power converting apparatus
WO2020239421A1 (en) Three-level power module
JP6965706B2 (en) Semiconductor module, its manufacturing method and power converter
JP2011036016A (en) Power converter
JP6651828B2 (en) Cooler and power semiconductor module
JPH11340393A (en) Power-converting device
JP6594290B2 (en) Power converter
JP7428019B2 (en) semiconductor module
JP2004080856A (en) Power converter
JP7120083B2 (en) semiconductor equipment
JP2011018729A (en) Cooling device for semiconductor element module
EP3631853A2 (en) Power electronic packaging
WO2023188016A1 (en) Semiconductor module and power conversion device
WO2024185183A1 (en) Semiconductor device