WO2023188016A1 - Semiconductor module and power conversion device - Google Patents

Semiconductor module and power conversion device Download PDF

Info

Publication number
WO2023188016A1
WO2023188016A1 PCT/JP2022/015589 JP2022015589W WO2023188016A1 WO 2023188016 A1 WO2023188016 A1 WO 2023188016A1 JP 2022015589 W JP2022015589 W JP 2022015589W WO 2023188016 A1 WO2023188016 A1 WO 2023188016A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
section
cooling
circuit section
semiconductor element
Prior art date
Application number
PCT/JP2022/015589
Other languages
French (fr)
Japanese (ja)
Inventor
吉典 横山
晋一 出尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023519571A priority Critical patent/JP7330421B1/en
Priority to PCT/JP2022/015589 priority patent/WO2023188016A1/en
Publication of WO2023188016A1 publication Critical patent/WO2023188016A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor module and a power conversion device.
  • the present disclosure has been made to solve the above-mentioned problems, and aims to provide a semiconductor module and a power conversion device that can achieve both high cooling efficiency and miniaturization.
  • a semiconductor module includes a first circuit section, a first terminal, and a first cooling section.
  • the first circuit section includes a first semiconductor element.
  • the first semiconductor element includes a first main surface and a second main surface. The second main surface is located on the opposite side to the first main surface.
  • the first terminal is electrically connected to the first semiconductor element from the first main surface side.
  • the first terminal includes an extension portion located outside the first circuit portion.
  • the first cooling section is connected to the surface facing the second main surface of the first semiconductor element in the first circuit section. The extending portion of the first terminal is connected to the first cooling portion via the first insulating member.
  • a power conversion device includes a main conversion circuit and a control circuit.
  • the main conversion circuit includes the semiconductor module described above.
  • the main conversion circuit converts input power and outputs it.
  • the control circuit outputs a control signal for controlling the main conversion circuit to the main conversion circuit.
  • FIG. 1 is a schematic perspective view of a semiconductor module according to Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 1.
  • FIG. FIG. 2 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module shown in FIG. 1.
  • FIG. FIG. 2 is a schematic partial cross-sectional view for explaining the configuration of Modification Example 1 of the semiconductor module shown in FIG. 1.
  • FIG. FIG. 2 is a schematic perspective view for explaining the configuration of a second modification of the semiconductor module shown in FIG. 1.
  • FIG. FIG. 2 is a schematic partial cross-sectional view for explaining the configuration of Modification 3 of the semiconductor module shown in FIG. 1;
  • FIG. 3 is a schematic perspective view for explaining the configuration of a fourth modification of the semiconductor module shown in FIG. 1.
  • FIG. FIG. 3 is a schematic perspective view for explaining the configuration of modification 5 of the semiconductor module shown in FIG. 1.
  • FIG. FIG. 3 is a schematic side view of a semiconductor module according to a second embodiment.
  • 10 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module shown in FIG. 9.
  • FIG. 10 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 9.
  • FIG. 10 is a schematic partial cross-sectional view for explaining the configuration of Modification Example 1 of the semiconductor module shown in FIG. 9.
  • FIG. 10 is a schematic partial cross-sectional view for explaining the configuration of a second modification of the semiconductor module shown in FIG. 9.
  • FIG. 7 is a schematic side view of a semiconductor module according to Embodiment 3; 14 is a partial schematic side view for explaining the configuration of a modified example of the semiconductor module shown in FIG. 13.
  • FIG. FIG. 7 is a schematic perspective view of main parts for explaining the configuration of a semiconductor module according to a fourth embodiment.
  • FIG. 7 is a schematic side view of a main part for explaining the configuration of a semiconductor module according to a fourth embodiment.
  • 18 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 17.
  • FIG. 18 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 17.
  • FIG. FIG. 3 is a block diagram showing the configuration of a power conversion system according to a fifth embodiment.
  • FIG. 1 is a schematic perspective view of a semiconductor module 100 according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining the configuration of the semiconductor module 100 shown in FIG. 1.
  • FIG. 2 is a schematic diagram for explaining the configuration of the semiconductor module 100 shown in FIG. 1.
  • FIG. 3 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module 100 shown in FIG. 1. As shown in FIG.
  • the semiconductor module 100 includes a first circuit section 1b, a second circuit section 1a, a third circuit section 1c, a fourth circuit section 1d, and a third circuit section 1c.
  • Main terminals 3a, 3b, 3c as one terminal 3, first cooling section 2b, second cooling section 2a, third cooling section 2c, fourth cooling section 2d, top plate 5, and first insulating member 4a, and insulating sheets 6a, 6b, 6c, and 6d.
  • the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are circuit boards (component built-in boards) each having a built-in semiconductor element, and have the same configuration as each other. and each includes two semiconductor elements. Specifically, as shown in FIG. 2, the first circuit section 1b includes a first semiconductor element 7a and a third semiconductor element 7c. The second circuit section 1a includes a second semiconductor element 7b and a fourth semiconductor element 7d. In addition, in FIG. 2, the second circuit section 1a and the second cooling section 2a of the semiconductor module 100 are removed, and the first circuit section 100 is replaced with the resin 43 (see FIG. 3) that is the sealing resin of the first circuit section 1b. A circuit section 1b is shown.
  • the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are an element on the positive side (upper arm) and an element on the negative side (lower arm) of the inverter circuit, respectively. It has a so-called 2-in-1 structure in which the two are connected in series.
  • the semiconductor module 100 shown in FIG. 1 has a first circuit section 1b, a second circuit section 1a, a third circuit section 1c, and a fourth circuit section 1d connected in parallel. It has a structure.
  • the first circuit section 1b and the second circuit section 1a are arranged facing each other.
  • the first circuit section 1b and the second circuit section 1a are arranged side by side in the first direction DR1.
  • a first cooling section 2b is connected to a surface 1bb (see FIG. 3) located on the opposite side to the surface 1ba facing the second circuit section 1a with an insulating sheet 6b interposed therebetween.
  • a second cooling section 2a is connected to a surface 1ab (see FIG. 3) located on the opposite side to the surface facing the first circuit section 1b with an insulating sheet 6a interposed therebetween. That is, the first cooling section 2b and the second cooling section 2a are arranged to face each other with a gap between them.
  • the first circuit section 1b and the second circuit section 1a are arranged between the first cooling section 2b and the second cooling section 2a.
  • the first semiconductor element 7a, the second semiconductor element 7b, the third semiconductor element 7c, and the fourth semiconductor element 7d included in the first circuit part 1b and the second circuit part 1a have main terminals 3a and 3b as the first terminals 3. , 3c are connected.
  • the main terminals 3a, 3b, and 3c are connected to the first circuit section 1b and the second circuit section 1a at a connecting section 3f arranged between the first circuit section 1b and the second circuit section 1a.
  • the main terminals 3a and 3b are, for example, an N terminal and a P terminal connected to a capacitor (not shown).
  • the main terminal 3c is, for example, an AC terminal connected to a motor.
  • first direction DR1 A direction perpendicular to the first direction DR1 and in which the connecting portion 3f extends is defined as a second direction DR2.
  • second direction DR2 A direction perpendicular to the first direction DR1 and the second direction DR2 is defined as a third direction DR3.
  • a third cooling section 2c is arranged on the opposite side of the first circuit section 1b when viewed from the first cooling section 2b.
  • the third cooling section 2c is arranged at a distance from the first cooling section 2b.
  • the upper ends of the first cooling section 2b and the third cooling section 2c are connected to the top plate 5.
  • the fourth cooling section 2d is arranged on the opposite side of the first cooling section 2b when viewed from the third cooling section 2c.
  • the fourth cooling section 2d is arranged at a distance from the third cooling section 2c.
  • the third circuit section 1c and the fourth circuit section 1d are arranged between the third cooling section 2c and the fourth cooling section 2d.
  • the third circuit section 1c and the fourth circuit section 1d are arranged facing each other.
  • the third circuit section 1c and the fourth circuit section 1d are arranged side by side in the first direction DR1.
  • a third cooling section 2c is connected to the surface opposite to the surface facing the fourth circuit section 1d with an insulating sheet 6c interposed therebetween.
  • a fourth cooling section 2d is connected to the surface opposite to the surface facing the third circuit section 1c with an insulating sheet 6d interposed therebetween.
  • the third circuit section 1c includes two semiconductor elements.
  • the fourth circuit section 1d includes two semiconductor elements.
  • Main terminals 3a, 3b, and 3c as the first terminals 3 are connected to the semiconductor elements included in the third circuit section 1c and the fourth circuit section 1d.
  • the main terminals 3a, 3b, and 3c are connected to the third circuit section 1c and the fourth circuit section 1d at a connection section arranged between the third circuit section 1c and the fourth circuit section 1d.
  • the first extending portions 3e of the main terminals 3a, 3b, and 3c, which are the first terminals 3, are connected to the top plate 5, which is connected to the first cooling section 2b and the third cooling section 2c, via the first insulating member 4a. It is connected.
  • main terminals 3a, 3b, and 3c which are conductors for the main circuit, are shown, but control terminals are not shown. A large current does not flow through the control terminals as in the main terminals 3a, 3b, and 3c. Therefore, there is little need to cool the control terminals.
  • the control terminals may also be connected to the top plate 5 through an insulating sheet in the same manner as the main terminals 3a, 3b, and 3c.
  • the semiconductor module 100 has a symmetrical structure with the top plate 5 in between in the first direction DR1.
  • a metal with excellent thermal conductivity such as aluminum or copper, can be used as the material of the top plate 5 and the material of the main terminals 3a, 3b, and 3c, which are the first terminals 3.
  • the first semiconductor element 7a which is a power semiconductor element, includes a first main surface 7aa and a second main surface 7ab.
  • the second main surface 7ab is located on the opposite side to the first main surface 7aa.
  • the first terminal 3 (see FIG. 1) is electrically connected to the first semiconductor element 7a from the first main surface 7aa side.
  • the first circuit section 1b is a circuit board in which a first semiconductor element 7a is embedded.
  • circuit wirings 46a and 46c are arranged to face the first main surface 7aa of the first semiconductor element 7a.
  • the circuit wirings 46a and 46c are electrically connected to electrodes (not shown) formed on the first main surface 7aa of the first semiconductor element 7a via connection conductors 40a and 40c, respectively.
  • Circuit wiring 46b is arranged to face second main surface 7ab of first semiconductor element 7a.
  • the circuit wiring 46b is electrically connected to an electrode (not shown) formed on the second main surface 7ab of the first semiconductor element 7a via the connecting conductor 40b.
  • connection conductors 40a, 40b, and 40c are, for example, copper-plated films.
  • any material can be used as long as it has good electrical conductivity.
  • copper paste or silver paste may be used as the material.
  • metal pillars such as copper are arranged as the connecting conductors 40a, 40b, and 40c, and a conductive material paste, solder, or copper plating film is formed on the surface of the metal pillars.
  • a complex with paste or the like may also be used.
  • the circuit wiring 46a is electrically connected to the first terminal 3.
  • the circuit wiring 46b extends from a position facing the first semiconductor element 7a to a position not overlapping with the first semiconductor element 7a.
  • the circuit wiring 46b is connected to the main terminal 3c forming the first terminal 3 at a position that does not overlap with the first semiconductor element 7a.
  • the circuit wiring 46c is connected to the control terminal 41.
  • any material can be used as long as it is a material with good electrical conductivity.
  • the member is, for example, a copper plating film, a copper foil, a copper plate, or the like.
  • the first semiconductor element 7a, the third semiconductor element 7c (see FIG. 2), the connecting conductors 40a, 40b, 40c, and the circuit wirings 46a, 46b, 46c are embedded in the resin 43.
  • the resin 43 is an insulating resin, and insulates the members constituting the first circuit section 1b, such as the first semiconductor element 7a.
  • the first semiconductor element 7a for example, a power device using silicon (Si), silicon carbide (SiC) which is a compound semiconductor, gallium nitride (GaN), etc. can be used.
  • the first semiconductor element 7a includes an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). stor), FWD (Free Wheeling Diode), RC-IGBT (Reverse Conducting Insulated Gate Bipolar Transistor), etc. Can be used.
  • the first cooling section 2b is connected to the surface 1bb facing the second main surface 7ab of the first semiconductor element 7a in the first circuit section 1b.
  • an insulating sheet 6b, a copper foil 44, and a bonding material 45 are arranged between the surface 1bb of the first circuit section 1b and the first cooling section 2b.
  • An insulating sheet 6b is fixed to the surface 1bb of the first circuit section 1b.
  • a copper foil 44 is fixed to the surface of the insulating sheet 6b opposite to the surface facing the surface 1bb of the first circuit portion 1b.
  • the surface of the copper foil 44 opposite to the surface facing the insulating sheet 6b is bonded to the first cooling section 2b by a bonding material 45. Note that in FIG. 3, the appearance of the first cooling part 2b is shown, not the cross section.
  • the second circuit section 1a has the same configuration as the first circuit section 1b shown in FIG. 3.
  • the second circuit section 1a is arranged on the opposite side of the first cooling section 2b when viewed from the first circuit section 1b.
  • the second circuit section 1a includes a second semiconductor element 7b and a fourth semiconductor element 7d.
  • the second semiconductor element 7b is arranged to face the first semiconductor element 7a in the first direction DR1.
  • the fourth semiconductor element 7d is arranged to face the third semiconductor element 7c in the first direction DR1.
  • the second semiconductor element 7b includes a third main surface 7ba and a fourth main surface 7bb.
  • the third main surface 7ba faces the first circuit section 1b.
  • the fourth main surface 7bb is located on the opposite side to the third main surface 7ba.
  • the first terminal 3 is electrically connected to the second semiconductor element 7b from the third main surface 7ba side.
  • the configuration of the connection between the second semiconductor element 7b and the first terminal 3 is similar to the configuration of the connection between the first semiconductor element 7a and the first terminal 3.
  • the second cooling unit 2a is connected to the surface facing the fourth main surface 7bb of the second semiconductor element 7b in the second circuit unit 1a.
  • the third circuit section 1c and the fourth circuit section 1d also basically have the same configuration as the first circuit section 1b.
  • the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d described above are circuit boards that incorporate components such as semiconductor elements formed using printed circuit board technology.
  • a circuit board for example, copper-plated wiring is used to connect the semiconductor element and the terminal.
  • a copper plate is used as a wiring member between the same layers in the circuit board.
  • the first cooling section 2b, second cooling section 2a, third cooling section 2c, and fourth cooling section 2d may have any configuration as long as they can cool the adjacent circuit sections.
  • the first cooling section 2b, the second cooling section 2a, the third cooling section 2c, and the fourth cooling section 2d may have a fin structure made of a metal material with high thermal conductivity such as aluminum, and a cooling section around the fin structure.
  • a cooling device including a refrigerant flow path through which a refrigerant such as water flows may be used.
  • a coolant such as water is circulated as the first cooling section 2b, second cooling section 2a, third cooling section 2c, and fourth cooling section 2d.
  • a metal body (so-called water jacket) in which a flow path is formed may also be used.
  • the refrigerant used in the first cooling section 2b, the second cooling section 2a, the third cooling section 2c, and the fourth cooling section 2d may be a liquid such as water or a gas such as air.
  • the metal material constituting the first cooling section 2b, second cooling section 2a, third cooling section 2c, and fourth cooling section 2d may be a metal other than the above-mentioned aluminum, such as copper.
  • the first insulating member 4a and the insulating sheets 6a, 6b, 6c, and 6d may be made of any material as long as it is an electrical insulator that has the dielectric strength required for the semiconductor module 100 and has good thermal conductivity. can be used.
  • As the first insulating member 4a a sheet-like electrically insulating member, a paste-like electrically insulating member, etc. can be used.
  • the insulating sheets 6a, 6b, 6c, and 6d are formed using printed circuit board manufacturing technology when manufacturing the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d. It may also be attached to the section. Alternatively, the insulating sheets 6a, 6b, 6c, and 6d may be formed by printing or applying a paste-like electrical insulating member to each circuit portion and performing a hardening process such as baking.
  • a semiconductor module 100 includes a first circuit section 1b, a first terminal 3, and a first cooling section 2b.
  • the first circuit section 1b includes a first semiconductor element 7a.
  • the first semiconductor element 7a includes a first main surface 7aa and a second main surface 7ab.
  • the second main surface 7ab is located on the opposite side to the first main surface 7aa.
  • the first terminal 3 is electrically connected to the first semiconductor element 7a from the first main surface 7aa side.
  • the first terminal 3 includes a first extending portion 3e located outside the first circuit portion 1b.
  • the first cooling section 2b is connected to the surface 1bb of the first semiconductor element 7a that is faced by the second main surface 7ab of the first semiconductor element 7a in the first circuit section 1b.
  • the first extending portion 3e of the first terminal 3 is connected to the first cooling portion 2b via the first insulating member 4a.
  • the first semiconductor element 7a is cooled by the first cooling section 2b from the second main surface 7ab side. Furthermore, since the first terminal 3 is cooled by the first cooling unit 2b via the first insulating member 4a, the first semiconductor element can be seen from the first main surface 7aa side to which the first terminal 3 is connected. 7a can be cooled. For this reason, the semiconductor module 100 can be made smaller and more dense than in the case where cooling units are individually arranged on both sides of the first main surface 7aa and the second main surface 7ab of the first semiconductor element 7a. The semiconductor element 7a can be sufficiently cooled.
  • the first circuit section 1b may be a circuit board in which the first semiconductor element 7a is embedded.
  • semiconductor elements such as the first semiconductor element 7a included in the circuit board can be sufficiently cooled and the size can be reduced.
  • the semiconductor module 100 may further include a second circuit section 1a and a second cooling section 2a.
  • the second circuit section 1a may be arranged on the opposite side of the first cooling section 2b when viewed from the first circuit section 1b.
  • the second circuit section 1a may include a second semiconductor element 7b.
  • the second semiconductor element 7b may include a third main surface 7ba and a fourth main surface 7bb.
  • the third main surface 7ba may face the first circuit section 1b.
  • the fourth main surface 7bb may be located on the opposite side to the third main surface 7ba.
  • the first terminal 3 may be electrically connected to the second semiconductor element 7b from the third main surface 7ba side.
  • the second cooling section 2a may be connected to the surface of the second semiconductor element 7b that faces the fourth main surface 7bb in the second circuit section 1a.
  • the second semiconductor element 7b can also be cooled by the first cooling unit 2b from the third main surface 7ba side via the first terminal 3. Furthermore, the second semiconductor element 7b can be cooled by the second cooling section 2a from the fourth main surface 7bb side as well.
  • the first cooling section 2b and the first cooling section 2b and the second cooling section 1a are arranged to sandwich the first circuit section 1b and the second circuit section 1a from the direction in which the first circuit section 1b and the second circuit section 1a are lined up (first direction DR1).
  • the second cooling unit 2a can cool both the first semiconductor element 7a and the second semiconductor element 7b from both sides. Therefore, the semiconductor module 100 can be made smaller than when a total of four cooling units are arranged so as to sandwich each of the first semiconductor element 7a and the second semiconductor element 7b individually.
  • the first circuit section 1b may include a third semiconductor element 7c.
  • the second circuit section 1a may include a fourth semiconductor element 7d.
  • the first circuit section 1b and the second circuit section 1a can each have a 2-in-1 structure including two semiconductor elements. In the semiconductor module 100 including such a 2-in-1 circuit section, it is possible to achieve both miniaturization and sufficient cooling performance.
  • FIG. 4 is a schematic partial cross-sectional view for explaining the configuration of Modified Example 1 of the semiconductor module shown in FIG. FIG. 4 corresponds to FIG. 3 and schematically shows the cross-sectional shape of the first circuit section 1b.
  • the semiconductor module including the first circuit section 1b shown in FIG. 4 basically has the same configuration as the semiconductor module 100 shown in FIGS. 1 to 3, and can obtain the same effects.
  • the internal structure of the first circuit section 1b is different from the semiconductor module 100 shown in FIGS. 1 to 3. That is, in the semiconductor module shown in FIG. 4, the first semiconductor element 7a and the third semiconductor element 7c included in the first circuit section 1b are connected to the circuit through the die bonding material 42 instead of the connecting conductor 40b (see FIG. 3).
  • the connection structure with the first terminal 3 is better than when the first circuit section 1b and the second circuit section 1a have completely different configurations. can be simplified. Therefore, it is easy to reduce the inductance of the semiconductor module.
  • the electrode (not shown) formed on the first main surface 7aa of the first semiconductor element 7a and the circuit wirings 46a and 46c are bonded using a die bonding material. May be connected.
  • a die bonding material for example, sinterable silver paste, copper paste, solder, etc. can be used.
  • FIG. 5 is a schematic perspective view for explaining the configuration of a second modification of the semiconductor module shown in FIG. 1.
  • the semiconductor module 100 shown in FIG. 5 basically has the same configuration as the semiconductor module 100 shown in FIGS. 1 to 3, and can obtain the same effects, but the first circuit section 1b
  • the configuration of the cooling section disposed between the third circuit section 1c and the third circuit section 1c is different from that of the semiconductor module 100 shown in FIGS. 1 to 3. That is, in the semiconductor module 100 shown in FIG. 5, the fifth cooling part 2e in which the first cooling part 2b, the third cooling part 2c, and the top plate 5 shown in FIG. 1 are integrated is the first circuit part 1b. and the third circuit section 1c.
  • the first circuit section 1b is connected to the fifth cooling section 2e via an insulating sheet 6b.
  • the third circuit section 1c is connected to the fifth cooling section 2e via an insulating sheet 6c.
  • the first extending portion 3e of the first terminal 3 is connected to the fifth cooling portion 2e via the first insulating member 4a.
  • FIG. 6 is a schematic partial cross-sectional view for explaining the configuration of Modification 3 of the semiconductor module shown in FIG. 1.
  • FIG. 6 shows a connecting portion between the first circuit section 1b and the fifth cooling section 2e in the semiconductor module 100 shown in FIG.
  • the semiconductor module shown in FIG. 6 basically has the same configuration as the semiconductor module 100 shown in FIG.
  • the structure of the connecting portion with 1b is different from the semiconductor module 100 shown in FIG. 5. That is, in the semiconductor module shown in FIG. 6, fins 2ea, which are a plurality of convex portions, are formed on the surface of the fifth cooling portion 2e facing the insulating sheet 6b.
  • a bonding material 45 is arranged between the surface of the fifth cooling part 2e on which the fins 2ea are formed and the insulating sheet 6b.
  • a copper foil 44 may be placed between the insulating sheet 6b and the bonding material 45 as shown in FIG.
  • the fins 2ea are also formed on the surface facing the insulating sheet 6c (see FIG. 5) in the fifth cooling section 2e. Further, the fins 2ea may be formed on the surface of the fifth cooling part 2e facing the first extending part 3e of the first terminal 3.
  • a material with excellent thermal conductivity such as a metal such as aluminum or copper, can be used.
  • FIG. 7 is a schematic perspective view for explaining the configuration of modification 4 of the semiconductor module shown in FIG. 1.
  • FIG. 7 shows a module in which three semiconductor modules 100 shown in FIG. 1 are combined.
  • the module shown in FIG. 7 is configured to support three phases of UVW assuming motor drive.
  • three semiconductor modules 100 are arranged in a line in the first direction DR1.
  • the refrigerant supplied to the first cooling unit 2b, second cooling unit 2a, third cooling unit 2c, and fourth cooling unit 2d (see FIG. 1) is sequentially applied to the semiconductor modules 100 lined up along the first direction DR1.
  • the refrigerant When the refrigerant is supplied, the refrigerant is supplied to the three semiconductor modules 100 in parallel, so there is no need to distribute the refrigerant, so the configuration of the refrigerant supply flow path can be simplified.
  • the cooling efficiency of the semiconductor module 100 located on the downstream side in the flow direction of the refrigerant may be lower than that of the semiconductor module 100 located on the upstream side in the flow direction of the refrigerant.
  • FIG. 8 is a schematic perspective view for explaining the configuration of modification 5 of the semiconductor module shown in FIG. 1.
  • FIG. 8 also shows a module in which three semiconductor modules 100 shown in FIG. 1 are combined.
  • three semiconductor modules 100 are arranged in a line in the third direction DR3.
  • the coolant supplied to the first cooling unit 2b, second cooling unit 2a, third cooling unit 2c, and fourth cooling unit 2d (see FIG. 1) is applied in parallel to the semiconductor modules 100 lined up along the third direction DR3.
  • the piping configuration for supplying the refrigerant in parallel to the three semiconductor modules 100 may become more complicated and larger than the module shown in FIG.
  • FIG. 9 is a schematic side view of the semiconductor module 200 according to the second embodiment.
  • FIG. 10 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module 200 shown in FIG. 9. As shown in FIG. In FIG. 10, a cross section of the first circuit section 1b that constitutes the semiconductor module 200 is shown.
  • FIG. 11 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 9. FIG. 11 shows a partial cross section of the connection between the first circuit section 1b and the first cooling section 2b in the semiconductor module 200.
  • the semiconductor module 200 shown in FIGS. 9 to 11 basically has the same configuration as the semiconductor module 100 shown in FIG. 5, and can obtain the same effects, but the first circuit section 1b, The configurations of the second circuit section 1a, third circuit section 1c, and fourth circuit section 1d are different from the semiconductor module 100 shown in FIG. 5. That is, in the semiconductor module 200 shown in FIGS. 9 to 11, the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d hold semiconductor elements and the like in the resin 23 (FIG. (see). The sealing with the resin 23 is performed, for example, by a transfer molding method. Since the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d have similar configurations, the structure will be explained below using the first circuit section 1b as an example.
  • the first circuit section 1b mainly includes a first semiconductor element 7a, a third semiconductor element 7c, die bond materials 15a and 15b, a copper circuit 18, an insulating sheet 16, a copper foil 19, and a resin 23. Be prepared.
  • the first semiconductor element 7a is connected to the upper surface of a copper circuit 18, which is a conductor, using a die bonding material 15a.
  • the third semiconductor element 7c is connected to the upper surface of the copper circuit 18 using a die bonding material 15b.
  • solder, silver sintered body, copper sintered body, etc. can be used as the die-bonding materials 15a and 15b.
  • An insulating sheet 16 is connected to the back surface of the copper circuit 18, which is located on the opposite side to the top surface.
  • a copper foil 19 is connected to the back surface of the insulating sheet 16 opposite to the surface connected to the copper circuit 18. Any method can be used to connect the copper circuit 18, the insulating sheet 16, and the copper foil 19, such as using a bonding material such as an adhesive.
  • a control circuit 21 as a terminal made of a conductor is arranged on the side of the first semiconductor element 7a at a distance from the copper circuit 18.
  • a main circuit 20 as a terminal made of a conductor is arranged on the side of the third semiconductor element 7c at a distance from the copper circuit 18.
  • the control circuit 21, the first semiconductor element 7a, the third semiconductor element 7c, and the main circuit 20 are electrically connected by wiring 22.
  • an aluminum wire can be used, for example, but any other conductor wire can be used.
  • the wiring 22 may be a wire made of a good conductor such as a copper wire or an aluminum-coated copper wire.
  • the back surface of the copper foil 19 in the first circuit section 1b and the fifth cooling section 2e are connected by a bonding material 28.
  • the bonding material 28 for example, thermally conductive grease, solder, etc. can be used.
  • the first circuit section 1b and the second circuit section 1a are arranged to face each other.
  • the third circuit section 1c and the fourth circuit section 1d are arranged to face each other.
  • the main circuits 20 of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are connected to a main terminal 3c as the first terminal 3. Note that in FIG. 9, the control circuit 21 in each circuit section is not illustrated.
  • the first semiconductor element 7a and the like can be cooled from both sides similarly to the semiconductor module 100 shown in FIG.
  • the back surface of the first semiconductor element 7a is cooled by the fifth cooling section 2e via the die bonding material 15a, the copper circuit 18, the insulating sheet 16, the copper foil 19, and the bonding material 28.
  • the surface of the first semiconductor element 7a is cooled by the fifth cooling section 2e via the wiring 22, the main circuit 20, the main terminal 3c, and the first insulating member 4a.
  • the first circuit section 1b may further include resin 23 for sealing the first semiconductor element 7a.
  • the semiconductor elements such as the first semiconductor element 7a included in the circuit section can be sufficiently cooled and the size can be reduced. can.
  • FIG. 12 is a schematic partial cross-sectional view for explaining the configuration of Modification Example 1 of the semiconductor module shown in FIG. 9.
  • FIG. 12 is a schematic partial cross-sectional view for explaining the configuration of Modification Example 1 of the semiconductor module shown in FIG. 9.
  • the semiconductor module 200 using the first circuit section 1b shown in FIG. 12 basically has the same configuration as the semiconductor module 200 shown in FIG. 9, and can obtain the same effects.
  • the configurations of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are different from the semiconductor module 200 shown in FIG. That is, in the semiconductor module 200 shown in FIG. 13, the main circuit 20 is made of a copper plate, and the main circuit 20 extends from outside the resin 23 to above the first semiconductor element 7a and the third semiconductor element 7c.
  • the main circuit 20 and an electrode (not shown) formed on the upper surface of the first semiconductor element 7a are connected by a bonding material 24a.
  • the main circuit 20 and an electrode (not shown) formed on the upper surface of the third semiconductor element 7c are connected by a bonding material 24b.
  • a bonding material 24b As the bonding materials 24a and 24b, any conductive bonding member such as solder, silver sintered body, copper sintered body, etc. can be used. Even in the semiconductor module 200 having such a configuration, the same effects as the semiconductor module 200 shown in FIGS. 9 to 11 can be obtained.
  • FIG. 13 is a schematic partial cross-sectional view for explaining the configuration of Modification 2 of the semiconductor module shown in FIG. 9.
  • FIG. 13 corresponds to FIG. 12.
  • the semiconductor module 200 using the first circuit section 1b shown in FIG. 13 basically has the same configuration as the semiconductor module 200 shown in FIG. 12, and can obtain the same effects.
  • the configurations of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are different from the semiconductor module 200 shown in FIG. That is, in the semiconductor module 200 shown in FIG. 13, the first semiconductor element 7a and the third semiconductor element 7c are mounted on an insulating substrate.
  • the insulating board includes an insulating board 26, a copper circuit 25 connected to the first surface of the insulating board 26, and a copper plate 27 connected to the second surface of the insulating board 26 opposite to the first surface.
  • the first semiconductor element 7a and the third semiconductor element 7c are connected to the copper circuit 25 by die bonding materials 15a and 15b.
  • the surface of the copper plate 27 is exposed on the bottom surface of the first circuit section 1b.
  • the front surface (back surface) of the copper plate 27 in the first circuit section 1b and the fifth cooling section 2e are connected by a bonding material 28 (see FIG. 11). Even in the semiconductor module 200 having such a configuration, the same effects as the semiconductor module 200 shown in FIGS. 9 to 11 can be obtained.
  • FIG. 14 is a schematic side view of a semiconductor module 300 according to the third embodiment.
  • FIG. 14 corresponds to FIG. 9.
  • the semiconductor module 300 shown in FIG. 14 basically has the same configuration as the semiconductor module 200 shown in FIGS. 9 to 11, and can obtain the same effects, but the first circuit section 1b,
  • the semiconductor module 200 is different from the semiconductor module 200 shown in FIGS. 9 to 11 in that the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are configured and that the second terminal 8 is provided. That is, in the semiconductor module 300 shown in FIG. main circuit 20b.
  • the first main circuit 20a and the second main circuit 20b extend in mutually different directions.
  • the first main circuit 20a is arranged so as to protrude from the first surface (top surface) of the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d.
  • the second main circuit 20b is arranged so as to protrude from the second surface (the lower surface opposite to the first surface) of the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d. has been done.
  • the first main circuits 20a of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are each connected to the main terminal 3c.
  • the first extending portion 3e of the main terminal 3c is connected to the fifth cooling portion 2e via the first insulating member 4a.
  • the second main circuits 20b of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are each connected to a second terminal 8, which is a main terminal.
  • the second terminal 8 includes a second extending portion 8e.
  • the second extending portion 8e is arranged in a region adjacent to the fifth cooling portion 2e.
  • the second extending portion 8e is located in a direction different from the direction in which the first extending portion 3e of the first terminal 3 is located when viewed from the first circuit portion 1b.
  • the second extending portion 8e of the second terminal 8 is connected to the fifth cooling portion 2e via the second insulating member 4b.
  • the second main circuit 20b and the first main circuit 20a of the first circuit section 1b are electrically connected to the first semiconductor element 7a from the first main surface 7aa side, similar to the main circuit 20 shown in FIG. 10 etc. has been done. Therefore, the main terminal 3c, which is the first terminal 3, and the second terminal 8 are also electrically connected to the first semiconductor element 7a from the first main surface 7aa side.
  • the first main circuit 20a has an N terminal and a P terminal
  • the second main circuit 20b has an AC terminal.
  • the first main circuit 20a which is an N terminal and a P terminal
  • the second main circuit 20b which is an AC terminal
  • the semiconductor module 300 may further include a second terminal 8.
  • the second terminal 8 may be electrically connected to the first semiconductor element 7a from the first main surface 7aa side.
  • the second terminal 8 may include a second extending portion 8e.
  • the second extending portion 8e may be located in a direction different from the direction in which the first extending portion 3e is located when viewed from the first circuit portion 1b.
  • the second extending portion 8e of the second terminal 8 may be connected to the first cooling portion 2b via the second insulating member 4b.
  • terminals to which different devices are connected (the first main circuit 20a and the second main circuit 20b) can be arranged in different directions. Therefore, the length of the wiring path from each terminal to the connected device can be shortened. As a result, the inductance of the circuit including the semiconductor module 300 can be reduced.
  • FIG. 15 is a partial side schematic diagram for explaining the configuration of a modified example of the semiconductor module 300 shown in FIG. 14.
  • FIG. 15 shows a portion of the first circuit section 1b and the second circuit section 1a that constitute the semiconductor module 300.
  • the semiconductor module including the first circuit section 1b and the second circuit section 1a shown in FIG. 15 basically has the same configuration as the semiconductor module 300 shown in FIG. 14, and can obtain similar effects.
  • the configurations of the first circuit section 1b, second circuit section 1a, third circuit section 1c (see FIG. 14), and fourth circuit section 1d (see FIG. 14) are different from the semiconductor module 300 shown in FIG. ing. That is, the first circuit section 1b and the second circuit section 1a shown in FIG. 15 share the first main circuit 20a. Further, the first circuit section 1b and the second circuit section 1a may share a second main circuit 20b (not shown).
  • a wiring structure can be formed in each of the first circuit section 1b and the second circuit section 1a according to the shunt design of the circuit connected to the first main circuit 20a. Therefore, the degree of freedom in circuit design can be increased, and as a result, the inductance of the circuit can be reduced. Note that the configurations of the first circuit section 1b and the second circuit section 1a described above are also applied to the third circuit section 1c and the fourth circuit section 1d.
  • FIG. 16 is a schematic perspective view of main parts for explaining the configuration of a semiconductor module 500 according to the fourth embodiment.
  • FIG. 16 shows a cooler module 400 that constitutes the semiconductor module 500.
  • FIG. 17 is a schematic side view of a main part for explaining the configuration of a semiconductor module 500 according to the fourth embodiment.
  • FIG. 18 is a schematic diagram for explaining the configuration of semiconductor module 500 shown in FIG. 17.
  • FIG. 19 is a schematic diagram for explaining the configuration of semiconductor module 500 shown in FIG. 17.
  • FIG. 19 shows the flow of coolant supplied to the semiconductor module 500.
  • the semiconductor module 500 shown in FIGS. 16 to 19 basically has the same configuration as the semiconductor module 200 shown in FIGS. 9 to 11, and can obtain the same effects, but the second cooling
  • the semiconductor module 200 is different from the semiconductor module 200 shown in FIGS. 9 to 11 in that a cooler module 400 shown in FIG. 16 is provided in place of the section 2a, the fifth cooling section 2e, and the fourth cooling section 2d.
  • the semiconductor module 500 shown in FIGS. 16 to 19 includes a cooler module 400, a first circuit section 1b, a second circuit section 1a, a third circuit section 1c, a fourth circuit section 1d, and a first terminal 3. It mainly includes a main terminal 3c.
  • the cooler module 400 includes a first cooling section 2b, a second cooling section 2a, a third cooling section 2c, a sealing plate 34, a first side cooling section 31a, a second side cooling section 31b, a third side cooling section 31c, It mainly includes a fourth side cooling section 31d and a bottom cooling section 35.
  • the bottom cooling section 35 is a plate-shaped member. On the bottom cooling section 35, the first cooling section 2b, the second cooling section 2a, the third cooling section 2c, the sealing plate 34, the first side cooling section 31a, the second side cooling section 31b, and the third side cooling section 31c. , the fourth side cooling part 31d is fixed. As shown in FIG. 17, the second cooling unit 2a, the first cooling unit 2b, and the third cooling unit 2c are arranged at intervals in this order along the first direction DR1. The first cooling section 2b, the second cooling section 2a, and the third cooling section 2c have similar configurations.
  • the first cooling section 2b includes a first end 2ba and a second end 2bb.
  • the second end 2bb is located on the opposite side to the first end 2ba.
  • a first coolant flow path 33b extending from the first end 2ba to the second end 2bb is formed in the first cooling part 2b.
  • a first opening 33ba, which is one end of the first coolant flow path 33b, is formed at the first end 2ba.
  • a second opening 33bb which is the other end of the first coolant flow path 33b, is formed at the second end 2bb.
  • the second cooling section 2a includes a third end 2aa and a fourth end 2ab.
  • the fourth end 2ab is located on the opposite side to the third end 2aa.
  • a second coolant flow path 33a extending from the third end 2aa to the fourth end 2ab is formed in the second cooling part 2a.
  • the third end 2aa is located on the same side as the first end 2ba of the first cooling section 2b.
  • a third opening 33aa, which is one end of the second coolant flow path 33a, is formed at the third end 2aa.
  • a fourth opening 33ab which is the other end of the second coolant flow path 33a, is formed at the fourth end 2ab.
  • the third cooling section 2c includes a fifth end 2ca and a sixth end 2cb.
  • the sixth end 2cb is located on the opposite side to the fifth end 2ca.
  • a third coolant flow path 33c extending from the fifth end 2ca to the sixth end 2cb is formed in the third cooling part 2c.
  • the fifth end 2ca is located on the same side as the first end 2ba of the first cooling section 2b.
  • a fifth opening 33ca, which is one end of the third coolant flow path 33c, is formed at the fifth end 2ca.
  • a sixth opening 33cb which is the other end of the third coolant flow path 33c, is formed at the sixth end 2cb.
  • a sealing plate 34 is arranged so as to be in contact with the top and bottom surfaces of the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c.
  • the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c are connected to a bottom cooling section 35 via a sealing plate 34 on the bottom side.
  • the first side cooling part 31a is arranged to connect the first end 2ba and the third end 2aa.
  • a recessed portion 31aa is formed on the surface of the first side cooling portion 31a opposite to the side where the first circuit portion 1b and the second circuit portion 1a are located.
  • the second side cooling section 31b, the third side cooling section 31c, and the fourth side cooling section 31d have the same configuration as the first side cooling section 31a.
  • the second side cooling part 31b is arranged to connect the second end 2bb and the fourth end 2ab.
  • the third side cooling part 31c is arranged to connect the first end 2ba and the fifth end 2ca.
  • the fourth side cooling part 31d is arranged to connect the second end 2bb and the sixth end 2cb.
  • the first circuit section 1b and the second circuit section 1a are located in an area surrounded by the first cooling section 2b, the second cooling section 2a, the first side cooling section 31a, the second side cooling section 31b, and the bottom cooling section 35. Placed.
  • a third circuit section 1c and a fourth circuit section 1d are located in an area surrounded by the first cooling section 2b, the third cooling section 2c, the third side cooling section 31c, the fourth side cooling section 31d, and the bottom cooling section 35. Placed.
  • Each main circuit 20 of the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d is connected to a main terminal 3c as the first terminal 3.
  • the first extending portion 3e of the main terminal 3c is connected to the first cooling portion 2b via the first insulating member 4a and the sealing plate 34. Further, the bottom surfaces (surfaces facing the bottom cooling section 35) of each of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are connected to the bottom cooling section 35. .
  • the first side cooling section 31a, the second side cooling section 31b, the third side cooling section 31c, and the fourth side cooling section 31d also include the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, The respective side surfaces of the fourth circuit section 1d are connected.
  • the first coolant channel 33b, the second coolant channel 33a, and the third coolant channel A plurality of fins are formed inside the flow path 33c.
  • the material constituting the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c is, for example, aluminum.
  • a coolant is introduced into the first coolant flow path 33b, the second coolant flow path 33a, and the third coolant flow path 33c.
  • the coolant for example, a liquid such as water or a gas such as air can be used.
  • An introduction section 36 may be installed to allow the coolant to flow throughout the area from the second cooling section 2a to the third cooling section 2c.
  • the coolant is supplied from the coolant inflow section as shown by an arrow 37a.
  • a branch 38 is installed downstream of the introduction section. The coolant supplied from the inlet impinges on the splitter 38 . Thereafter, the coolant flows in branches as shown by arrows 37b and 37c.
  • the coolant contacts the first side cooling part 31a and the third side cooling part 31c.
  • Recesses 31aa and 31ca are formed on the surfaces of the first side cooling part 31a and the third side cooling part 31c.
  • a portion of the coolant is stored in the recesses 31aa and 31ca, and then, as shown by arrows 37d, 37e, 37f, and 37g, the coolant flows through the first coolant channel 33b, the second coolant channel 33a, and the third coolant channel.
  • the material flows evenly into the material flow path 33c.
  • the recesses 31aa and 31ca function as a coolant diffusion section that equalizes the flow of the coolant.
  • the second side cooling section 31b and the fourth side cooling section 31d have the same configuration as the first side cooling section 31a. For this reason, recesses are also formed in the second side cooling part 31b and the fourth side cooling part 31d.
  • the coolant discharged from the first cooling unit 2b etc. By temporarily storing the coolant in the recess, the flow of the coolant discharged from the semiconductor module 500 can be homogenized.
  • the structure of the 1st cooling part 2b mentioned above, the 2nd cooling part 2a, and the 3rd cooling part 2c may be provided with the coolant flow path as mentioned above, it may be other structures. good.
  • the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c are used to create a meandering piping route for circulating the coolant inside the member such as metal.
  • a so-called water jacket formed in this manner may also be used.
  • metals with excellent thermal conductivity such as aluminum and copper can be used.
  • the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are cooled from five directions excluding the direction on the side where the first terminal 3 is arranged. can.
  • the main circuit 20 can be arranged in two different directions as shown in FIG. Alternatively, a configuration may be adopted in which the bottom cooling section 35 is not provided.
  • Thermal conductive grease, a thermally conductive sheet member, or the like may be placed at the connection portions between the section 35 and the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d. This may improve cooling performance.
  • the first cooling section 2b may include a first end 2ba and a second end 2bb.
  • the second end 2bb may be located on the opposite side to the first end 2ba.
  • a first coolant channel 33b extending from the first end 2ba to the second end 2bb may be formed in the first cooling part 2b.
  • a first opening 33ba, which is one end of the first coolant flow path 33b, may be formed at the first end 2ba.
  • a second opening 33bb, which is the other end of the first coolant flow path 33b, may be formed at the second end 2bb.
  • the second cooling section 2a may include a third end 2aa and a fourth end 2ab.
  • the fourth end 2ab may be located on the opposite side to the third end 2aa.
  • a second coolant flow path 33a extending from the third end 2aa to the fourth end 2ab may be formed in the second cooling part 2a.
  • the third end 2aa may be located on the same side as the first end 2ba of the first cooling section 2b.
  • a third opening 33aa, which is one end of the second coolant flow path 33a, may be formed at the third end 2aa.
  • a fourth opening 33ab which is the other end of the second coolant flow path 33a, may be formed at the fourth end 2ab.
  • the semiconductor module 500 may include a first side cooling section 31a.
  • the first side cooling part 31a may be arranged between the first end 2ba and the third end 2aa.
  • the first side cooling section 31a may be connected to the first circuit section 1b and the second circuit section 1a.
  • a recessed portion 31aa may be formed on the surface of the first side cooling portion 31a opposite to the side where the first circuit portion 1b and the second circuit portion 1a are located.
  • the coolant when the coolant is caused to flow into the first coolant flow path 33b and the second coolant flow path 33a from the first side cooling part 31a side, the coolant is stored at one end in the recess 31aa, and then The coolant can be evenly supplied to the first coolant flow path 33b and the second coolant flow path 33a. Further, by bringing the first side cooling portion 31a into contact with the first circuit portion 1b and the second circuit portion 1a, the first circuit portion 1b and the second circuit portion 1a can be effectively cooled.
  • the semiconductor module 500 may include a second side cooling section 31b.
  • the second side cooling part 31b may be arranged between the second end 2bb and the fourth end 2ab.
  • the second side cooling section 31b may be connected to the first circuit section 1b and the second circuit section 1a.
  • the semiconductor module 500 may include a bottom cooling section 35.
  • the first cooling section 2b, the second cooling section 2a, the first side cooling section 31a, the second side cooling section 31b, the first circuit section 1b, and the second circuit section 1a may be connected to the bottom cooling section 35. good.
  • Embodiment 5 the semiconductor device according to the fifth embodiment described above is applied to a power conversion device.
  • the present disclosure is not limited to a specific power conversion device, a case will be described below as Embodiment 5 in which the present disclosure is applied to a three-phase inverter.
  • FIG. 20 is a block diagram showing the configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.
  • the power conversion system shown in FIG. 20 includes a power source 1100, a power conversion device 1200, and a load 1300.
  • Power supply 1100 is a DC power supply and supplies DC power to power conversion device 1200.
  • the power source 1100 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. Good too. Further, the power supply 1100 may be configured with a DC/DC converter that converts DC power output from a DC system into predetermined power.
  • the power conversion device 1200 is a three-phase inverter connected between the power source 1100 and the load 1300, converts the DC power supplied from the power source 1100 into AC power, and supplies the AC power to the load 1300.
  • the power conversion device 1200 includes a main conversion circuit 1201 that converts DC power into AC power and outputs it, and a control circuit 1203 that outputs a control signal for controlling the main conversion circuit 1201 to the main conversion circuit 1201. It is equipped with
  • the load 1300 is a three-phase electric motor driven by AC power supplied from the power converter 1200.
  • the load 1300 is not limited to a specific application, but is a motor installed in various electrical devices, and is used, for example, as a motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 1201 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, it converts the DC power supplied from the power supply 1100 into AC power, and supplies the alternating current power to the load 1300.
  • the main conversion circuit 1201 is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can be constructed from six freewheeling diodes arranged in antiparallel.
  • each switching element and each free-wheeling diode of main conversion circuit 1201 is a switching element or a free-wheeling diode included in semiconductor device 1202 corresponding to the semiconductor module of any one of Embodiments 1 to 4 described above.
  • the six switching elements are connected in series every two switching elements to constitute upper and lower arms, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit.
  • the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 1201, are connected to the load 1300.
  • the main conversion circuit 1201 includes a drive circuit (not shown) that drives each switching element, but the drive circuit may be built in the semiconductor device 1202 or may be provided separately from the semiconductor device 1202. It may be a configuration in which it is provided.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 1201 and supplies it to the control electrode of the switching element of the main conversion circuit 1201. Specifically, according to a control signal from a control circuit 1203, which will be described later, a drive signal that turns the switching element on and a drive signal that turns the switching element off are output to the control electrode of each switching element.
  • the drive signal When keeping the switching element in the on state, the drive signal is a voltage signal (on signal) that is greater than or equal to the threshold voltage of the switching element, and when the switching element is kept in the off state, the drive signal is a voltage signal that is less than or equal to the threshold voltage of the switching element. signal (off signal).
  • the control circuit 1203 controls the switching elements of the main conversion circuit 1201 so that the desired power is supplied to the load 1300. Specifically, the time (on time) during which each switching element of the main conversion circuit 1201 should be in the on state is calculated based on the power to be supplied to the load 1300.
  • the main conversion circuit 1201 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is sent to the drive circuit included in the main conversion circuit 1201 so that an on signal is output to the switching element that should be in the on state at each time, and an off signal is output to the switching element that should be in the off state. Output.
  • the drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the semiconductor devices according to Embodiments 1 to 4 are applied as the semiconductor device 1202 constituting the main conversion circuit 1201, so that both high cooling efficiency and miniaturization are achieved. It is possible to realize a power conversion device that can perform the following functions.
  • the present disclosure is not limited to this and can be applied to various power conversion devices.
  • a two-level power converter is used, but a three-level or multi-level power converter may be used, and when supplying power to a single-phase load, the present disclosure may be applied to a single-phase inverter. May be applied.
  • the present disclosure can also be applied to a DC/DC converter or an AC/DC converter.
  • the power conversion device to which the present disclosure is applied is not limited to cases where the above-mentioned load is an electric motor. It can also be used as a power conditioner for solar power generation systems, power storage systems, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided are a semiconductor module and a power conversion device with which it is possible to achieve both high cooling efficiency and reduction in size. A semiconductor module (100) is provided with a first circuit portion (1b), a first terminal (3), and a first cooling portion (2b). The first circuit portion (1b) includes a first semiconductor element. The first semiconductor element includes a first main surface and a second main surface. The second main surface is positioned on the opposite side to the first main surface. The first terminal (3) is electrically connected to the first semiconductor element from the first main surface side. The first terminal (3) includes a first extension portion (3e) which is positioned outside the first circuit portion (1b). The first cooling portion (2b) is connected to a surface of the first circuit portion (1b) that the second main surface of the first semiconductor element faces. The first extension portion (3e) of the first terminal (3) is connected to the first cooling portion (2b) with a first insulation member (4a) therebetween.

Description

半導体モジュールおよび電力変換装置Semiconductor modules and power conversion equipment
 本開示は、半導体モジュールおよび電力変換装置に関する。 The present disclosure relates to a semiconductor module and a power conversion device.
 従来、パワー半導体モジュールなどの高い冷却効率が求められる半導体モジュールでは、たとえば特開2018-207044号公報に示されるように、半導体素子の両面に冷却器を設置する構成が提案されている。 Conventionally, for semiconductor modules such as power semiconductor modules that require high cooling efficiency, a configuration has been proposed in which coolers are installed on both sides of a semiconductor element, as shown in Japanese Patent Application Laid-Open No. 2018-207044, for example.
特開2018-207044号公報JP 2018-207044 Publication
 上記のような半導体モジュールでは、半導体素子の両面を冷却器により冷却するため、高い冷却効率を得ることができる。しかし、冷却器を半導体素子の両面に配置するため、半導体モジュールの小型化が困難である。 In the semiconductor module as described above, since both sides of the semiconductor element are cooled by the cooler, high cooling efficiency can be obtained. However, since the coolers are arranged on both sides of the semiconductor element, it is difficult to miniaturize the semiconductor module.
 本開示は、上記のような課題を解決するために成されたものであり、高い冷却効率と小型化とを両立することが可能な半導体モジュールおよび電力変換装置を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and aims to provide a semiconductor module and a power conversion device that can achieve both high cooling efficiency and miniaturization.
 本開示に従った半導体モジュールは、第1回路部と、第1端子と、第1冷却部とを備える。第1回路部は、第1半導体素子を含む。第1半導体素子は、第1主面と第2主面とを含む。第2主面は、第1主面と反対側に位置する。第1端子は、第1主面側から第1半導体素子と電気的に接続される。第1端子は、第1回路部の外側に位置する延在部を含む。第1冷却部は、第1回路部において第1半導体素子の第2主面が面する表面に接続される。第1端子の延在部は、第1冷却部と第1絶縁部材を介して接続されている。 A semiconductor module according to the present disclosure includes a first circuit section, a first terminal, and a first cooling section. The first circuit section includes a first semiconductor element. The first semiconductor element includes a first main surface and a second main surface. The second main surface is located on the opposite side to the first main surface. The first terminal is electrically connected to the first semiconductor element from the first main surface side. The first terminal includes an extension portion located outside the first circuit portion. The first cooling section is connected to the surface facing the second main surface of the first semiconductor element in the first circuit section. The extending portion of the first terminal is connected to the first cooling portion via the first insulating member.
 本開示に従った電力変換装置は、主変換回路と、制御回路とを備える。主変換回路は、上記半導体モジュールを有する。主変換回路は、入力される電力を変換して出力する。制御回路は、主変換回路を制御する制御信号を主変換回路に出力する。 A power conversion device according to the present disclosure includes a main conversion circuit and a control circuit. The main conversion circuit includes the semiconductor module described above. The main conversion circuit converts input power and outputs it. The control circuit outputs a control signal for controlling the main conversion circuit to the main conversion circuit.
 上記によれば、高い冷却効率と小型化とを両立することが可能な半導体モジュールおよび電力変換装置が得られる。 According to the above, it is possible to obtain a semiconductor module and a power conversion device that can achieve both high cooling efficiency and miniaturization.
実施の形態1に係る半導体モジュールの斜視模式図である。1 is a schematic perspective view of a semiconductor module according to Embodiment 1. FIG. 図1に示された半導体モジュールの構成を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 1. FIG. 図1に示された半導体モジュールの構成を説明するための部分断面模式図である。FIG. 2 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module shown in FIG. 1. FIG. 図1に示された半導体モジュールの変形例1の構成を説明するための部分断面模式図である。FIG. 2 is a schematic partial cross-sectional view for explaining the configuration of Modification Example 1 of the semiconductor module shown in FIG. 1. FIG. 図1に示された半導体モジュールの変形例2の構成を説明するための斜視模式図である。FIG. 2 is a schematic perspective view for explaining the configuration of a second modification of the semiconductor module shown in FIG. 1. FIG. 図1に示された半導体モジュールの変形例3の構成を説明するための部分断面模式図である。FIG. 2 is a schematic partial cross-sectional view for explaining the configuration of Modification 3 of the semiconductor module shown in FIG. 1; 図1に示された半導体モジュールの変形例4の構成を説明するための斜視模式図である。FIG. 3 is a schematic perspective view for explaining the configuration of a fourth modification of the semiconductor module shown in FIG. 1. FIG. 図1に示された半導体モジュールの変形例5の構成を説明するための斜視模式図である。FIG. 3 is a schematic perspective view for explaining the configuration of modification 5 of the semiconductor module shown in FIG. 1. FIG. 実施の形態2に係る半導体モジュールの側面模式図である。FIG. 3 is a schematic side view of a semiconductor module according to a second embodiment. 図9に示された半導体モジュールの構成を説明するための部分断面模式図である。10 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module shown in FIG. 9. FIG. 図9に示された半導体モジュールの構成を説明するための模式図である。10 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 9. FIG. 図9に示された半導体モジュールの変形例1の構成を説明するための部分断面模式図である。10 is a schematic partial cross-sectional view for explaining the configuration of Modification Example 1 of the semiconductor module shown in FIG. 9. FIG. 図9に示された半導体モジュールの変形例2の構成を説明するための部分断面模式図である。10 is a schematic partial cross-sectional view for explaining the configuration of a second modification of the semiconductor module shown in FIG. 9. FIG. 実施の形態3に係る半導体モジュールの側面模式図である。FIG. 7 is a schematic side view of a semiconductor module according to Embodiment 3; 図13に示された半導体モジュールの変形例の構成を説明するための部分側面模式図である。14 is a partial schematic side view for explaining the configuration of a modified example of the semiconductor module shown in FIG. 13. FIG. 実施の形態4に係る半導体モジュールの構成を説明するための要部斜視模式図である。FIG. 7 is a schematic perspective view of main parts for explaining the configuration of a semiconductor module according to a fourth embodiment. 実施の形態4に係る半導体モジュールの構成を説明するための要部側面模式図である。FIG. 7 is a schematic side view of a main part for explaining the configuration of a semiconductor module according to a fourth embodiment. 図17に示された半導体モジュールの構成を説明するための模式図である。18 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 17. FIG. 図17に示された半導体モジュールの構成を説明するための模式図である。18 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 17. FIG. 実施の形態5に係る電力変換システムの構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of a power conversion system according to a fifth embodiment.
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。また、以下の図は模式的なものであり、図示された構成要素の正確な大きさを反映していない場合がある。 Hereinafter, embodiments of the present disclosure will be described. In addition, the same reference numerals are given to the same structure, and the description thereof will not be repeated. Additionally, the following figures are schematic and may not reflect the exact dimensions of the illustrated components.
 実施の形態1.
 <半導体モジュールの構成>
 図1は、実施の形態1に係る半導体モジュール100の斜視模式図である。図2は、図1に示された半導体モジュール100の構成を説明するための模式図である。図3は、図1に示された半導体モジュール100の構成を説明するための部分断面模式図である。
Embodiment 1.
<Semiconductor module configuration>
FIG. 1 is a schematic perspective view of a semiconductor module 100 according to the first embodiment. FIG. 2 is a schematic diagram for explaining the configuration of the semiconductor module 100 shown in FIG. 1. FIG. 3 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module 100 shown in FIG. 1. As shown in FIG.
 図1から図3に示されるように、本開示に従った半導体モジュール100は、第1回路部1bと、第2回路部1aと、第3回路部1cと、第4回路部1dと、第1端子3としての主端子3a、3b、3cと、第1冷却部2bと、第2冷却部2aと、第3冷却部2cと第4冷却部2dと、天板5と、第1絶縁部材4aと、絶縁シート6a、6b、6c、6dとを主に備える。 As shown in FIGS. 1 to 3, the semiconductor module 100 according to the present disclosure includes a first circuit section 1b, a second circuit section 1a, a third circuit section 1c, a fourth circuit section 1d, and a third circuit section 1c. Main terminals 3a, 3b, 3c as one terminal 3, first cooling section 2b, second cooling section 2a, third cooling section 2c, fourth cooling section 2d, top plate 5, and first insulating member 4a, and insulating sheets 6a, 6b, 6c, and 6d.
 第1回路部1bと、第2回路部1aと、第3回路部1cと、第4回路部1dとは、半導体素子を内蔵した回路基板(部品内蔵基板)であって、互いに同様の構成を備え、それぞれ2つの半導体素子を含む。具体的には、図2に示されるように、第1回路部1bは、第1半導体素子7aと第3半導体素子7cとを含む。第2回路部1aは第2半導体素子7bと第4半導体素子7dとを含む。なお、図2では、半導体モジュール100の第2回路部1aおよび第2冷却部2aを取り外し、第1回路部1bの封止樹脂である樹脂43(図3参照)を仮想的に除去した第1回路部1bを示している。 The first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are circuit boards (component built-in boards) each having a built-in semiconductor element, and have the same configuration as each other. and each includes two semiconductor elements. Specifically, as shown in FIG. 2, the first circuit section 1b includes a first semiconductor element 7a and a third semiconductor element 7c. The second circuit section 1a includes a second semiconductor element 7b and a fourth semiconductor element 7d. In addition, in FIG. 2, the second circuit section 1a and the second cooling section 2a of the semiconductor module 100 are removed, and the first circuit section 100 is replaced with the resin 43 (see FIG. 3) that is the sealing resin of the first circuit section 1b. A circuit section 1b is shown.
 第1回路部1bと、第2回路部1aと、第3回路部1cと、第4回路部1dとは、それぞれインバータ回路の正極側の素子(上アーム)と負極側の素子(下アーム)とが直列に接続された、いわゆる2in1構造となっている。図1に示された半導体モジュール100は、第1回路部1bと、第2回路部1aと、第3回路部1cと、第4回路部1dとを並列に接続しており、いわゆる4パラ2in1構造となっている。 The first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are an element on the positive side (upper arm) and an element on the negative side (lower arm) of the inverter circuit, respectively. It has a so-called 2-in-1 structure in which the two are connected in series. The semiconductor module 100 shown in FIG. 1 has a first circuit section 1b, a second circuit section 1a, a third circuit section 1c, and a fourth circuit section 1d connected in parallel. It has a structure.
 第1回路部1bと第2回路部1aとは対向して配置されている。第1回路部1bと第2回路部1aとは、第1方向DR1において並ぶように配置されている。このように第1回路部1bと第2回路部1aとが対向して配置されることで、主回路のインダクタンスを低減できる。 The first circuit section 1b and the second circuit section 1a are arranged facing each other. The first circuit section 1b and the second circuit section 1a are arranged side by side in the first direction DR1. By arranging the first circuit section 1b and the second circuit section 1a facing each other in this way, the inductance of the main circuit can be reduced.
 第1回路部1bにおいて、第2回路部1aに面する表面1baと反対側に位置する表面1bb(図3参照)には、第1冷却部2bが絶縁シート6bを挟んで接続されている。第2回路部1aにおいて、第1回路部1bに面する表面と反対側に位置する表面1ab(図3参照)には、第2冷却部2aが絶縁シート6aを挟んで接続されている。つまり、第1冷却部2bと第2冷却部2aとは間隔を隔てて対向するように配置されている。第1回路部1bと第2回路部1aとは、第1冷却部2bと第2冷却部2aとの間に配置されている。 In the first circuit section 1b, a first cooling section 2b is connected to a surface 1bb (see FIG. 3) located on the opposite side to the surface 1ba facing the second circuit section 1a with an insulating sheet 6b interposed therebetween. In the second circuit section 1a, a second cooling section 2a is connected to a surface 1ab (see FIG. 3) located on the opposite side to the surface facing the first circuit section 1b with an insulating sheet 6a interposed therebetween. That is, the first cooling section 2b and the second cooling section 2a are arranged to face each other with a gap between them. The first circuit section 1b and the second circuit section 1a are arranged between the first cooling section 2b and the second cooling section 2a.
 第1回路部1bおよび第2回路部1aに含まれる第1半導体素子7a、第2半導体素子7b、第3半導体素子7c、第4半導体素子7dには第1端子3としての主端子3a、3b、3cが接続されている。主端子3a、3b、3cは、第1回路部1bと第2回路部1aとの間に配置された接続部3fにおいて第1回路部1bおよび第2回路部1aと接続されている。主端子3a、3bは、たとえば図示しないコンデンサに接続するN端子およびP端子である。主端子3cは、たとえばモータに接続するAC端子である。なお、ここでは第2回路部1aから第1回路部1bに向かう方向を第1方向DR1とする。第1方向DR1に垂直であって、上記接続部3fが延びる方向を第2方向DR2とする。第1方向DR1と第2方向DR2とに垂直な方向を第3方向DR3とする。 The first semiconductor element 7a, the second semiconductor element 7b, the third semiconductor element 7c, and the fourth semiconductor element 7d included in the first circuit part 1b and the second circuit part 1a have main terminals 3a and 3b as the first terminals 3. , 3c are connected. The main terminals 3a, 3b, and 3c are connected to the first circuit section 1b and the second circuit section 1a at a connecting section 3f arranged between the first circuit section 1b and the second circuit section 1a. The main terminals 3a and 3b are, for example, an N terminal and a P terminal connected to a capacitor (not shown). The main terminal 3c is, for example, an AC terminal connected to a motor. Note that here, the direction from the second circuit section 1a toward the first circuit section 1b is defined as a first direction DR1. A direction perpendicular to the first direction DR1 and in which the connecting portion 3f extends is defined as a second direction DR2. A direction perpendicular to the first direction DR1 and the second direction DR2 is defined as a third direction DR3.
 半導体モジュール100において、第1冷却部2bから見て第1回路部1bと反対側には第3冷却部2cが配置されている。第3冷却部2cは第1冷却部2bから間隔を隔てて配置されている。第1冷却部2bと第3冷却部2cとの上端部は天板5に接続されている。第1方向DR1において、第3冷却部2cから見て第1冷却部2bと反対側には第4冷却部2dが配置されている。第4冷却部2dは第3冷却部2cと間隔を隔てて配置されている。第3回路部1cと第4回路部1dとは、第3冷却部2cと第4冷却部2dとの間に配置される。 In the semiconductor module 100, a third cooling section 2c is arranged on the opposite side of the first circuit section 1b when viewed from the first cooling section 2b. The third cooling section 2c is arranged at a distance from the first cooling section 2b. The upper ends of the first cooling section 2b and the third cooling section 2c are connected to the top plate 5. In the first direction DR1, the fourth cooling section 2d is arranged on the opposite side of the first cooling section 2b when viewed from the third cooling section 2c. The fourth cooling section 2d is arranged at a distance from the third cooling section 2c. The third circuit section 1c and the fourth circuit section 1d are arranged between the third cooling section 2c and the fourth cooling section 2d.
 第3回路部1cと第4回路部1dとは対向して配置されている。第3回路部1cと第4回路部1dとは、第1方向DR1において並ぶように配置されている。このように第3回路部1cと第4回路部1dとが対向して配置されることで、主回路のインダクタンスを低減できる。第3回路部1cにおいて、第4回路部1dに面する表面と反対側に位置する表面には、第3冷却部2cが絶縁シート6cを挟んで接続されている。第4回路部1dにおいて、第3回路部1cに面する表面と反対側に位置する表面には、第4冷却部2dが絶縁シート6dを挟んで接続されている。 The third circuit section 1c and the fourth circuit section 1d are arranged facing each other. The third circuit section 1c and the fourth circuit section 1d are arranged side by side in the first direction DR1. By arranging the third circuit section 1c and the fourth circuit section 1d to face each other in this manner, the inductance of the main circuit can be reduced. In the third circuit section 1c, a third cooling section 2c is connected to the surface opposite to the surface facing the fourth circuit section 1d with an insulating sheet 6c interposed therebetween. In the fourth circuit section 1d, a fourth cooling section 2d is connected to the surface opposite to the surface facing the third circuit section 1c with an insulating sheet 6d interposed therebetween.
 第3回路部1cは2つの半導体素子を含む。第4回路部1dは2つの半導体素子を含む。第3回路部1cおよび第4回路部1dに含まれる半導体素子には、第1端子3としての主端子3a、3b、3cが接続される。主端子3a、3b、3cは、第3回路部1cと第4回路部1dとの間に配置された接続部において、第3回路部1cおよび第4回路部1dと接続される。 The third circuit section 1c includes two semiconductor elements. The fourth circuit section 1d includes two semiconductor elements. Main terminals 3a, 3b, and 3c as the first terminals 3 are connected to the semiconductor elements included in the third circuit section 1c and the fourth circuit section 1d. The main terminals 3a, 3b, and 3c are connected to the third circuit section 1c and the fourth circuit section 1d at a connection section arranged between the third circuit section 1c and the fourth circuit section 1d.
 第1端子3である主端子3a、3b、3cにおける第1延在部3eは、第1冷却部2bおよび第3冷却部2cと接続された天板5と、第1絶縁部材4aを介して接続されている。なお、図1および図2では、主回路用の導体である主端子3a、3b、3cは図示されているが、制御用の端子は図示されていない。当該制御用の端子においては、主端子3a、3b、3cのような大電流は流れない。そのため、制御用の端子を冷却する必要性は低い。しかし、当該制御用の端子についても、主端子3a、3b、3c同様に絶縁シートを介して天板5と接続してもよい。半導体モジュール100は、第1方向DR1において天板5を挟んで左右対称な構造を有している。天板5の材料および第1端子3である主端子3a、3b、3cの材料としては、たとえばアルミニウムまたは銅などの熱伝導性に優れた金属を用いることができる。 The first extending portions 3e of the main terminals 3a, 3b, and 3c, which are the first terminals 3, are connected to the top plate 5, which is connected to the first cooling section 2b and the third cooling section 2c, via the first insulating member 4a. It is connected. Note that in FIGS. 1 and 2, main terminals 3a, 3b, and 3c, which are conductors for the main circuit, are shown, but control terminals are not shown. A large current does not flow through the control terminals as in the main terminals 3a, 3b, and 3c. Therefore, there is little need to cool the control terminals. However, the control terminals may also be connected to the top plate 5 through an insulating sheet in the same manner as the main terminals 3a, 3b, and 3c. The semiconductor module 100 has a symmetrical structure with the top plate 5 in between in the first direction DR1. As the material of the top plate 5 and the material of the main terminals 3a, 3b, and 3c, which are the first terminals 3, a metal with excellent thermal conductivity, such as aluminum or copper, can be used.
 図3に示されるように、第1回路部1bにおいて、パワー半導体素子である第1半導体素子7aは、第1主面7aaと第2主面7abとを含む。第2主面7abは、第1主面7aaと反対側に位置する。第1端子3(図1参照)は、第1主面7aa側から第1半導体素子7aと電気的に接続される。第1回路部1bは、第1半導体素子7aを内部に埋設した回路基板である。 As shown in FIG. 3, in the first circuit portion 1b, the first semiconductor element 7a, which is a power semiconductor element, includes a first main surface 7aa and a second main surface 7ab. The second main surface 7ab is located on the opposite side to the first main surface 7aa. The first terminal 3 (see FIG. 1) is electrically connected to the first semiconductor element 7a from the first main surface 7aa side. The first circuit section 1b is a circuit board in which a first semiconductor element 7a is embedded.
 具体的には、第1半導体素子7aの第1主面7aaと対向するように回路配線46a、46cが配置されている。回路配線46a、46cは、それぞれ第1半導体素子7aの第1主面7aaに形成された電極(図示せず)と接続導体40a、40cを介して電気的に接続されている。第1半導体素子7aの第2主面7abと対向するように回路配線46bが配置されている。回路配線46bは、第1半導体素子7aの第2主面7abに形成された電極(図示せず)と接続導体40bを介して電気的に接続されている。 Specifically, the circuit wirings 46a and 46c are arranged to face the first main surface 7aa of the first semiconductor element 7a. The circuit wirings 46a and 46c are electrically connected to electrodes (not shown) formed on the first main surface 7aa of the first semiconductor element 7a via connection conductors 40a and 40c, respectively. Circuit wiring 46b is arranged to face second main surface 7ab of first semiconductor element 7a. The circuit wiring 46b is electrically connected to an electrode (not shown) formed on the second main surface 7ab of the first semiconductor element 7a via the connecting conductor 40b.
 接続導体40a、40b、40cは、たとえば銅めっき膜である。接続導体40a、40b、40cを構成する材料としては、電気伝導性の良好な材料であれば任意の材料を用いることができる。たとえば、当該材料として、銅ペースト、銀ペーストを用いてもよい。あるいは、接続導体40a、40b、40cとして、銅などの金属柱を配置するとともに導電性材料のペースト、はんだ、あるいは銅めっき膜などを当該金属柱の表面に形成して得られる、当該金属柱とペーストなどとの複合体を用いてもよい。 The connection conductors 40a, 40b, and 40c are, for example, copper-plated films. As the material constituting the connecting conductors 40a, 40b, and 40c, any material can be used as long as it has good electrical conductivity. For example, copper paste or silver paste may be used as the material. Alternatively, metal pillars such as copper are arranged as the connecting conductors 40a, 40b, and 40c, and a conductive material paste, solder, or copper plating film is formed on the surface of the metal pillars. A complex with paste or the like may also be used.
 回路配線46aは第1端子3と電気的に接続されている。回路配線46bは、第1半導体素子7aと対向する位置から第1半導体素子7aと重ならない位置にまで延在している。回路配線46bは第1半導体素子7aと重ならない位置において第1端子3を構成する主端子3cと接続されている。回路配線46cは制御端子41と接続されている。 The circuit wiring 46a is electrically connected to the first terminal 3. The circuit wiring 46b extends from a position facing the first semiconductor element 7a to a position not overlapping with the first semiconductor element 7a. The circuit wiring 46b is connected to the main terminal 3c forming the first terminal 3 at a position that does not overlap with the first semiconductor element 7a. The circuit wiring 46c is connected to the control terminal 41.
 回路配線46a、46b、46cとしては、電気伝導性の良好な材料であれば任意の部材を用いることができる。当該部材は、たとえば銅めっき膜、銅箔、銅板などである。 As the circuit wirings 46a, 46b, and 46c, any material can be used as long as it is a material with good electrical conductivity. The member is, for example, a copper plating film, a copper foil, a copper plate, or the like.
 第1半導体素子7aと第3半導体素子7c(図2参照)と接続導体40a、40b、40cと回路配線46a、46b、46cとは樹脂43に埋め込まれている。樹脂43は絶縁性の樹脂であり、第1半導体素子7aなど上記第1回路部1bを構成する部材間を絶縁している。 The first semiconductor element 7a, the third semiconductor element 7c (see FIG. 2), the connecting conductors 40a, 40b, 40c, and the circuit wirings 46a, 46b, 46c are embedded in the resin 43. The resin 43 is an insulating resin, and insulates the members constituting the first circuit section 1b, such as the first semiconductor element 7a.
 第1半導体素子7aとしては、たとえば珪素(Si)、化合物半導体である炭化珪素(SiC)、窒化ガリウム(GaN)などを用いたパワーデバイスを用いることができる。具体的には、第1半導体素子7aとして、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、FWD(Free Wheeling Diode)、RC-IGBT(Reverse Conducting Insulated Gate Bipolar Transistor)などを用いることができる。 As the first semiconductor element 7a, for example, a power device using silicon (Si), silicon carbide (SiC) which is a compound semiconductor, gallium nitride (GaN), etc. can be used. Specifically, the first semiconductor element 7a includes an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). stor), FWD (Free Wheeling Diode), RC-IGBT (Reverse Conducting Insulated Gate Bipolar Transistor), etc. Can be used.
 第1冷却部2bは、第1回路部1bにおいて第1半導体素子7aの第2主面7abが面する表面1bbに接続される。具体的には、第1回路部1bの表面1bbと第1冷却部2bとの間に、絶縁シート6bと銅箔44と接合材45とが配置されている。第1回路部1bの表面1bbに絶縁シート6bが固定されている。絶縁シート6bにおいて第1回路部1bの表面1bbに面する表面と反対側の面に銅箔44が固定されている。銅箔44において絶縁シート6bに面する表面と反対側の面は接合材45により第1冷却部2bに接合されている。なお、図3において、第1冷却部2bについて断面ではなく外観が示されている。 The first cooling section 2b is connected to the surface 1bb facing the second main surface 7ab of the first semiconductor element 7a in the first circuit section 1b. Specifically, an insulating sheet 6b, a copper foil 44, and a bonding material 45 are arranged between the surface 1bb of the first circuit section 1b and the first cooling section 2b. An insulating sheet 6b is fixed to the surface 1bb of the first circuit section 1b. A copper foil 44 is fixed to the surface of the insulating sheet 6b opposite to the surface facing the surface 1bb of the first circuit portion 1b. The surface of the copper foil 44 opposite to the surface facing the insulating sheet 6b is bonded to the first cooling section 2b by a bonding material 45. Note that in FIG. 3, the appearance of the first cooling part 2b is shown, not the cross section.
 第2回路部1aは、図3に示された第1回路部1bと同様の構成を備える。第2回路部1aは、第1回路部1bから見て第1冷却部2bと反対側に配置されている。第2回路部1aは、第2半導体素子7bと第4半導体素子7dとを含む。第2半導体素子7bは第1半導体素子7aと第1方向DR1において対向するように配置される。第4半導体素子7dは第3半導体素子7cと第1方向DR1において対向するように配置される。第2半導体素子7bは、第3主面7baと第4主面7bbとを含む。第3主面7baは第1回路部1bに面する。第4主面7bbは第3主面7baと反対側に位置する。第1端子3は、第3主面7ba側から第2半導体素子7bと電気的に接続される。第2半導体素子7bと第1端子3との接続部の構成は、第1半導体素子7aと第1端子3との接続部の構成と同様である。第2冷却部2aは、第2回路部1aにおいて第2半導体素子7bの第4主面7bbが面する表面に接続される。第3回路部1cおよび第4回路部1dも、基本的に第1回路部1bと同様の構成を備える。 The second circuit section 1a has the same configuration as the first circuit section 1b shown in FIG. 3. The second circuit section 1a is arranged on the opposite side of the first cooling section 2b when viewed from the first circuit section 1b. The second circuit section 1a includes a second semiconductor element 7b and a fourth semiconductor element 7d. The second semiconductor element 7b is arranged to face the first semiconductor element 7a in the first direction DR1. The fourth semiconductor element 7d is arranged to face the third semiconductor element 7c in the first direction DR1. The second semiconductor element 7b includes a third main surface 7ba and a fourth main surface 7bb. The third main surface 7ba faces the first circuit section 1b. The fourth main surface 7bb is located on the opposite side to the third main surface 7ba. The first terminal 3 is electrically connected to the second semiconductor element 7b from the third main surface 7ba side. The configuration of the connection between the second semiconductor element 7b and the first terminal 3 is similar to the configuration of the connection between the first semiconductor element 7a and the first terminal 3. The second cooling unit 2a is connected to the surface facing the fourth main surface 7bb of the second semiconductor element 7b in the second circuit unit 1a. The third circuit section 1c and the fourth circuit section 1d also basically have the same configuration as the first circuit section 1b.
 上述した第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dは、プリント基板技術を用いて形成された半導体素子などの部品を内蔵した回路基板である。このような回路基板では、半導体素子と端子との接続には、たとえば銅めっき配線が用いられる。また、当該回路基板中の同一層間での配線部材としてたとえば銅板を用いる。このような配線部材を用いることで、ワイヤーボンディングによって配線を形成する場合より配線経路長を短縮できる。このため、回路基板におけるインダクタンスを低減できる。 The first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d described above are circuit boards that incorporate components such as semiconductor elements formed using printed circuit board technology. In such a circuit board, for example, copper-plated wiring is used to connect the semiconductor element and the terminal. Further, for example, a copper plate is used as a wiring member between the same layers in the circuit board. By using such a wiring member, the length of the wiring path can be made shorter than when wiring is formed by wire bonding. Therefore, inductance in the circuit board can be reduced.
 第1冷却部2b、第2冷却部2a、第3冷却部2c、第4冷却部2dの構成は、それぞれ隣接する回路部を冷却することができれば、任意の構成を採用し得る。たとえば、第1冷却部2b、第2冷却部2a、第3冷却部2c、第4冷却部2dとして、アルミニウムなどの熱伝導性が高い金属材料からなるフィン構造と、当該フィン構造の周囲に冷却水などの冷媒を流通させる冷媒流路とを含む冷却装置を用いてもよい。あるいは、第1半導体素子7aなどからの発熱量が少ない場合には、第1冷却部2b、第2冷却部2a、第3冷却部2c、第4冷却部2dとして、水などの冷媒を流通させる流路が形成された金属体(いわゆるウォータージャケット)を用いてもよい。第1冷却部2b、第2冷却部2a、第3冷却部2c、第4冷却部2dにおいて用いられる冷媒は、水などの液体でもよいし、空気などの気体であってもよい。第1冷却部2b、第2冷却部2a、第3冷却部2c、第4冷却部2dを構成する上記金属材料は、上述したアルミニウム以外の金属、たとえば銅などであってもよい。 The first cooling section 2b, second cooling section 2a, third cooling section 2c, and fourth cooling section 2d may have any configuration as long as they can cool the adjacent circuit sections. For example, the first cooling section 2b, the second cooling section 2a, the third cooling section 2c, and the fourth cooling section 2d may have a fin structure made of a metal material with high thermal conductivity such as aluminum, and a cooling section around the fin structure. A cooling device including a refrigerant flow path through which a refrigerant such as water flows may be used. Alternatively, when the amount of heat generated from the first semiconductor element 7a is small, a coolant such as water is circulated as the first cooling section 2b, second cooling section 2a, third cooling section 2c, and fourth cooling section 2d. A metal body (so-called water jacket) in which a flow path is formed may also be used. The refrigerant used in the first cooling section 2b, the second cooling section 2a, the third cooling section 2c, and the fourth cooling section 2d may be a liquid such as water or a gas such as air. The metal material constituting the first cooling section 2b, second cooling section 2a, third cooling section 2c, and fourth cooling section 2d may be a metal other than the above-mentioned aluminum, such as copper.
 第1絶縁部材4aおよび絶縁シート6a、6b、6c、6dの材料としては、半導体モジュール100において求められる絶縁耐圧を有する電気絶縁体であって、熱伝導性が良好な材料であれば任意の材料を用いることができる。第1絶縁部材4aとしては、シート状の電気絶縁部材、ペースト状の電気絶縁部材などを用いることができる。 The first insulating member 4a and the insulating sheets 6a, 6b, 6c, and 6d may be made of any material as long as it is an electrical insulator that has the dielectric strength required for the semiconductor module 100 and has good thermal conductivity. can be used. As the first insulating member 4a, a sheet-like electrically insulating member, a paste-like electrically insulating member, etc. can be used.
 絶縁シート6a、6b、6c、6dは、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dを製造するときに、プリント基板製造技術を利用して各回路部に貼り合わせてもよい。また、各回路部に対して、ペースト状の電気絶縁部材を印刷または塗布して焼成などの硬化処理を行うことで、絶縁シート6a、6b、6c、6dを形成してもよい。 The insulating sheets 6a, 6b, 6c, and 6d are formed using printed circuit board manufacturing technology when manufacturing the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d. It may also be attached to the section. Alternatively, the insulating sheets 6a, 6b, 6c, and 6d may be formed by printing or applying a paste-like electrical insulating member to each circuit portion and performing a hardening process such as baking.
 <作用>
 本開示に従った半導体モジュール100は、第1回路部1bと、第1端子3と、第1冷却部2bとを備える。第1回路部1bは、第1半導体素子7aを含む。第1半導体素子7aは、第1主面7aaと第2主面7abとを含む。第2主面7abは、第1主面7aaと反対側に位置する。第1端子3は、第1主面7aa側から第1半導体素子7aと電気的に接続される。第1端子3は、第1回路部1bの外側に位置する第1延在部3eを含む。第1冷却部2bは、第1回路部1bにおいて第1半導体素子7aの第2主面7abが面する表面1bbに接続される。第1端子3の第1延在部3eは、第1冷却部2bと第1絶縁部材4aを介して接続されている。
<Effect>
A semiconductor module 100 according to the present disclosure includes a first circuit section 1b, a first terminal 3, and a first cooling section 2b. The first circuit section 1b includes a first semiconductor element 7a. The first semiconductor element 7a includes a first main surface 7aa and a second main surface 7ab. The second main surface 7ab is located on the opposite side to the first main surface 7aa. The first terminal 3 is electrically connected to the first semiconductor element 7a from the first main surface 7aa side. The first terminal 3 includes a first extending portion 3e located outside the first circuit portion 1b. The first cooling section 2b is connected to the surface 1bb of the first semiconductor element 7a that is faced by the second main surface 7ab of the first semiconductor element 7a in the first circuit section 1b. The first extending portion 3e of the first terminal 3 is connected to the first cooling portion 2b via the first insulating member 4a.
 このようにすれば、第1半導体素子7aが第2主面7ab側から第1冷却部2bにより冷却される。さらに、第1端子3が第1絶縁部材4aを介して第1冷却部2bにより冷却されることで、結果的に第1端子3が接続された第1主面7aa側からも第1半導体素子7aを冷却できる。このため、第1半導体素子7aの第1主面7aaおよび第2主面7abの両面側に個別に冷却部を配置する場合より、半導体モジュール100の小型化、高密度化を図りつつ、第1半導体素子7aを十分に冷却できる。 In this way, the first semiconductor element 7a is cooled by the first cooling section 2b from the second main surface 7ab side. Furthermore, since the first terminal 3 is cooled by the first cooling unit 2b via the first insulating member 4a, the first semiconductor element can be seen from the first main surface 7aa side to which the first terminal 3 is connected. 7a can be cooled. For this reason, the semiconductor module 100 can be made smaller and more dense than in the case where cooling units are individually arranged on both sides of the first main surface 7aa and the second main surface 7ab of the first semiconductor element 7a. The semiconductor element 7a can be sufficiently cooled.
 上記半導体モジュール100において、第1回路部1bは、第1半導体素子7aを内部に埋設した回路基板であってもよい。この場合、当該回路基板を用いた半導体モジュール100において、回路基板に含まれる第1半導体素子7aなどの半導体素子を十分に冷却できるとともに小型化を図ることができる。 In the semiconductor module 100, the first circuit section 1b may be a circuit board in which the first semiconductor element 7a is embedded. In this case, in the semiconductor module 100 using the circuit board, semiconductor elements such as the first semiconductor element 7a included in the circuit board can be sufficiently cooled and the size can be reduced.
 上記半導体モジュール100は、第2回路部1aと、第2冷却部2aとをさらに備えてもよい。第2回路部1aは、第1回路部1bから見て第1冷却部2bと反対側に配置されてもよい。第2回路部1aは、第2半導体素子7bを含んでもよい。第2半導体素子7bは、第3主面7baと第4主面7bbとを含んでもよい。第3主面7baは第1回路部1bに面してもよい。第4主面7bbは第3主面7baと反対側に位置してもよい。第1端子3は、第3主面7ba側から第2半導体素子7bと電気的に接続されてもよい。第2冷却部2aは、第2回路部1aにおいて第2半導体素子7bの第4主面7bbが面する表面に接続されてもよい。 The semiconductor module 100 may further include a second circuit section 1a and a second cooling section 2a. The second circuit section 1a may be arranged on the opposite side of the first cooling section 2b when viewed from the first circuit section 1b. The second circuit section 1a may include a second semiconductor element 7b. The second semiconductor element 7b may include a third main surface 7ba and a fourth main surface 7bb. The third main surface 7ba may face the first circuit section 1b. The fourth main surface 7bb may be located on the opposite side to the third main surface 7ba. The first terminal 3 may be electrically connected to the second semiconductor element 7b from the third main surface 7ba side. The second cooling section 2a may be connected to the surface of the second semiconductor element 7b that faces the fourth main surface 7bb in the second circuit section 1a.
 この場合、第2半導体素子7bについても、第3主面7ba側からは第1端子3を介して第1冷却部2bにより冷却できる。さらに、第4主面7bb側からも第2冷却部2aにより第2半導体素子7bを冷却できる。このため、第1回路部1bと第2回路部1aとが並ぶ方向(第1方向DR1)から第1回路部1bおよび第2回路部1aを挟むように配置された第1冷却部2bおよび第2冷却部2aによって、第1半導体素子7aと第2半導体素子7bとの両方を、それぞれ両面から冷却できる。このため、第1半導体素子7aと第2半導体素子7bとのそれぞれを個別に挟むように合計4つの冷却部を配置する場合より、半導体モジュール100の小型化を図ることができる。 In this case, the second semiconductor element 7b can also be cooled by the first cooling unit 2b from the third main surface 7ba side via the first terminal 3. Furthermore, the second semiconductor element 7b can be cooled by the second cooling section 2a from the fourth main surface 7bb side as well. For this reason, the first cooling section 2b and the first cooling section 2b and the second cooling section 1a are arranged to sandwich the first circuit section 1b and the second circuit section 1a from the direction in which the first circuit section 1b and the second circuit section 1a are lined up (first direction DR1). The second cooling unit 2a can cool both the first semiconductor element 7a and the second semiconductor element 7b from both sides. Therefore, the semiconductor module 100 can be made smaller than when a total of four cooling units are arranged so as to sandwich each of the first semiconductor element 7a and the second semiconductor element 7b individually.
 上記半導体モジュール100において、第1回路部1bは、第3半導体素子7cを含んでもよい。第2回路部1aは、第4半導体素子7dを含んでもよい。この場合、第1回路部1bおよび第2回路部1aはそれぞれ2つの半導体素子を含む2in1構造とすることができる。このような2in1構造の回路部を備えた半導体モジュール100において、サイズの小型化と十分な冷却性能の両立を図ることができる。 In the semiconductor module 100, the first circuit section 1b may include a third semiconductor element 7c. The second circuit section 1a may include a fourth semiconductor element 7d. In this case, the first circuit section 1b and the second circuit section 1a can each have a 2-in-1 structure including two semiconductor elements. In the semiconductor module 100 including such a 2-in-1 circuit section, it is possible to achieve both miniaturization and sufficient cooling performance.
 <変形例>
 図4は、図1に示された半導体モジュールの変形例1の構成を説明するための部分断面模式図である。図4は図3に対応し、第1回路部1bの断面形状を模式的に示している。図4に示された第1回路部1bを含む半導体モジュールは、基本的には図1から図3に示された半導体モジュール100と同様の構成を備え、同様の効果を得ることができるが、第1回路部1bの内部構造が図1から図3に示された半導体モジュール100と異なっている。すなわち、図4に示された半導体モジュールでは、第1回路部1bに含まれる第1半導体素子7aおよび第3半導体素子7cが、接続導体40b(図3参照)ではなくダイボンド材42を介して回路配線46bと電気的に接続されている。このような構成は、第2回路部1a(図1参照)、第3回路部1c(図1参照)、第4回路部1d(図1参照)においても適用される。図3または図4に示されるような第1回路部1bの構成では、第1半導体素子7aおよび第3半導体素子7cの電極に接続された導体部を、第1回路部1bにおいて第2回路部1aに面する表面1ba側に引き出しやすい。このため、第1回路部1bと第2回路部1aとを図1に示すように第1方向DR1において対向配置した場合に、第1回路部1bと第2回路部1aとの間に第1端子3を容易に配置できる。また、第1回路部1bと第2回路部1aとが同じ構成であるため、第1回路部1bと第2回路部1aとが全く異なる構成である場合よりも第1端子3との接続構造を簡略化できる。このため、半導体モジュールのインダクタンスを低減し易い。
<Modified example>
FIG. 4 is a schematic partial cross-sectional view for explaining the configuration of Modified Example 1 of the semiconductor module shown in FIG. FIG. 4 corresponds to FIG. 3 and schematically shows the cross-sectional shape of the first circuit section 1b. The semiconductor module including the first circuit section 1b shown in FIG. 4 basically has the same configuration as the semiconductor module 100 shown in FIGS. 1 to 3, and can obtain the same effects. The internal structure of the first circuit section 1b is different from the semiconductor module 100 shown in FIGS. 1 to 3. That is, in the semiconductor module shown in FIG. 4, the first semiconductor element 7a and the third semiconductor element 7c included in the first circuit section 1b are connected to the circuit through the die bonding material 42 instead of the connecting conductor 40b (see FIG. 3). It is electrically connected to the wiring 46b. Such a configuration is also applied to the second circuit section 1a (see FIG. 1), the third circuit section 1c (see FIG. 1), and the fourth circuit section 1d (see FIG. 1). In the configuration of the first circuit section 1b as shown in FIG. 3 or 4, the conductor sections connected to the electrodes of the first semiconductor element 7a and the third semiconductor element 7c are connected to the second circuit section in the first circuit section 1b. Easy to pull out to the surface 1ba side facing 1a. Therefore, when the first circuit section 1b and the second circuit section 1a are arranged facing each other in the first direction DR1 as shown in FIG. The terminals 3 can be easily arranged. Furthermore, since the first circuit section 1b and the second circuit section 1a have the same configuration, the connection structure with the first terminal 3 is better than when the first circuit section 1b and the second circuit section 1a have completely different configurations. can be simplified. Therefore, it is easy to reduce the inductance of the semiconductor module.
 なお、図3または図4に示された第1回路部1bにおいて、第1半導体素子7aの第1主面7aaに形成された電極(図示せず)と回路配線46a、46cとをダイボンド材により接続してもよい。図4に示されたダイボンド材42および上述した回路配線46a、46cと接続されるダイボンド材としては、たとえば焼結性の銀ペースト、銅ペースト、はんだなどを用いることができる。 In the first circuit section 1b shown in FIG. 3 or 4, the electrode (not shown) formed on the first main surface 7aa of the first semiconductor element 7a and the circuit wirings 46a and 46c are bonded using a die bonding material. May be connected. As the die bonding material to be connected to the die bonding material 42 shown in FIG. 4 and the circuit wirings 46a and 46c described above, for example, sinterable silver paste, copper paste, solder, etc. can be used.
 図5は、図1に示された半導体モジュールの変形例2の構成を説明するための斜視模式図である。図5に示された半導体モジュール100は、基本的には図1から図3に示された半導体モジュール100と同様の構成を備え、同様の効果を得ることができるが、第1回路部1bと第3回路部1cとの間に配置された冷却部の構成が図1から図3に示された半導体モジュール100と異なっている。すなわち、図5に示された半導体モジュール100では、図1に示された第1冷却部2bと第3冷却部2cと天板5とが一体化した第5冷却部2eが第1回路部1bと第3回路部1cとの間に配置されている。第1回路部1bは第5冷却部2eと絶縁シート6bを介して接続されている。第3回路部1cは第5冷却部2eと絶縁シート6cを介して接続されている。第1端子3の第1延在部3eは、第5冷却部2eと第1絶縁部材4aを介して接続されている。この場合、半導体モジュール100の構成部材の数を低減できるので、半導体モジュール100の製造プロセスを簡略化できるとともに製造コストを低減できる。 FIG. 5 is a schematic perspective view for explaining the configuration of a second modification of the semiconductor module shown in FIG. 1. The semiconductor module 100 shown in FIG. 5 basically has the same configuration as the semiconductor module 100 shown in FIGS. 1 to 3, and can obtain the same effects, but the first circuit section 1b The configuration of the cooling section disposed between the third circuit section 1c and the third circuit section 1c is different from that of the semiconductor module 100 shown in FIGS. 1 to 3. That is, in the semiconductor module 100 shown in FIG. 5, the fifth cooling part 2e in which the first cooling part 2b, the third cooling part 2c, and the top plate 5 shown in FIG. 1 are integrated is the first circuit part 1b. and the third circuit section 1c. The first circuit section 1b is connected to the fifth cooling section 2e via an insulating sheet 6b. The third circuit section 1c is connected to the fifth cooling section 2e via an insulating sheet 6c. The first extending portion 3e of the first terminal 3 is connected to the fifth cooling portion 2e via the first insulating member 4a. In this case, since the number of constituent members of the semiconductor module 100 can be reduced, the manufacturing process of the semiconductor module 100 can be simplified and manufacturing costs can be reduced.
 図6は、図1に示された半導体モジュールの変形例3の構成を説明するための部分断面模式図である。図6は図5に示された半導体モジュール100における第1回路部1bと第5冷却部2eとの接続部を示している。図6に示された半導体モジュールは、基本的には図5に示された半導体モジュール100と同様の構成を備え、同様の効果を得ることができるが、第5冷却部2eと第1回路部1bとの接続部の構造が図5に示された半導体モジュール100と異なっている。すなわち、図6に示された半導体モジュールでは、絶縁シート6bと対向する第5冷却部2eの表面に複数の凸部であるフィン2eaが形成されている。フィン2eaが形成された第5冷却部2eの表面と絶縁シート6bとの間には接合材45が配置されている。なお、図3に示されたように絶縁シート6bと接合材45との間に銅箔44を配置してもよい。当該フィン2eaは、第5冷却部2eにおいて絶縁シート6c(図5参照)に面する表面にも形成されている。また、当該フィン2eaは、第5冷却部2eにおいて第1端子3の第1延在部3eに面する表面に形成されてもよい。フィン2eaを構成する材料としては、たとえばアルミニウムまたは銅といった金属など、熱伝導性に優れた材料を用いることができる。 FIG. 6 is a schematic partial cross-sectional view for explaining the configuration of Modification 3 of the semiconductor module shown in FIG. 1. FIG. 6 shows a connecting portion between the first circuit section 1b and the fifth cooling section 2e in the semiconductor module 100 shown in FIG. The semiconductor module shown in FIG. 6 basically has the same configuration as the semiconductor module 100 shown in FIG. The structure of the connecting portion with 1b is different from the semiconductor module 100 shown in FIG. 5. That is, in the semiconductor module shown in FIG. 6, fins 2ea, which are a plurality of convex portions, are formed on the surface of the fifth cooling portion 2e facing the insulating sheet 6b. A bonding material 45 is arranged between the surface of the fifth cooling part 2e on which the fins 2ea are formed and the insulating sheet 6b. Note that a copper foil 44 may be placed between the insulating sheet 6b and the bonding material 45 as shown in FIG. The fins 2ea are also formed on the surface facing the insulating sheet 6c (see FIG. 5) in the fifth cooling section 2e. Further, the fins 2ea may be formed on the surface of the fifth cooling part 2e facing the first extending part 3e of the first terminal 3. As the material constituting the fins 2ea, a material with excellent thermal conductivity, such as a metal such as aluminum or copper, can be used.
 図7は、図1に示された半導体モジュールの変形例4の構成を説明するための斜視模式図である。図7は、図1に示された半導体モジュール100を3つ組み合わせたモジュールを示している。図7に示されたモジュールは、モータ駆動を想定してUVWの3相に対応するように構成されている。図7では、3つの半導体モジュール100が第1方向DR1に並ぶように配置されている。第1冷却部2b、第2冷却部2a、第3冷却部2c、第4冷却部2d(図1参照)に供給される冷媒を、第1方向DR1に沿って並ぶ半導体モジュール100に対し順番に供給する場合、冷媒を3つの半導体モジュール100に対して並列的に供給するため当該冷媒を分配する必要が無いため、冷媒の供給流路の構成を簡略化できる。しかし、冷媒の温度上昇により、当該冷媒の流通方向における上流側に位置する半導体モジュール100と比べて、流通方向の下流側に位置する半導体モジュール100での冷却効率は低下する恐れがある。 FIG. 7 is a schematic perspective view for explaining the configuration of modification 4 of the semiconductor module shown in FIG. 1. FIG. 7 shows a module in which three semiconductor modules 100 shown in FIG. 1 are combined. The module shown in FIG. 7 is configured to support three phases of UVW assuming motor drive. In FIG. 7, three semiconductor modules 100 are arranged in a line in the first direction DR1. The refrigerant supplied to the first cooling unit 2b, second cooling unit 2a, third cooling unit 2c, and fourth cooling unit 2d (see FIG. 1) is sequentially applied to the semiconductor modules 100 lined up along the first direction DR1. When the refrigerant is supplied, the refrigerant is supplied to the three semiconductor modules 100 in parallel, so there is no need to distribute the refrigerant, so the configuration of the refrigerant supply flow path can be simplified. However, due to an increase in the temperature of the refrigerant, there is a possibility that the cooling efficiency of the semiconductor module 100 located on the downstream side in the flow direction of the refrigerant may be lower than that of the semiconductor module 100 located on the upstream side in the flow direction of the refrigerant.
 図8は、図1に示された半導体モジュールの変形例5の構成を説明するための斜視模式図である。図8も、図1に示されたに半導体モジュール100を3つ組み合わせたモジュールを示している。図8では、3つの半導体モジュール100が第3方向DR3に並ぶように配置されている。第1冷却部2b、第2冷却部2a、第3冷却部2c、第4冷却部2d(図1参照)に供給される冷媒を、第3方向DR3に沿って並ぶ半導体モジュール100に対し並列的に供給する場合、図7に示したモジュールと比べて、冷媒を3つの半導体モジュール100に対して並列的に供給するための配管構成が複雑化、大型化する可能性が有る。一方、3つの半導体モジュール100に対して均等に冷媒が供給されるため、図7に示したモジュールのように、冷媒の流通方向における上流側に位置する半導体モジュール100と比べて、流通方向の下流側に位置する半導体モジュール100での冷却効率が低下するといった問題は発生し難い。図7および図8に示したモジュールの構成のうちいずれを採用するかは、半導体モジュール100の動作条件などを考慮して適宜決定される。 FIG. 8 is a schematic perspective view for explaining the configuration of modification 5 of the semiconductor module shown in FIG. 1. FIG. 8 also shows a module in which three semiconductor modules 100 shown in FIG. 1 are combined. In FIG. 8, three semiconductor modules 100 are arranged in a line in the third direction DR3. The coolant supplied to the first cooling unit 2b, second cooling unit 2a, third cooling unit 2c, and fourth cooling unit 2d (see FIG. 1) is applied in parallel to the semiconductor modules 100 lined up along the third direction DR3. In the case of supplying the refrigerant to the three semiconductor modules 100 in parallel, the piping configuration for supplying the refrigerant in parallel to the three semiconductor modules 100 may become more complicated and larger than the module shown in FIG. On the other hand, since the refrigerant is evenly supplied to the three semiconductor modules 100, as in the module shown in FIG. Problems such as a decrease in cooling efficiency in the semiconductor module 100 located on the side are unlikely to occur. Which of the module configurations shown in FIGS. 7 and 8 is to be adopted is appropriately determined in consideration of the operating conditions of the semiconductor module 100 and the like.
 実施の形態2.
 <半導体モジュールの構成>
 図9は、実施の形態2に係る半導体モジュール200の側面模式図である。図10は、図9に示された半導体モジュール200の構成を説明するための部分断面模式図である。図10では、半導体モジュール200を構成する第1回路部1bの断面が示されている。図11は、図9に示された半導体モジュールの構成を説明するための模式図である。図11では、半導体モジュール200における第1回路部1bと第1冷却部2bとの接続部の部分的な断面が示されている。
Embodiment 2.
<Semiconductor module configuration>
FIG. 9 is a schematic side view of the semiconductor module 200 according to the second embodiment. FIG. 10 is a schematic partial cross-sectional view for explaining the configuration of the semiconductor module 200 shown in FIG. 9. As shown in FIG. In FIG. 10, a cross section of the first circuit section 1b that constitutes the semiconductor module 200 is shown. FIG. 11 is a schematic diagram for explaining the configuration of the semiconductor module shown in FIG. 9. FIG. 11 shows a partial cross section of the connection between the first circuit section 1b and the first cooling section 2b in the semiconductor module 200.
 図9から図11に示された半導体モジュール200は、基本的には図5に示された半導体モジュール100と同様の構成を備え、同様の効果を得ることができるが、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの構成が図5に示された半導体モジュール100と異なっている。すなわち、図9から図11に示された半導体モジュール200では、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dが、半導体素子などを樹脂23(図10参照)により封止した構造を有している。当該樹脂23による封止は、たとえばトランスファーモールド法により実施される。第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dは互いに同様の構成を備えるため、以下第1回路部1bを例にその構造を説明する。 The semiconductor module 200 shown in FIGS. 9 to 11 basically has the same configuration as the semiconductor module 100 shown in FIG. 5, and can obtain the same effects, but the first circuit section 1b, The configurations of the second circuit section 1a, third circuit section 1c, and fourth circuit section 1d are different from the semiconductor module 100 shown in FIG. 5. That is, in the semiconductor module 200 shown in FIGS. 9 to 11, the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d hold semiconductor elements and the like in the resin 23 (FIG. (see). The sealing with the resin 23 is performed, for example, by a transfer molding method. Since the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d have similar configurations, the structure will be explained below using the first circuit section 1b as an example.
 図10に示されるように、第1回路部1bは、第1半導体素子7a、第3半導体素子7c、ダイボンド材15a、15b、銅回路18、絶縁シート16,銅箔19および樹脂23を主に備える。第1半導体素子7aは、ダイボンド材15aを用いて導電体である銅回路18の上面に接続されている。第3半導体素子7cは、ダイボンド材15bを用いて銅回路18の上面に接続されている。ダイボンド材15a、15bとしては、はんだ、銀焼結体、銅焼結体などを用いることができる。 As shown in FIG. 10, the first circuit section 1b mainly includes a first semiconductor element 7a, a third semiconductor element 7c, die bond materials 15a and 15b, a copper circuit 18, an insulating sheet 16, a copper foil 19, and a resin 23. Be prepared. The first semiconductor element 7a is connected to the upper surface of a copper circuit 18, which is a conductor, using a die bonding material 15a. The third semiconductor element 7c is connected to the upper surface of the copper circuit 18 using a die bonding material 15b. As the die- bonding materials 15a and 15b, solder, silver sintered body, copper sintered body, etc. can be used.
 銅回路18の上面と反対側に位置する裏面には絶縁シート16が接続されている。絶縁シート16において銅回路18と接続された面と反対側の裏面には銅箔19が接続されている。銅回路18、絶縁シート16および銅箔19の間の接続には、たとえば接着剤などの接合材を用いる方法など、任意の方法を用いることができる。 An insulating sheet 16 is connected to the back surface of the copper circuit 18, which is located on the opposite side to the top surface. A copper foil 19 is connected to the back surface of the insulating sheet 16 opposite to the surface connected to the copper circuit 18. Any method can be used to connect the copper circuit 18, the insulating sheet 16, and the copper foil 19, such as using a bonding material such as an adhesive.
 第1半導体素子7aの側方には、銅回路18から間隔を隔てて導電体からなる端子としての制御回路21が配置されている。第3半導体素子7cの側方には、銅回路18から間隔を隔てて導電体からなる端子としての主回路20が配置されている。制御回路21、第1半導体素子7a、第3半導体素子7c、主回路20は配線22により電気的に接続されている。配線22としては、たとえばアルミニウムワイヤを用いることができるが、他の任意の導体線を用いることができる。たとえば、配線22として銅線、アルミ被覆銅線などの良導体からなる線材を配線22として用いてもよい。 A control circuit 21 as a terminal made of a conductor is arranged on the side of the first semiconductor element 7a at a distance from the copper circuit 18. A main circuit 20 as a terminal made of a conductor is arranged on the side of the third semiconductor element 7c at a distance from the copper circuit 18. The control circuit 21, the first semiconductor element 7a, the third semiconductor element 7c, and the main circuit 20 are electrically connected by wiring 22. As the wiring 22, an aluminum wire can be used, for example, but any other conductor wire can be used. For example, the wiring 22 may be a wire made of a good conductor such as a copper wire or an aluminum-coated copper wire.
 第1半導体素子7a、第3半導体素子7c、配線22、主回路20の一部(配線22が接続された部分)、制御回路21の一部(配線22が接続された部分)、銅回路18、絶縁シート16および銅箔19を埋め込むように封止材としての樹脂23が配置されている。なお、樹脂23の表面では、銅箔19の裏面(絶縁シート16と接続された表面と反対側の面)が露出している。主回路20において配線22が接続されていない先端部が樹脂23の外部に位置している。制御回路21において配線22が接続されていない先端部が樹脂23の外部に位置している。 The first semiconductor element 7a, the third semiconductor element 7c, the wiring 22, a part of the main circuit 20 (the part to which the wiring 22 is connected), a part of the control circuit 21 (the part to which the wiring 22 is connected), the copper circuit 18 , a resin 23 as a sealing material is arranged so as to embed the insulating sheet 16 and the copper foil 19. Note that on the surface of the resin 23, the back surface of the copper foil 19 (the surface opposite to the surface connected to the insulating sheet 16) is exposed. The tip of the main circuit 20 to which the wiring 22 is not connected is located outside the resin 23. The tip of the control circuit 21 to which the wiring 22 is not connected is located outside the resin 23.
 図11に示されるように、第1回路部1bにおける銅箔19の裏面と第5冷却部2eとは接合材28で接続される。接合材28としては、たとえば熱伝導性グリース、はんだなどを用いることができる。図9に示されるように、第1回路部1bと第2回路部1aとが対向するように配置される。第3回路部1cと第4回路部1dとが対向するように配置される。第1回路部1b、第2回路部1a、第3回路部1cおよび第4回路部1dのそれぞれの主回路20が第1端子3としての主端子3cに接続される。なお、図9においては、各回路部における制御回路21は図示されていない。 As shown in FIG. 11, the back surface of the copper foil 19 in the first circuit section 1b and the fifth cooling section 2e are connected by a bonding material 28. As the bonding material 28, for example, thermally conductive grease, solder, etc. can be used. As shown in FIG. 9, the first circuit section 1b and the second circuit section 1a are arranged to face each other. The third circuit section 1c and the fourth circuit section 1d are arranged to face each other. The main circuits 20 of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are connected to a main terminal 3c as the first terminal 3. Note that in FIG. 9, the control circuit 21 in each circuit section is not illustrated.
 このような構成の半導体モジュール200においても、図5に示された半導体モジュール100と同様に第1半導体素子7aなどを両面から冷却できる。たとえば、第1半導体素子7aの裏面については、ダイボンド材15a、銅回路18、絶縁シート16、銅箔19および接合材28を介して第5冷却部2eにより冷却される。また、第1半導体素子7aの表面については、配線22、主回路20、主端子3c、第1絶縁部材4aを介して第5冷却部2eにより冷却される。 Also in the semiconductor module 200 having such a configuration, the first semiconductor element 7a and the like can be cooled from both sides similarly to the semiconductor module 100 shown in FIG. For example, the back surface of the first semiconductor element 7a is cooled by the fifth cooling section 2e via the die bonding material 15a, the copper circuit 18, the insulating sheet 16, the copper foil 19, and the bonding material 28. Further, the surface of the first semiconductor element 7a is cooled by the fifth cooling section 2e via the wiring 22, the main circuit 20, the main terminal 3c, and the first insulating member 4a.
 <作用>
 上記半導体モジュール200において、第1回路部1bは、第1半導体素子7aを封止する樹脂23をさらに含んでもよい。この場合、樹脂23により半導体素子などを封止した回路部を用いた半導体モジュール200において、当該回路部に含まれる第1半導体素子7aなどの半導体素子を十分に冷却できるとともに小型化を図ることができる。
<Effect>
In the semiconductor module 200, the first circuit section 1b may further include resin 23 for sealing the first semiconductor element 7a. In this case, in the semiconductor module 200 using a circuit section in which a semiconductor element or the like is sealed with the resin 23, the semiconductor elements such as the first semiconductor element 7a included in the circuit section can be sufficiently cooled and the size can be reduced. can.
 <変形例>
 図12は、図9に示された半導体モジュールの変形例1の構成を説明するための部分断面模式図である。
<Modified example>
FIG. 12 is a schematic partial cross-sectional view for explaining the configuration of Modification Example 1 of the semiconductor module shown in FIG. 9. FIG.
 図12に示された第1回路部1bを用いた半導体モジュール200は、基本的には図9に示された半導体モジュール200と同様の構成を備え、同様の効果を得ることができるが、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの構成が図9に示された半導体モジュール200と異なっている。すなわち、図13に示された半導体モジュール200では、主回路20が銅板からなり、当該主回路20が樹脂23の外部から第1半導体素子7aおよび第3半導体素子7cの上にまで延びている。主回路20と第1半導体素子7aの上面に形成された電極(図示せず)とは接合材24aにより接続されている。主回路20と第3半導体素子7cの上面に形成された電極(図示せず)とは接合材24bにより接続されている。接合材24a、24bとしては、はんだ、銀焼結体、銅焼結体など、任意の導電性の接合部材を用いることができる。このような構成の半導体モジュール200においても、図9から図11に示された半導体モジュール200と同様の効果を得ることができる。 The semiconductor module 200 using the first circuit section 1b shown in FIG. 12 basically has the same configuration as the semiconductor module 200 shown in FIG. 9, and can obtain the same effects. The configurations of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are different from the semiconductor module 200 shown in FIG. That is, in the semiconductor module 200 shown in FIG. 13, the main circuit 20 is made of a copper plate, and the main circuit 20 extends from outside the resin 23 to above the first semiconductor element 7a and the third semiconductor element 7c. The main circuit 20 and an electrode (not shown) formed on the upper surface of the first semiconductor element 7a are connected by a bonding material 24a. The main circuit 20 and an electrode (not shown) formed on the upper surface of the third semiconductor element 7c are connected by a bonding material 24b. As the bonding materials 24a and 24b, any conductive bonding member such as solder, silver sintered body, copper sintered body, etc. can be used. Even in the semiconductor module 200 having such a configuration, the same effects as the semiconductor module 200 shown in FIGS. 9 to 11 can be obtained.
 図13は、図9に示された半導体モジュールの変形例2の構成を説明するための部分断面模式図である。図13は図12に対応する。 FIG. 13 is a schematic partial cross-sectional view for explaining the configuration of Modification 2 of the semiconductor module shown in FIG. 9. FIG. 13 corresponds to FIG. 12.
 図13に示された第1回路部1bを用いた半導体モジュール200は、基本的には図12に示された半導体モジュール200と同様の構成を備え、同様の効果を得ることができるが、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの構成が図12に示された半導体モジュール200と異なっている。すなわち、図13に示された半導体モジュール200では、第1半導体素子7aと第3半導体素子7cとが絶縁基板に搭載されている。 The semiconductor module 200 using the first circuit section 1b shown in FIG. 13 basically has the same configuration as the semiconductor module 200 shown in FIG. 12, and can obtain the same effects. The configurations of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are different from the semiconductor module 200 shown in FIG. That is, in the semiconductor module 200 shown in FIG. 13, the first semiconductor element 7a and the third semiconductor element 7c are mounted on an insulating substrate.
 絶縁基板は、絶縁板26と、当該絶縁板26の第1面に接続された銅回路25と、絶縁板26の第1面と反対側の第2面に接続された銅板27とを含む。第1半導体素子7aと第3半導体素子7cとは、ダイボンド材15a、15bにより銅回路25に接続されている。第1回路部1bの底面において、銅板27の表面が露出している。第1回路部1bにおける銅板27の表面(裏面)と第5冷却部2e(図9参照)とは接合材28(図11参照)により接続される。このような構成の半導体モジュール200においても、図9から図11に示された半導体モジュール200と同様の効果を得ることができる。 The insulating board includes an insulating board 26, a copper circuit 25 connected to the first surface of the insulating board 26, and a copper plate 27 connected to the second surface of the insulating board 26 opposite to the first surface. The first semiconductor element 7a and the third semiconductor element 7c are connected to the copper circuit 25 by die bonding materials 15a and 15b. The surface of the copper plate 27 is exposed on the bottom surface of the first circuit section 1b. The front surface (back surface) of the copper plate 27 in the first circuit section 1b and the fifth cooling section 2e (see FIG. 9) are connected by a bonding material 28 (see FIG. 11). Even in the semiconductor module 200 having such a configuration, the same effects as the semiconductor module 200 shown in FIGS. 9 to 11 can be obtained.
 実施の形態3.
 <半導体モジュールの構成>
 図14は、実施の形態3に係る半導体モジュール300の側面模式図である。図14は図9に対応する。
Embodiment 3.
<Semiconductor module configuration>
FIG. 14 is a schematic side view of a semiconductor module 300 according to the third embodiment. FIG. 14 corresponds to FIG. 9.
 図14に示された半導体モジュール300は、基本的には図9から図11に示された半導体モジュール200と同様の構成を備え、同様の効果を得ることができるが、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの構成および第2端子8を備える点が図9から図11に示された半導体モジュール200と異なっている。すなわち、図14に示された半導体モジュール300では、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dが、主回路20として第1主回路20aと第2主回路20bとを含む。第1主回路20aと第2主回路20bとは互いに異なる方向に延びている。具体的には、第1主回路20aは、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの第1面(上面)から突出するように配置されている。第2主回路20bは、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの第2面(第1面と反対側の下面)から突出するように配置されている。 The semiconductor module 300 shown in FIG. 14 basically has the same configuration as the semiconductor module 200 shown in FIGS. 9 to 11, and can obtain the same effects, but the first circuit section 1b, The semiconductor module 200 is different from the semiconductor module 200 shown in FIGS. 9 to 11 in that the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are configured and that the second terminal 8 is provided. That is, in the semiconductor module 300 shown in FIG. main circuit 20b. The first main circuit 20a and the second main circuit 20b extend in mutually different directions. Specifically, the first main circuit 20a is arranged so as to protrude from the first surface (top surface) of the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d. There is. The second main circuit 20b is arranged so as to protrude from the second surface (the lower surface opposite to the first surface) of the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d. has been done.
 第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの第1主回路20aは、それぞれ主端子3cに接続される。主端子3cの第1延在部3eは第1絶縁部材4aを介して第5冷却部2eに接続される。第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dの第2主回路20bは、それぞれ主端子である第2端子8に接続される。第2端子8は、第2延在部8eを含む。第2延在部8eは第5冷却部2eに隣接する領域に配置される。第2延在部8eは、第1回路部1bから見て第1端子3の第1延在部3eが位置する方向と異なる方向に位置する。第2端子8の第2延在部8eは第2絶縁部材4bを介して第5冷却部2eに接続される。 The first main circuits 20a of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are each connected to the main terminal 3c. The first extending portion 3e of the main terminal 3c is connected to the fifth cooling portion 2e via the first insulating member 4a. The second main circuits 20b of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are each connected to a second terminal 8, which is a main terminal. The second terminal 8 includes a second extending portion 8e. The second extending portion 8e is arranged in a region adjacent to the fifth cooling portion 2e. The second extending portion 8e is located in a direction different from the direction in which the first extending portion 3e of the first terminal 3 is located when viewed from the first circuit portion 1b. The second extending portion 8e of the second terminal 8 is connected to the fifth cooling portion 2e via the second insulating member 4b.
 第1回路部1bの第2主回路20bおよび第1主回路20aは、図10などに示された主回路20と同様に、第1主面7aa側から第1半導体素子7aと電気的に接続されている。このため、第1端子3である主端子3cおよび第2端子8も、第1主面7aa側から第1半導体素子7aと電気的に接続されることになる。 The second main circuit 20b and the first main circuit 20a of the first circuit section 1b are electrically connected to the first semiconductor element 7a from the first main surface 7aa side, similar to the main circuit 20 shown in FIG. 10 etc. has been done. Therefore, the main terminal 3c, which is the first terminal 3, and the second terminal 8 are also electrically connected to the first semiconductor element 7a from the first main surface 7aa side.
 上記のような構成の半導体モジュール300では、たとえば第1主回路20aがN端子およびP端子であり、第2主回路20bがAC端子である。半導体モジュール300が適用される装置において、たとえばN端子およびP端子である第1主回路20aはコンデンサ(図示せず)に接続される。AC端子である第2主回路20bは、たとえばモータ(図示せず)に接続される。 In the semiconductor module 300 configured as described above, for example, the first main circuit 20a has an N terminal and a P terminal, and the second main circuit 20b has an AC terminal. In a device to which the semiconductor module 300 is applied, the first main circuit 20a, which is an N terminal and a P terminal, is connected to a capacitor (not shown). The second main circuit 20b, which is an AC terminal, is connected to, for example, a motor (not shown).
 <作用>
 上記半導体モジュール300は、第2端子8をさらに備えてもよい。第2端子8は、第1主面7aa側から第1半導体素子7aと電気的に接続されてもよい。第2端子8は、第2延在部8eを含んでもよい。第2延在部8eは、第1回路部1bから見て第1延在部3eが位置する方向と異なる方向に位置してもよい。第2端子8の第2延在部8eは、第1冷却部2bと第2絶縁部材4bを介して接続されてもよい。
<Effect>
The semiconductor module 300 may further include a second terminal 8. The second terminal 8 may be electrically connected to the first semiconductor element 7a from the first main surface 7aa side. The second terminal 8 may include a second extending portion 8e. The second extending portion 8e may be located in a direction different from the direction in which the first extending portion 3e is located when viewed from the first circuit portion 1b. The second extending portion 8e of the second terminal 8 may be connected to the first cooling portion 2b via the second insulating member 4b.
 この場合、接続される機器が異なる端子(第1主回路20aおよび第2主回路20b)を、それぞれ異なる方向に配置できる。このため、各端子から接続先の機器までの配線経路長を短くできる。この結果、半導体モジュール300を含む回路のインダクタンスを低減できる。 In this case, terminals to which different devices are connected (the first main circuit 20a and the second main circuit 20b) can be arranged in different directions. Therefore, the length of the wiring path from each terminal to the connected device can be shortened. As a result, the inductance of the circuit including the semiconductor module 300 can be reduced.
 <変形例>
 図15は、図14に示された半導体モジュール300の変形例の構成を説明するための部分側面模式図である。図15は、半導体モジュール300を構成する第1回路部1bと第2回路部1aとの一部を示している。
<Modified example>
FIG. 15 is a partial side schematic diagram for explaining the configuration of a modified example of the semiconductor module 300 shown in FIG. 14. FIG. 15 shows a portion of the first circuit section 1b and the second circuit section 1a that constitute the semiconductor module 300.
 図15に示された第1回路部1bおよび第2回路部1aを含む半導体モジュールは、基本的には図14に示された半導体モジュール300と同様の構成を備え、同様の効果を得ることができるが、第1回路部1b、第2回路部1a、第3回路部1c(図14参照)、第4回路部1d(図14参照)の構成が図14に示された半導体モジュール300と異なっている。すなわち、図15に示された第1回路部1bと第2回路部1aとは、第1主回路20aを共有している。また、第1回路部1bと第2回路部1aとは、図示しない第2主回路20bを共有してもよい。 The semiconductor module including the first circuit section 1b and the second circuit section 1a shown in FIG. 15 basically has the same configuration as the semiconductor module 300 shown in FIG. 14, and can obtain similar effects. However, the configurations of the first circuit section 1b, second circuit section 1a, third circuit section 1c (see FIG. 14), and fourth circuit section 1d (see FIG. 14) are different from the semiconductor module 300 shown in FIG. ing. That is, the first circuit section 1b and the second circuit section 1a shown in FIG. 15 share the first main circuit 20a. Further, the first circuit section 1b and the second circuit section 1a may share a second main circuit 20b (not shown).
 この場合、第1回路部1bと第2回路部1aとのそれぞれの内部において、第1主回路20aに接続される回路の分流設計に応じた配線構造を形成できる。このため、回路設計の自由度を大きくすることができ、結果的に回路の低インダクタンス化を図ることができる。なお、上述した第1回路部1bおよび第2回路部1aの構成は、第3回路部1cおよび第4回路部1dにも適用される。 In this case, a wiring structure can be formed in each of the first circuit section 1b and the second circuit section 1a according to the shunt design of the circuit connected to the first main circuit 20a. Therefore, the degree of freedom in circuit design can be increased, and as a result, the inductance of the circuit can be reduced. Note that the configurations of the first circuit section 1b and the second circuit section 1a described above are also applied to the third circuit section 1c and the fourth circuit section 1d.
 実施の形態4.
 <半導体モジュールの構成>
 図16は、実施の形態4に係る半導体モジュール500の構成を説明するための要部斜視模式図である。図16は、半導体モジュール500を構成する冷却器モジュール400を示している。図17は、実施の形態4に係る半導体モジュール500の構成を説明するための要部側面模式図である。図18は、図17に示された半導体モジュール500の構成を説明するための模式図である。図19は、図17に示された半導体モジュール500の構成を説明するための模式図である。図19は、半導体モジュール500に供給される冷却材の流れを示している。
Embodiment 4.
<Semiconductor module configuration>
FIG. 16 is a schematic perspective view of main parts for explaining the configuration of a semiconductor module 500 according to the fourth embodiment. FIG. 16 shows a cooler module 400 that constitutes the semiconductor module 500. FIG. 17 is a schematic side view of a main part for explaining the configuration of a semiconductor module 500 according to the fourth embodiment. FIG. 18 is a schematic diagram for explaining the configuration of semiconductor module 500 shown in FIG. 17. FIG. 19 is a schematic diagram for explaining the configuration of semiconductor module 500 shown in FIG. 17. FIG. 19 shows the flow of coolant supplied to the semiconductor module 500.
 図16から図19に示された半導体モジュール500は、基本的には図9から図11に示された半導体モジュール200と同様の構成を備え、同様の効果を得ることができるが、第2冷却部2a、第5冷却部2eおよび第4冷却部2dに代えて、図16に示される冷却器モジュール400を備える点が図9から図11に示された半導体モジュール200と異なっている。すなわち、図16から図19に示された半導体モジュール500は、冷却器モジュール400と、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1d、第1端子3としての主端子3cを主に備える。冷却器モジュール400は、第1冷却部2b、第2冷却部2a、第3冷却部2c、封止板34、第1側面冷却部31a、第2側面冷却部31b、第3側面冷却部31c、第4側面冷却部31d、底面冷却部35を主に備える。 The semiconductor module 500 shown in FIGS. 16 to 19 basically has the same configuration as the semiconductor module 200 shown in FIGS. 9 to 11, and can obtain the same effects, but the second cooling The semiconductor module 200 is different from the semiconductor module 200 shown in FIGS. 9 to 11 in that a cooler module 400 shown in FIG. 16 is provided in place of the section 2a, the fifth cooling section 2e, and the fourth cooling section 2d. That is, the semiconductor module 500 shown in FIGS. 16 to 19 includes a cooler module 400, a first circuit section 1b, a second circuit section 1a, a third circuit section 1c, a fourth circuit section 1d, and a first terminal 3. It mainly includes a main terminal 3c. The cooler module 400 includes a first cooling section 2b, a second cooling section 2a, a third cooling section 2c, a sealing plate 34, a first side cooling section 31a, a second side cooling section 31b, a third side cooling section 31c, It mainly includes a fourth side cooling section 31d and a bottom cooling section 35.
 底面冷却部35は板状の部材である。底面冷却部35上に、第1冷却部2b、第2冷却部2a、第3冷却部2c、封止板34、第1側面冷却部31a、第2側面冷却部31b、第3側面冷却部31c、第4側面冷却部31dが固定されている。図17に示されるように、第2冷却部2a、第1冷却部2b、第3冷却部2cは、第1方向DR1に沿ってこの順番で間隔を隔てて配置されている。第1冷却部2b、第2冷却部2aおよび第3冷却部2cは互いに同様の構成を有する。 The bottom cooling section 35 is a plate-shaped member. On the bottom cooling section 35, the first cooling section 2b, the second cooling section 2a, the third cooling section 2c, the sealing plate 34, the first side cooling section 31a, the second side cooling section 31b, and the third side cooling section 31c. , the fourth side cooling part 31d is fixed. As shown in FIG. 17, the second cooling unit 2a, the first cooling unit 2b, and the third cooling unit 2c are arranged at intervals in this order along the first direction DR1. The first cooling section 2b, the second cooling section 2a, and the third cooling section 2c have similar configurations.
 第1冷却部2bは、第1端部2baと、第2端部2bbとを含む。第2端部2bbは、第1端部2baと反対側に位置する。第1冷却部2bには、第1端部2baから第2端部2bbにまで延びる第1冷却材流路33bが形成されている。第1端部2baでは、第1冷却材流路33bの一方端である第1開口33baが形成されている。第2端部2bbでは、第1冷却材流路33bの他方端である第2開口33bbが形成されている。 The first cooling section 2b includes a first end 2ba and a second end 2bb. The second end 2bb is located on the opposite side to the first end 2ba. A first coolant flow path 33b extending from the first end 2ba to the second end 2bb is formed in the first cooling part 2b. A first opening 33ba, which is one end of the first coolant flow path 33b, is formed at the first end 2ba. A second opening 33bb, which is the other end of the first coolant flow path 33b, is formed at the second end 2bb.
 第2冷却部2aは、第3端部2aaと、第4端部2abとを含む。第4端部2abは、第3端部2aaと反対側に位置する。第2冷却部2aには、第3端部2aaから第4端部2abにまで延びる第2冷却材流路33aが形成されている。第3端部2aaは、第1冷却部2bの第1端部2baと同じ側に位置している。第3端部2aaでは、第2冷却材流路33aの一方端である第3開口33aaが形成されている。第4端部2abでは、第2冷却材流路33aの他方端である第4開口33abが形成されている。 The second cooling section 2a includes a third end 2aa and a fourth end 2ab. The fourth end 2ab is located on the opposite side to the third end 2aa. A second coolant flow path 33a extending from the third end 2aa to the fourth end 2ab is formed in the second cooling part 2a. The third end 2aa is located on the same side as the first end 2ba of the first cooling section 2b. A third opening 33aa, which is one end of the second coolant flow path 33a, is formed at the third end 2aa. A fourth opening 33ab, which is the other end of the second coolant flow path 33a, is formed at the fourth end 2ab.
 第3冷却部2cは、第5端部2caと、第6端部2cbとを含む。第6端部2cbは、第5端部2caと反対側に位置する。第3冷却部2cには、第5端部2caから第6端部2cbにまで延びる第3冷却材流路33cが形成されている。第5端部2caは、第1冷却部2bの第1端部2baと同じ側に位置している。第5端部2caでは、第3冷却材流路33cの一方端である第5開口33caが形成されている。第6端部2cbでは、第3冷却材流路33cの他方端である第6開口33cbが形成されている。 The third cooling section 2c includes a fifth end 2ca and a sixth end 2cb. The sixth end 2cb is located on the opposite side to the fifth end 2ca. A third coolant flow path 33c extending from the fifth end 2ca to the sixth end 2cb is formed in the third cooling part 2c. The fifth end 2ca is located on the same side as the first end 2ba of the first cooling section 2b. A fifth opening 33ca, which is one end of the third coolant flow path 33c, is formed at the fifth end 2ca. A sixth opening 33cb, which is the other end of the third coolant flow path 33c, is formed at the sixth end 2cb.
 第1冷却部2b、第2冷却部2aおよび第3冷却部2cの頂面および底面に接するように封止板34が配置されている。第1冷却部2b、第2冷却部2aおよび第3冷却部2cは底面側の封止板34を介して底面冷却部35に接続されている。 A sealing plate 34 is arranged so as to be in contact with the top and bottom surfaces of the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c. The first cooling section 2b, the second cooling section 2a, and the third cooling section 2c are connected to a bottom cooling section 35 via a sealing plate 34 on the bottom side.
 第1側面冷却部31aは、第1端部2baと第3端部2aaとを接続するように配置される。第1側面冷却部31aにおいて第1回路部1bおよび第2回路部1aが位置する側と反対側の表面には凹部31aaが形成されている。第2側面冷却部31b、第3側面冷却部31c、第4側面冷却部31dは、第1側面冷却部31aと同様の構成を備える。 The first side cooling part 31a is arranged to connect the first end 2ba and the third end 2aa. A recessed portion 31aa is formed on the surface of the first side cooling portion 31a opposite to the side where the first circuit portion 1b and the second circuit portion 1a are located. The second side cooling section 31b, the third side cooling section 31c, and the fourth side cooling section 31d have the same configuration as the first side cooling section 31a.
 第2側面冷却部31bは、第2端部2bbと第4端部2abとを接続するように配置される。第3側面冷却部31cは、第1端部2baと第5端部2caとを接続するように配置される。第4側面冷却部31dは、第2端部2bbと第6端部2cbとを接続するように配置される。 The second side cooling part 31b is arranged to connect the second end 2bb and the fourth end 2ab. The third side cooling part 31c is arranged to connect the first end 2ba and the fifth end 2ca. The fourth side cooling part 31d is arranged to connect the second end 2bb and the sixth end 2cb.
 第1冷却部2bと第2冷却部2aと第1側面冷却部31aと第2側面冷却部31bと底面冷却部35とにより囲まれた領域に、第1回路部1bおよび第2回路部1aが配置される。第1冷却部2bと第3冷却部2cと第3側面冷却部31cと第4側面冷却部31dと底面冷却部35とにより囲まれた領域に、第3回路部1cおよび第4回路部1dが配置される。第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dのそれぞれの主回路20が第1端子3としての主端子3cに接続される。主端子3cの第1延在部3eが第1絶縁部材4aおよび封止板34を介して第1冷却部2bに接続されている。また、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dのそれぞれの底面(底面冷却部35に面する表面)が、底面冷却部35に接続されている。また、第1側面冷却部31a、第2側面冷却部31b、第3側面冷却部31c、第4側面冷却部31dにも、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dのそれぞれの側面が接続されている。 The first circuit section 1b and the second circuit section 1a are located in an area surrounded by the first cooling section 2b, the second cooling section 2a, the first side cooling section 31a, the second side cooling section 31b, and the bottom cooling section 35. Placed. A third circuit section 1c and a fourth circuit section 1d are located in an area surrounded by the first cooling section 2b, the third cooling section 2c, the third side cooling section 31c, the fourth side cooling section 31d, and the bottom cooling section 35. Placed. Each main circuit 20 of the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d is connected to a main terminal 3c as the first terminal 3. The first extending portion 3e of the main terminal 3c is connected to the first cooling portion 2b via the first insulating member 4a and the sealing plate 34. Further, the bottom surfaces (surfaces facing the bottom cooling section 35) of each of the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are connected to the bottom cooling section 35. . In addition, the first side cooling section 31a, the second side cooling section 31b, the third side cooling section 31c, and the fourth side cooling section 31d also include the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, The respective side surfaces of the fourth circuit section 1d are connected.
 第1冷却部2b、第2冷却部2aおよび第3冷却部2cでは、図16および図18などに示すように、第1冷却材流路33b、第2冷却材流路33a、第3冷却材流路33cの内部に複数のフィンが形成されている。第1冷却部2b、第2冷却部2aおよび第3冷却部2cを構成する材料は、たとえばアルミニウムである。図19に示されるように、第1冷却材流路33b、第2冷却材流路33a、第3冷却材流路33cには冷却材が導入される。冷却材としてはたとえば水などの液体、あるいは空気等の気体を用いる事ができる。 In the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c, as shown in FIGS. 16 and 18, the first coolant channel 33b, the second coolant channel 33a, and the third coolant channel A plurality of fins are formed inside the flow path 33c. The material constituting the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c is, for example, aluminum. As shown in FIG. 19, a coolant is introduced into the first coolant flow path 33b, the second coolant flow path 33a, and the third coolant flow path 33c. As the coolant, for example, a liquid such as water or a gas such as air can be used.
 第1冷却材流路33b、第2冷却材流路33a、第3冷却材流路33cのそれぞれに個別に冷却材を導入するための個別の配管を形成してもよいが、図19に示されるように、第2冷却部2aから第3冷却部2cまでの領域全体に冷却材を流す導入部36を設置してもよい。導入部36では、冷却材の流入部から矢印37aに示すように冷却材が供給される。導入部の下流側に分岐器38が設置されている。流入部から供給された冷却材は、分岐器38に衝突する。その後、矢印37b、37cに示されるように冷却材は分岐して流れる。 Although separate piping may be formed to individually introduce the coolant into each of the first coolant flow path 33b, the second coolant flow path 33a, and the third coolant flow path 33c, as shown in FIG. An introduction section 36 may be installed to allow the coolant to flow throughout the area from the second cooling section 2a to the third cooling section 2c. In the introduction section 36, the coolant is supplied from the coolant inflow section as shown by an arrow 37a. A branch 38 is installed downstream of the introduction section. The coolant supplied from the inlet impinges on the splitter 38 . Thereafter, the coolant flows in branches as shown by arrows 37b and 37c.
 その後、冷却材は第1側面冷却部31aおよび第3側面冷却部31cに接触する。第1側面冷却部31aおよび第3側面冷却部31cの表面には凹部31aa、31caが形成されている。当該凹部31aa、31caに冷却材が一端貯留され、その後矢印37d、37e、37f、37gに示されるように、冷却材は第1冷却材流路33b、第2冷却材流路33aおよび第3冷却材流路33cに対して均等に流入する。凹部31aa、31caは冷却材の流れを均一化する冷却材拡散部として機能する。 Thereafter, the coolant contacts the first side cooling part 31a and the third side cooling part 31c. Recesses 31aa and 31ca are formed on the surfaces of the first side cooling part 31a and the third side cooling part 31c. A portion of the coolant is stored in the recesses 31aa and 31ca, and then, as shown by arrows 37d, 37e, 37f, and 37g, the coolant flows through the first coolant channel 33b, the second coolant channel 33a, and the third coolant channel. The material flows evenly into the material flow path 33c. The recesses 31aa and 31ca function as a coolant diffusion section that equalizes the flow of the coolant.
 また、第2側面冷却部31bおよび第4側面冷却部31dは第1側面冷却部31aと同様の構成を備える。このため、第2側面冷却部31bおよび第4側面冷却部31dにも凹部が形成されている。第1冷却部2b、第2冷却部2a、第3冷却部2cにおいて冷却材の流れ方向における下流側(第2端部2bb側)では、第1冷却部2bなどから排出される冷却材が当該凹部に一端貯留されることで、半導体モジュール500から排出される冷却材の流れを均質化することができる。 Furthermore, the second side cooling section 31b and the fourth side cooling section 31d have the same configuration as the first side cooling section 31a. For this reason, recesses are also formed in the second side cooling part 31b and the fourth side cooling part 31d. On the downstream side (second end 2bb side) in the flow direction of the coolant in the first cooling unit 2b, second cooling unit 2a, and third cooling unit 2c, the coolant discharged from the first cooling unit 2b etc. By temporarily storing the coolant in the recess, the flow of the coolant discharged from the semiconductor module 500 can be homogenized.
 なお、上述した第1冷却部2b、第2冷却部2aおよび第3冷却部2cの構成は、上述したような冷却材流路を備えるものであってもよいが、他の構成であってもよい。たとえば、半導体素子の発熱量が比較的少ない場合は、第1冷却部2b、第2冷却部2aおよび第3冷却部2cとして、金属などの部材の内部に冷却材を流通させる配管経路を蛇行するように形成した、いわゆるウォータージャケットを用いてもよい。第1冷却部2b、第2冷却部2a、第3冷却部2c、第1側面冷却部31a、第2側面冷却部31b、第3側面冷却部31c、第4側面冷却部31d、底面冷却部35、封止板34の材料としては、アルミニウム、銅など熱伝導性に優れた金属を用いることができる。上述した半導体モジュール500では、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dを、第1端子3が配置された側の方向を除く5つの方向から冷却できる。 In addition, although the structure of the 1st cooling part 2b mentioned above, the 2nd cooling part 2a, and the 3rd cooling part 2c may be provided with the coolant flow path as mentioned above, it may be other structures. good. For example, when the amount of heat generated by the semiconductor element is relatively small, the first cooling section 2b, the second cooling section 2a, and the third cooling section 2c are used to create a meandering piping route for circulating the coolant inside the member such as metal. A so-called water jacket formed in this manner may also be used. First cooling section 2b, second cooling section 2a, third cooling section 2c, first side cooling section 31a, second side cooling section 31b, third side cooling section 31c, fourth side cooling section 31d, bottom cooling section 35 As the material of the sealing plate 34, metals with excellent thermal conductivity such as aluminum and copper can be used. In the semiconductor module 500 described above, the first circuit section 1b, the second circuit section 1a, the third circuit section 1c, and the fourth circuit section 1d are cooled from five directions excluding the direction on the side where the first terminal 3 is arranged. can.
 なお、底面冷却部35に開口部を形成する等の対応を行うことで、図14に示したように主回路20を2つの異なる方向に配置することもできる。また、底面冷却部35を配置しない構成としてもよい。 Note that by taking measures such as forming an opening in the bottom cooling section 35, the main circuit 20 can be arranged in two different directions as shown in FIG. Alternatively, a configuration may be adopted in which the bottom cooling section 35 is not provided.
 なお、第1冷却部2b、第2冷却部2a、第3冷却部2c、第1側面冷却部31a、第2側面冷却部31b、第3側面冷却部31c、第4側面冷却部31d、底面冷却部35と、第1回路部1b、第2回路部1a、第3回路部1c、第4回路部1dとの接続部には熱伝導性のグリースまたは熱伝導性のシート部材などを配置することで、冷却性能を向上させてもよい。 In addition, the first cooling section 2b, the second cooling section 2a, the third cooling section 2c, the first side cooling section 31a, the second side cooling section 31b, the third side cooling section 31c, the fourth side cooling section 31d, and the bottom cooling section. Thermal conductive grease, a thermally conductive sheet member, or the like may be placed at the connection portions between the section 35 and the first circuit section 1b, second circuit section 1a, third circuit section 1c, and fourth circuit section 1d. This may improve cooling performance.
 <作用>
 上記半導体モジュール500において、第1冷却部2bは、第1端部2baと、第2端部2bbとを含んでもよい。第2端部2bbは、第1端部2baと反対側に位置してもよい。第1冷却部2bには、第1端部2baから第2端部2bbにまで延びる第1冷却材流路33bが形成されてもよい。第1端部2baでは、第1冷却材流路33bの一方端である第1開口33baが形成されてもよい。第2端部2bbでは、第1冷却材流路33bの他方端である第2開口33bbが形成されてもよい。第2冷却部2aは、第3端部2aaと、第4端部2abとを含んでもよい。第4端部2abは、第3端部2aaと反対側に位置してもよい。第2冷却部2aには、第3端部2aaから第4端部2abにまで延びる第2冷却材流路33aが形成されてもよい。第3端部2aaは、第1冷却部2bの第1端部2baと同じ側に位置してもよい。第3端部2aaでは、第2冷却材流路33aの一方端である第3開口33aaが形成されてもよい。第4端部2abでは、第2冷却材流路33aの他方端である第4開口33abが形成されてもよい。上記半導体モジュール500は、第1側面冷却部31aを備えてもよい。第1側面冷却部31aは、第1端部2baと第3端部2aaとの間に配置されてもよい。第1側面冷却部31aは第1回路部1bと第2回路部1aとに接続されてもよい。第1側面冷却部31aにおいて第1回路部1bおよび第2回路部1aが位置する側と反対側の表面には凹部31aaが形成されてもよい。
<Effect>
In the semiconductor module 500, the first cooling section 2b may include a first end 2ba and a second end 2bb. The second end 2bb may be located on the opposite side to the first end 2ba. A first coolant channel 33b extending from the first end 2ba to the second end 2bb may be formed in the first cooling part 2b. A first opening 33ba, which is one end of the first coolant flow path 33b, may be formed at the first end 2ba. A second opening 33bb, which is the other end of the first coolant flow path 33b, may be formed at the second end 2bb. The second cooling section 2a may include a third end 2aa and a fourth end 2ab. The fourth end 2ab may be located on the opposite side to the third end 2aa. A second coolant flow path 33a extending from the third end 2aa to the fourth end 2ab may be formed in the second cooling part 2a. The third end 2aa may be located on the same side as the first end 2ba of the first cooling section 2b. A third opening 33aa, which is one end of the second coolant flow path 33a, may be formed at the third end 2aa. A fourth opening 33ab, which is the other end of the second coolant flow path 33a, may be formed at the fourth end 2ab. The semiconductor module 500 may include a first side cooling section 31a. The first side cooling part 31a may be arranged between the first end 2ba and the third end 2aa. The first side cooling section 31a may be connected to the first circuit section 1b and the second circuit section 1a. A recessed portion 31aa may be formed on the surface of the first side cooling portion 31a opposite to the side where the first circuit portion 1b and the second circuit portion 1a are located.
 この場合、第1冷却材流路33bおよび第2冷却材流路33aに対して、第1側面冷却部31a側から冷却材を流入させるときに、凹部31aaにおいて冷却材を一端貯留したあと、第1冷却材流路33bおよび第2冷却材流路33aに対して均等に冷却材を供給できる。また、第1側面冷却部31aを第1回路部1bおよび第2回路部1aに接触させることで、第1回路部1bおよび第2回路部1aを効果的に冷却できる。 In this case, when the coolant is caused to flow into the first coolant flow path 33b and the second coolant flow path 33a from the first side cooling part 31a side, the coolant is stored at one end in the recess 31aa, and then The coolant can be evenly supplied to the first coolant flow path 33b and the second coolant flow path 33a. Further, by bringing the first side cooling portion 31a into contact with the first circuit portion 1b and the second circuit portion 1a, the first circuit portion 1b and the second circuit portion 1a can be effectively cooled.
 上記半導体モジュール500は、第2側面冷却部31bを備えてもよい。第2側面冷却部31bは、第2端部2bbと第4端部2abとの間に配置されてもよい。第2側面冷却部31bは、第1回路部1bと第2回路部1aとに接続されてもよい。 The semiconductor module 500 may include a second side cooling section 31b. The second side cooling part 31b may be arranged between the second end 2bb and the fourth end 2ab. The second side cooling section 31b may be connected to the first circuit section 1b and the second circuit section 1a.
 この場合、第2側面冷却部31bを第1回路部1bおよび第2回路部1aに接触させることで、第1回路部1bおよび第2回路部1aを効果的に冷却できる。 In this case, by bringing the second side cooling section 31b into contact with the first circuit section 1b and the second circuit section 1a, the first circuit section 1b and the second circuit section 1a can be effectively cooled.
 上記半導体モジュール500は、底面冷却部35を備えてもよい。底面冷却部35には、第1冷却部2b、第2冷却部2a、第1側面冷却部31a、第2側面冷却部31b、第1回路部1b、および第2回路部1aが接続されてもよい。 The semiconductor module 500 may include a bottom cooling section 35. The first cooling section 2b, the second cooling section 2a, the first side cooling section 31a, the second side cooling section 31b, the first circuit section 1b, and the second circuit section 1a may be connected to the bottom cooling section 35. good.
 この場合、底面冷却部35を第1回路部1bおよび第2回路部1aに接触させることで、第1回路部1bおよび第2回路部1aを効果的に冷却できる。 In this case, by bringing the bottom cooling section 35 into contact with the first circuit section 1b and the second circuit section 1a, the first circuit section 1b and the second circuit section 1a can be effectively cooled.
 実施の形態5.
 本実施の形態は、上述した実施の形態5に係る半導体装置を電力変換装置に適用したものである。本開示は特定の電力変換装置に限定されるものではないが、以下、実施の形態5として、三相のインバータに本開示を適用した場合について説明する。
Embodiment 5.
In this embodiment, the semiconductor device according to the fifth embodiment described above is applied to a power conversion device. Although the present disclosure is not limited to a specific power conversion device, a case will be described below as Embodiment 5 in which the present disclosure is applied to a three-phase inverter.
 図20は、本実施の形態に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 20 is a block diagram showing the configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.
 図20に示す電力変換システムは、電源1100、電力変換装置1200、負荷1300から構成される。電源1100は、直流電源であり、電力変換装置1200に直流電力を供給する。電源1100は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源1100を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 20 includes a power source 1100, a power conversion device 1200, and a load 1300. Power supply 1100 is a DC power supply and supplies DC power to power conversion device 1200. The power source 1100 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. Good too. Further, the power supply 1100 may be configured with a DC/DC converter that converts DC power output from a DC system into predetermined power.
 電力変換装置1200は、電源1100と負荷1300の間に接続された三相のインバータであり、電源1100から供給された直流電力を交流電力に変換し、負荷1300に交流電力を供給する。電力変換装置1200は、図20に示すように、直流電力を交流電力に変換して出力する主変換回路1201と、主変換回路1201を制御する制御信号を主変換回路1201に出力する制御回路1203とを備えている。 The power conversion device 1200 is a three-phase inverter connected between the power source 1100 and the load 1300, converts the DC power supplied from the power source 1100 into AC power, and supplies the AC power to the load 1300. As shown in FIG. 20, the power conversion device 1200 includes a main conversion circuit 1201 that converts DC power into AC power and outputs it, and a control circuit 1203 that outputs a control signal for controlling the main conversion circuit 1201 to the main conversion circuit 1201. It is equipped with
 負荷1300は、電力変換装置1200から供給された交流電力によって駆動される三相の電動機である。なお、負荷1300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 1300 is a three-phase electric motor driven by AC power supplied from the power converter 1200. Note that the load 1300 is not limited to a specific application, but is a motor installed in various electrical devices, and is used, for example, as a motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
 以下、電力変換装置1200の詳細を説明する。主変換回路1201は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源1100から供給される直流電力を交流電力に変換し、負荷1300に供給する。主変換回路1201の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路1201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路1201の各スイッチング素子および各還流ダイオードの少なくともいずれかは、上述した実施の形態1から実施の形態4のいずれかの半導体モジュールに相当する半導体装置1202が有するスイッチング素子又は還流ダイオードである。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路1201の3つの出力端子は、負荷1300に接続される。 Hereinafter, details of the power conversion device 1200 will be explained. The main conversion circuit 1201 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, it converts the DC power supplied from the power supply 1100 into AC power, and supplies the alternating current power to the load 1300. Although there are various specific circuit configurations of the main conversion circuit 1201, the main conversion circuit 1201 according to this embodiment is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can be constructed from six freewheeling diodes arranged in antiparallel. At least one of each switching element and each free-wheeling diode of main conversion circuit 1201 is a switching element or a free-wheeling diode included in semiconductor device 1202 corresponding to the semiconductor module of any one of Embodiments 1 to 4 described above. . The six switching elements are connected in series every two switching elements to constitute upper and lower arms, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. The output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 1201, are connected to the load 1300.
 また、主変換回路1201は、各スイッチング素子を駆動する駆動回路(図示なし)を備えているが、駆動回路は半導体装置1202に内蔵されていてもよいし、半導体装置1202とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路1201のスイッチング素子を駆動する駆動信号を生成し、主変換回路1201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路1203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 Further, the main conversion circuit 1201 includes a drive circuit (not shown) that drives each switching element, but the drive circuit may be built in the semiconductor device 1202 or may be provided separately from the semiconductor device 1202. It may be a configuration in which it is provided. The drive circuit generates a drive signal for driving the switching element of the main conversion circuit 1201 and supplies it to the control electrode of the switching element of the main conversion circuit 1201. Specifically, according to a control signal from a control circuit 1203, which will be described later, a drive signal that turns the switching element on and a drive signal that turns the switching element off are output to the control electrode of each switching element. When keeping the switching element in the on state, the drive signal is a voltage signal (on signal) that is greater than or equal to the threshold voltage of the switching element, and when the switching element is kept in the off state, the drive signal is a voltage signal that is less than or equal to the threshold voltage of the switching element. signal (off signal).
 制御回路1203は、負荷1300に所望の電力が供給されるよう主変換回路1201のスイッチング素子を制御する。具体的には、負荷1300に供給すべき電力に基づいて主変換回路1201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路1201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路1201が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。 The control circuit 1203 controls the switching elements of the main conversion circuit 1201 so that the desired power is supplied to the load 1300. Specifically, the time (on time) during which each switching element of the main conversion circuit 1201 should be in the on state is calculated based on the power to be supplied to the load 1300. For example, the main conversion circuit 1201 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is sent to the drive circuit included in the main conversion circuit 1201 so that an on signal is output to the switching element that should be in the on state at each time, and an off signal is output to the switching element that should be in the off state. Output. The drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
 本実施の形態に係る電力変換装置では、主変換回路1201を構成する半導体装置1202として実施の形態1から実施の形態4に係る半導体装置を適用するため、高い冷却効率と小型化とを両立することが可能な電力変換装置を実現することができる。 In the power conversion device according to the present embodiment, the semiconductor devices according to Embodiments 1 to 4 are applied as the semiconductor device 1202 constituting the main conversion circuit 1201, so that both high cooling efficiency and miniaturization are achieved. It is possible to realize a power conversion device that can perform the following functions.
 本実施の形態では、2レベルの三相インバータに本開示を適用する例を説明したが、本開示は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本開示を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本開示を適用することも可能である。 In the present embodiment, an example in which the present disclosure is applied to a two-level three-phase inverter has been described, but the present disclosure is not limited to this and can be applied to various power conversion devices. In this embodiment, a two-level power converter is used, but a three-level or multi-level power converter may be used, and when supplying power to a single-phase load, the present disclosure may be applied to a single-phase inverter. May be applied. Further, when power is supplied to a DC load or the like, the present disclosure can also be applied to a DC/DC converter or an AC/DC converter.
 また、本開示を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 Furthermore, the power conversion device to which the present disclosure is applied is not limited to cases where the above-mentioned load is an electric motor. It can also be used as a power conditioner for solar power generation systems, power storage systems, etc.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態の少なくとも2つを組み合わせてもよい。本開示の基本的な範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Unless there is a contradiction, at least two of the embodiments disclosed herein may be combined. The basic scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 1a 第2回路部、1ab,1ba,1bb 表面、1b 第1回路部、1c 第3回路部、1d 第4回路部、2a 第2冷却部、2aa 第3端部、2ab 第4端部、2b 第1冷却部、2ba 第1端部、2bb 第2端部、2c 第3冷却部、2ca 第5端部、2cb 第6端部、2d 第4冷却部、2e 第5冷却部、2ea フィン、3 第1端子、3a,3c 主端子、3e 第1延在部、3f 接続部、4a 第1絶縁部材、4b 第2絶縁部材、5 天板、6a,6b,6c,6d,16 絶縁シート、7a 第1半導体素子、7aa 第1主面、7ab 第2主面、7b 第2半導体素子、7ba 第3主面、7bb 第4主面、7c 第3半導体素子、7d 第4半導体素子、8 第2端子、8e 第2延在部、15a,15b,42 ダイボンド材、18,25 銅回路、19,44 銅箔、20 主回路、20a 第1主回路、20b 第2主回路、21,1203 制御回路、22 配線、23,43 樹脂、24a,24b,28,45 接合材、26 絶縁板、27 銅板、31a 第1側面冷却部、31aa 凹部、31b 第2側面冷却部、31c 第3側面冷却部、31d 第4側面冷却部、33a 第2冷却材流路、33aa 第3開口、33ab 第4開口、33b 第1冷却材流路、33ba 第1開口、33bb 第2開口、33c 第3冷却材流路、33ca 第5開口、33cb 第6開口、34 封止板、35 底面冷却部、36 導入部、37a,37b,37d 矢印、38 分岐器、40a,40b 接続導体、41 制御端子、46a,46b,46c 回路配線、100,200,300,500 半導体モジュール、400 冷却器モジュール、1100 電源、1200 電力変換装置、1201 主変換回路、1202 半導体装置、1300 負荷。 1a second circuit section, 1ab, 1ba, 1bb surface, 1b first circuit section, 1c third circuit section, 1d fourth circuit section, 2a second cooling section, 2aa third end, 2ab fourth end, 2b 1st cooling section, 2ba 1st end, 2bb 2nd end, 2c 3rd cooling section, 2ca 5th end, 2cb 6th end, 2d 4th cooling section, 2e 5th cooling section, 2ea fin, 3 first terminal, 3a, 3c main terminal, 3e first extension part, 3f connection part, 4a first insulating member, 4b second insulating member, 5 top plate, 6a, 6b, 6c, 6d, 16 insulating sheet, 7a first semiconductor element, 7aa first main surface, 7ab second main surface, 7b second semiconductor element, 7ba third main surface, 7bb fourth main surface, 7c third semiconductor element, 7d fourth semiconductor element, 8th 2 terminals, 8e Second extension part, 15a, 15b, 42 Die bond material, 18, 25 Copper circuit, 19, 44 Copper foil, 20 Main circuit, 20a First main circuit, 20b Second main circuit, 21, 1203 Control Circuit, 22 Wiring, 23, 43 Resin, 24a, 24b, 28, 45 Bonding material, 26 Insulating plate, 27 Copper plate, 31a First side cooling part, 31aa Recessed part, 31b Second side cooling part, 31c Third side cooling part , 31d fourth side cooling section, 33a second coolant flow path, 33aa third opening, 33ab fourth opening, 33b first coolant flow path, 33ba first opening, 33bb second opening, 33c third coolant flow path, 33ca fifth opening, 33cb sixth opening, 34 sealing plate, 35 bottom cooling section, 36 introduction section, 37a, 37b, 37d arrow, 38 branch, 40a, 40b connection conductor, 41 control terminal, 46a, 46b , 46c circuit wiring, 100, 200, 300, 500 semiconductor module, 400 cooler module, 1100 power supply, 1200 power conversion device, 1201 main conversion circuit, 1202 semiconductor device, 1300 load.

Claims (10)

  1.  第1回路部を備え、
     前記第1回路部は、第1半導体素子を含み、
     前記第1半導体素子は、第1主面と、前記第1主面と反対側に位置する第2主面とを含み、さらに、
     第1端子を備え、
     前記第1端子は、前記第1主面側から前記第1半導体素子と電気的に接続され、
     前記第1端子は、前記第1回路部の外側に位置する第1延在部を含み、さらに、
     第1冷却部を備え、
     前記第1冷却部は、前記第1回路部において前記第1半導体素子の前記第2主面が面する表面に接続され、
     前記第1端子の前記第1延在部は、前記第1冷却部と第1絶縁部材を介して接続されている、半導体モジュール。
    comprising a first circuit section;
    The first circuit section includes a first semiconductor element,
    The first semiconductor element includes a first main surface and a second main surface located opposite to the first main surface, and further includes:
    comprising a first terminal;
    The first terminal is electrically connected to the first semiconductor element from the first main surface side,
    The first terminal includes a first extending portion located outside the first circuit portion, and further includes:
    comprising a first cooling section;
    The first cooling unit is connected to a surface facing the second main surface of the first semiconductor element in the first circuit unit,
    In the semiconductor module, the first extending portion of the first terminal is connected to the first cooling portion via a first insulating member.
  2.  前記第1回路部は、前記第1半導体素子を内部に埋設した回路基板である、請求項1に記載の半導体モジュール。 The semiconductor module according to claim 1, wherein the first circuit section is a circuit board in which the first semiconductor element is embedded.
  3.  前記第1回路部は、前記第1半導体素子を封止する樹脂をさらに含む、請求項1に記載の半導体モジュール。 The semiconductor module according to claim 1, wherein the first circuit section further includes a resin that seals the first semiconductor element.
  4.  前記第1回路部から見て前記第1冷却部と反対側に配置された第2回路部をさらに備え、
     前記第2回路部は、第2半導体素子を含み、
     前記第2半導体素子は、前記第1回路部に面する第3主面と、前記第3主面と反対側に位置する第4主面とを含み、
     前記第1端子は、前記第3主面側から前記第2半導体素子と電気的に接続され、さらに、
     第2冷却部を備え、
     前記第2冷却部は、前記第2回路部において前記第2半導体素子の前記第4主面が面する表面に接続されている、請求項1から請求項3のいずれか1項に記載の半導体モジュール。
    further comprising a second circuit section disposed on the opposite side of the first cooling section when viewed from the first circuit section,
    The second circuit section includes a second semiconductor element,
    The second semiconductor element includes a third main surface facing the first circuit section and a fourth main surface located on the opposite side to the third main surface,
    The first terminal is electrically connected to the second semiconductor element from the third main surface side, and
    comprising a second cooling section;
    The semiconductor according to any one of claims 1 to 3, wherein the second cooling unit is connected to a surface facing the fourth main surface of the second semiconductor element in the second circuit unit. module.
  5.  前記第1回路部は、第3半導体素子を含み、
     前記第2回路部は、第4半導体素子を含む、請求項4に記載の半導体モジュール。
    The first circuit section includes a third semiconductor element,
    The semiconductor module according to claim 4, wherein the second circuit section includes a fourth semiconductor element.
  6.  前記第1冷却部は、第1端部と、前記第1端部と反対側に位置する第2端部とを含み、
     前記第1冷却部には、前記第1端部から前記第2端部にまで延びる第1冷却材流路が形成され、
     前記第1端部では、前記第1冷却材流路の一方端である第1開口が形成され、
     前記第2端部では、前記第1冷却材流路の他方端である第2開口が形成され、
     前記第2冷却部は、第3端部と、前記第3端部と反対側に位置する第4端部とを含み、
     前記第2冷却部には、前記第3端部から前記第4端部にまで延びる第2冷却材流路が形成され、
     前記第3端部は、前記第1冷却部の前記第1端部と同じ側に位置し、
     前記第3端部では、前記第2冷却材流路の一方端である第3開口が形成され、
     前記第4端部では、前記第2冷却材流路の他方端である第4開口が形成され、さらに、
     前記第1端部と前記第3端部との間に配置されるとともに、前記第1回路部と前記第2回路部とに接続された第1側面冷却部を備え、
     前記第1側面冷却部において前記第1回路部および前記第2回路部が位置する側と反対側の表面には凹部が形成されている、請求項4または請求項5に記載の半導体モジュール。
    The first cooling unit includes a first end and a second end located on the opposite side of the first end,
    A first coolant flow path extending from the first end to the second end is formed in the first cooling part,
    A first opening, which is one end of the first coolant flow path, is formed at the first end;
    A second opening, which is the other end of the first coolant flow path, is formed at the second end;
    The second cooling unit includes a third end and a fourth end located on the opposite side of the third end,
    A second coolant flow path extending from the third end to the fourth end is formed in the second cooling part,
    The third end is located on the same side as the first end of the first cooling unit,
    A third opening, which is one end of the second coolant flow path, is formed at the third end,
    A fourth opening, which is the other end of the second coolant flow path, is formed at the fourth end, and further,
    a first side cooling part disposed between the first end part and the third end part and connected to the first circuit part and the second circuit part;
    6. The semiconductor module according to claim 4, wherein a recess is formed on a surface of the first side cooling section opposite to the side where the first circuit section and the second circuit section are located.
  7.  前記第2端部と前記第4端部との間に配置されるとともに、前記第1回路部と前記第2回路部とに接続された第2側面冷却部を備える、請求項6に記載の半導体モジュール。 7 . The cooling device according to claim 6 , further comprising a second side cooling portion disposed between the second end portion and the fourth end portion and connected to the first circuit portion and the second circuit portion. semiconductor module.
  8.  前記第1冷却部、前記第2冷却部、前記第1側面冷却部、前記第2側面冷却部、前記第1回路部、および前記第2回路部が接続された底面冷却部を備える、請求項7に記載の半導体モジュール。 Claim comprising: a bottom cooling section to which the first cooling section, the second cooling section, the first side cooling section, the second side cooling section, the first circuit section, and the second circuit section are connected. 7. The semiconductor module according to 7.
  9.  第2端子をさらに備え、
     前記第2端子は、前記第1主面側から前記第1半導体素子と電気的に接続され、
     前記第2端子は、前記第1回路部から見て前記第1延在部が位置する方向と異なる方向に位置する第2延在部を含み、
     前記第2端子の前記第2延在部は、前記第1冷却部と第2絶縁部材を介して接続されている、請求項1から請求項5のいずれか1項に記載の半導体モジュール。
    further comprising a second terminal;
    The second terminal is electrically connected to the first semiconductor element from the first main surface side,
    The second terminal includes a second extension part located in a direction different from the direction in which the first extension part is located when viewed from the first circuit part,
    The semiconductor module according to any one of claims 1 to 5, wherein the second extending portion of the second terminal is connected to the first cooling portion via a second insulating member.
  10.  請求項1記載の半導体モジュールを有し、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と、
     を備えた電力変換装置。
    A main conversion circuit comprising the semiconductor module according to claim 1 and converting and outputting input power;
    a control circuit that outputs a control signal for controlling the main conversion circuit to the main conversion circuit;
    A power converter equipped with
PCT/JP2022/015589 2022-03-29 2022-03-29 Semiconductor module and power conversion device WO2023188016A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023519571A JP7330421B1 (en) 2022-03-29 2022-03-29 Semiconductor modules and power converters
PCT/JP2022/015589 WO2023188016A1 (en) 2022-03-29 2022-03-29 Semiconductor module and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015589 WO2023188016A1 (en) 2022-03-29 2022-03-29 Semiconductor module and power conversion device

Publications (1)

Publication Number Publication Date
WO2023188016A1 true WO2023188016A1 (en) 2023-10-05

Family

ID=87577126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015589 WO2023188016A1 (en) 2022-03-29 2022-03-29 Semiconductor module and power conversion device

Country Status (2)

Country Link
JP (1) JP7330421B1 (en)
WO (1) WO2023188016A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222563A (en) * 2010-04-02 2011-11-04 Toyota Central R&D Labs Inc Power module
WO2012043088A1 (en) * 2010-09-30 2012-04-05 日立オートモティブシステムズ株式会社 Electric power conversion device
JP2014130894A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Semiconductor module
WO2020245880A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Semiconductor module and power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222563A (en) * 2010-04-02 2011-11-04 Toyota Central R&D Labs Inc Power module
WO2012043088A1 (en) * 2010-09-30 2012-04-05 日立オートモティブシステムズ株式会社 Electric power conversion device
JP2014130894A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Semiconductor module
WO2020245880A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Semiconductor module and power conversion device

Also Published As

Publication number Publication date
JP7330421B1 (en) 2023-08-21
JPWO2023188016A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP4434181B2 (en) Power converter
JP5581131B2 (en) Power module and power conversion device using the same
US20070051974A1 (en) Semiconductor device and power conversion apparatus using the same
US9088226B2 (en) Power module for converting DC to AC
US11322432B2 (en) Semiconductor module and power conversion apparatus
CN102017140A (en) Semiconductor device
CN110506330B (en) Power electronic module and electric power converter comprising the same
US12074132B2 (en) Semiconductor device, power converter, and method of manufacturing semiconductor device
JP5193777B2 (en) Power semiconductor module and inverter system using it
CN108538793B (en) Semiconductor power module and power conversion device
CN111052325B (en) Semiconductor module and power conversion device
JP5948106B2 (en) Power semiconductor module and power converter using the same
US11908822B2 (en) Power semiconductor module and power conversion apparatus
Liang et al. HybridPACK2-advanced cooling concept and package technology for hybrid electric vehicles
WO2023188016A1 (en) Semiconductor module and power conversion device
JP7019024B2 (en) Semiconductor equipment and power conversion equipment
JP2007059536A (en) Semiconductor device
JP7493686B1 (en) Semiconductor device and power conversion device
WO2023175675A1 (en) Power module semiconductor package and semiconductor device
JP7562012B2 (en) Semiconductor device, power conversion device, and method for manufacturing the semiconductor device
WO2022107439A1 (en) Power semiconductor module
US20240206134A1 (en) Power electronic arrangement for an electric machine and motor vehicle
US20230207534A1 (en) Semiconductor device and power conversion apparatus
WO2023109604A2 (en) Power semiconductor module
US20240072030A1 (en) Semiconductor power module having more efficient heat dissipation and improved switching behavior

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023519571

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935164

Country of ref document: EP

Kind code of ref document: A1