JPH11339935A - Ceramic heater and evaluating method for re powder used for it - Google Patents

Ceramic heater and evaluating method for re powder used for it

Info

Publication number
JPH11339935A
JPH11339935A JP15044398A JP15044398A JPH11339935A JP H11339935 A JPH11339935 A JP H11339935A JP 15044398 A JP15044398 A JP 15044398A JP 15044398 A JP15044398 A JP 15044398A JP H11339935 A JPH11339935 A JP H11339935A
Authority
JP
Japan
Prior art keywords
powder
heating resistor
ceramic heater
ceramic
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15044398A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
智 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15044398A priority Critical patent/JPH11339935A/en
Publication of JPH11339935A publication Critical patent/JPH11339935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent discoloration and defective insulation by forming a heating resistor with Re powder having a large crystal piece, and setting the diffusion distance of Re into a ceramic body within a specific range. SOLUTION: The diffusion length of Re is set to 0.2 mm or below, the Re powder having the grain size of 0.5-3 μm, preferably 0.8-2.0 μm, and a half-power bandwidth of a main peak by an X-ray analysis at 2θ=0.6 deg. or below is used for a heating resistor, then the crystal piece of the Re powder is increased, the crystallinity of the Re crystal is improved, the humidity resistance of the Re powder is improved, and the powder having a good sintering property is obtained. When the weight increase of the Re powder when it is left at the temperature of 40 deg. and the humidity of 90% for 24 hrs is set to 1% or below, the diffusion of Re can be prevented, and discoloration and the deterioration of an insulation property can be prevented. For the evaluation of acid resistance, the Re powder is left in the constant-temperature and constant-humidity atmosphere for a fixed period, and the weight increase during the period is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車排気ガス
の酸素濃度検知に用いられるセンサ加熱用のセラミック
ヒータやハンダゴテ、石油気化器等に使用されるセラミ
ックヒータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater for heating a sensor used for detecting the oxygen concentration of exhaust gas from an automobile and a ceramic heater used for a soldering iron, a petroleum vaporizer and the like.

【0002】[0002]

【従来の技術】従来、自動車排気ガスの酸素濃度検知に
用いられるセンサ加熱用のセラミックヒータとしては、
アルミナセラミック中にW粉末からなる発熱抵抗体を内
蔵したものが一般的である。
2. Description of the Related Art Conventionally, as a ceramic heater for heating a sensor used for detecting the oxygen concentration of automobile exhaust gas,
It is general that a heating resistor made of W powder is built in alumina ceramic.

【0003】その一方で、耐久性向上のために発熱抵抗
体組成を、たとえばW−Re合金としたもの(特開昭6
0−19069、特開平5−315055、特開平8−
273813号・)あるいはW−Mo合金としたものが
用いられている。発熱抵抗体組成を合金化すると、発熱
体の抵抗温度係数が小さくなり、昇温時の突入電流を小
さくできるので、電源の発電容量および配線部分の電流
容量を小さくでき、コストを低減できる。発熱体に使用
できる高融点金属としてはいろいろな組合せが可能であ
るが、WとReの組合せが高温耐久性の面からみて一番
有利である。
On the other hand, in order to improve the durability, the composition of the heat generating resistor is, for example, a W-Re alloy (Japanese Patent Laid-Open No.
0-19069, JP-A-5-315055, JP-A-8-108
No. 273813.) or a W-Mo alloy is used. When the composition of the heat generating resistor is alloyed, the temperature coefficient of resistance of the heat generating element is reduced, and the inrush current at the time of temperature rise can be reduced. Therefore, the power generation capacity of the power supply and the current capacity of the wiring portion can be reduced, and the cost can be reduced. Although various combinations are possible as the high melting point metal that can be used for the heating element, the combination of W and Re is most advantageous from the viewpoint of high-temperature durability.

【0004】しかし、最初から合金粉末を使用するに
は、粉末のコストが高くなり過ぎる為、一般的には、例
えば、W粉末とRe粉末を混合し、焼成時に合金化する
様な手法を採っていた。
However, since the cost of the powder is too high to use the alloy powder from the beginning, generally, for example, a method of mixing W powder and Re powder and alloying them at the time of firing is adopted. I was

【0005】[0005]

【発明が解決しようとする課題】上記セラミックヒータ
の製造工程において、W粉末とRe粉末を混合して焼成
時に合金化させる場合、Wとの反応性を向上させる為に
Re粉末を微粉化すると、Re粉末の吸湿性が増加して
酸化し、焼成時にセラミック中にReが拡散して黒く変
色してしまうという欠点があった。
In the above-described ceramic heater manufacturing process, when the W powder and the Re powder are mixed and alloyed at the time of firing, when the Re powder is pulverized to improve the reactivity with W, There is a drawback that the hygroscopicity of the Re powder increases and the powder is oxidized, and at the time of firing, Re diffuses into the ceramic and discolors black.

【0006】また、Reの拡散がひどくなると、電極パ
ターン間の絶縁性が劣化してヒーターの耐久性が劣化す
るという問題点があった。この点の管理が特に梅雨時等
の多湿の季節は非常に難しく、Re粉末使用上の課題と
なっていた。
Further, when the diffusion of Re becomes severe, there is a problem that the insulation between the electrode patterns deteriorates and the durability of the heater deteriorates. It is very difficult to manage this point, especially in a humid season such as during the rainy season, and this has been a problem in using Re powder.

【0007】[0007]

【課題を解決するための手段】上記の問題点解決のた
め、鋭意検討した結果、セラミックヒータの電気絶縁性
を低下させないためには、セラミックス体中へのReの
拡散距離を発熱抵抗体形成部から0.2mm以下に低減
する必要があることが判った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, in order to prevent the electric insulation of the ceramic heater from being lowered, the diffusion distance of Re into the ceramic body is determined by the heating resistor forming portion. It was found that it was necessary to reduce it to 0.2 mm or less.

【0008】また、Reの拡散距離を0.2mm以下に
する方法を本発明者等が検討したところ、以下の調整に
より可能となる事が判った。
Further, the inventors of the present invention have studied a method for reducing the diffusion distance of Re to 0.2 mm or less. As a result, it has been found that the method can be realized by the following adjustment.

【0009】まず、発熱抵抗体に用いるRe粉末とし
て、粒径が0.5〜3μmで、X線回折によるメインピ
ークの半価幅が2θ=0.6°以下となるものを用いれ
ば良いことを見出した。
First, as the Re powder used for the heating resistor, a powder having a particle size of 0.5 to 3 μm and a half width of the main peak by X-ray diffraction of 2θ = 0.6 ° or less should be used. Was found.

【0010】または、Re粉末として、40℃×90%
湿度下で24時間放置した際の重量増加が1%以下であ
るものを用いれば良いことを見出した。
Alternatively, as Re powder, 40 ° C. × 90%
It has been found that it is only necessary to use a material having a weight increase of 1% or less when left for 24 hours under humidity.

【0011】これらの操作により、焼成時のReの拡散
距離を0.2mm以下に低減でき、W−Re系の発熱抵
抗体を用いても、変色がなく絶縁性、耐久性の良好なセ
ラミックヒータを安定して得ることができる。
By these operations, the diffusion distance of Re during firing can be reduced to 0.2 mm or less, and even if a W-Re-based heating resistor is used, it does not discolor and has good insulation and durability. Can be obtained stably.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図によ
って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0013】図1(a) に、一般的なセラミックヒータの
構成を示した展開図を示した。このセラミックヒータ
は、まず、第1のセラミックグリーンシート12にスル
ーホール121を形成し、これにプリント法でWインク
を充填し、さらに、W−Reの混合物からなる発熱抵抗
体14のパターンを一面に形成し、また、その裏側のテ
ープ表面に端子部123をプリント法により形成する。
発熱抵抗体14を形成した面に、第2のグリーンシート
13を密着し、前記密着したグリーンシート13をさら
にセラミックロッド11に密着した後、1500〜16
00℃還元雰囲気で焼成する。
FIG. 1A is a developed view showing the structure of a general ceramic heater. In this ceramic heater, first, a through hole 121 is formed in a first ceramic green sheet 12, filled with W ink by a printing method, and a pattern of a heating resistor 14 made of a mixture of W-Re is formed on one surface. The terminal 123 is formed on the tape surface on the back side by a printing method.
The second green sheet 13 is adhered to the surface on which the heating resistor 14 is formed, and the adhered green sheet 13 is further adhered to the ceramic rod 11.
Baking in a reducing atmosphere at 00 ° C.

【0014】その後、図1(b) に示したように、端子部
123上に、不図示のNiメッキを施し、さらに不図示
のロウ材によりリード線引出用端子線15をロウ付けし
てセラミックヒータを作製する。このようにして、セラ
ミックス体16中に発熱抵抗体14を内蔵したセラミッ
クヒータを得ることができる。
Thereafter, as shown in FIG. 1 (b), the terminal portion 123 is plated with Ni (not shown), and furthermore, a lead wire lead-out terminal wire 15 is brazed with a brazing material (not shown) to form a ceramic. Make a heater. Thus, a ceramic heater in which the heating resistor 14 is built in the ceramic body 16 can be obtained.

【0015】上記発熱抵抗体14はReを10〜50重
量%とWを90〜50重量%との混合物からなり、焼成
後のセラミックス体14中へのReの拡散距離が0.2
mm以下となっている。なお、Reの拡散距離とは、セ
ラミックヒータを平面研磨して発熱抵抗体14を露出さ
せ、発熱抵抗体14付近の100倍のSEM写真を撮影
し、EPMAによるReの濃度分布を線分析もしくは面
分析により測定し、発熱抵抗体14部分のRe濃度に対
し、セラミックス体16中でRe濃度が1/20に減少
する点と発熱抵抗体14の端部間の距離のことである。
The heating resistor 14 is composed of a mixture of 10 to 50% by weight of Re and 90 to 50% by weight of W. The diffusion distance of Re into the ceramic body 14 after firing is 0.2%.
mm or less. In addition, the diffusion distance of Re means that the heating resistor 14 is exposed by planar polishing of a ceramic heater, a 100 times SEM photograph of the vicinity of the heating resistor 14 is taken, and the concentration distribution of Re by EPMA is analyzed by line analysis or surface analysis. The distance between the end of the heating resistor 14 and the point at which the Re concentration in the ceramic body 16 is reduced to 1/20 with respect to the Re concentration of the heating resistor 14 as measured by analysis.

【0016】このように、Reの拡散を少なくしてある
ことにより、セラミックス体16の変色や絶縁性の低下
を防止し、耐久性に優れたセラミックヒータとすること
ができる。
As described above, by reducing the diffusion of Re, it is possible to prevent the ceramic body 16 from discoloring and lowering the insulating property, and to obtain a ceramic heater having excellent durability.

【0017】また、上記Reの拡散を少なくするために
は、粒径が0.5〜3μmであり、X−線回折によるメ
インピークの半価幅が2θ=0.6°以下であるRe粉
末を用いて発熱抵抗体14を構成すれば良い。
In order to reduce the diffusion of Re, a Re powder having a particle size of 0.5 to 3 μm and a half width of a main peak by X-ray diffraction of 2θ = 0.6 ° or less is used. May be used to form the heating resistor 14.

【0018】ここで、Re粉末のX線回折によるメイン
ピークの半価幅を0.6°以下にしたのは、Re粉末の
結晶子が大きくなりRe結晶の結晶性が向上することに
より、Re粉末の耐湿性が向上するためである。通常、
吸湿性や潮解性が強いといわれている食塩や岩塩等の塩
化物系の粉末も、このように粉末の結晶性を向上させる
事により、吸湿性や潮解性を向上させる事が可能とされ
ている。本発明は、この考え方をRe粉末に応用したも
のである。
Here, the reason why the half width of the main peak of the Re powder by X-ray diffraction is set to 0.6 ° or less is that the crystallite of the Re powder is increased and the crystallinity of the Re crystal is improved. This is because the moisture resistance of the powder is improved. Normal,
Chloride powders such as salt and rock salt, which are said to have strong hygroscopicity and deliquescent, can improve hygroscopicity and deliquescence by improving the crystallinity of the powder in this way. I have. The present invention applies this concept to Re powder.

【0019】Re粉末の大きさは、通常0.1〜5μm
程度であるが、これに較べて結晶子は0.005〜0.
05μm程度と非常に小さいものである。それぞれの粉
末は、数十個から数千個位の結晶子が集まってできてい
る。結晶子は非常に小さいので、この大きさを直接測定
するのは非常に難しいが、X線回折により回折角(2
θ)を測定する事により間接的に結晶子の大きさを測定
する方法が確立されている。即ち、X線回折によりX線
の回折角(2θ)に対するその結晶のピーク波形を測定
し、そのピーク波形のピーク高さの1/2高さのところ
の2θの幅を半価幅と規定する。半価幅は、粉末を構成
する結晶子の大きさと相関があり、結晶子が小さくなれ
ばなるほど半価幅が大きくなる。
The size of the Re powder is usually 0.1 to 5 μm.
However, the crystallites are in the range of 0.005 to 0.5.
It is as small as about 05 μm. Each powder is made up of tens to thousands of crystallites. Since the crystallite is very small, it is very difficult to measure this size directly, but the diffraction angle (2
A method of indirectly measuring the crystallite size by measuring θ) has been established. That is, the peak waveform of the crystal with respect to the diffraction angle (2θ) of the X-ray is measured by X-ray diffraction, and the width of 2θ at half the peak height of the peak waveform is defined as the half width. . The half width has a correlation with the size of crystallites constituting the powder, and the smaller the crystallite, the larger the half width.

【0020】従来、Re粉末は、Wとの反応性を向上さ
せるために微粒の粉末を使用していた。この為、従来の
Re粉末のX線回折によるメインピークの半価幅は、1
度以上と大きな値になっていた。本発明者は、従来のR
e粉末の耐湿性が悪かったのは、Re粉末の結晶性が低
かった為であると推定した。そこで、Re粉末の耐湿性
改良のため、Re粉末の結晶子を大きくする、即ちX線
回折ピークの半価幅を小さくする事を狙った。
Conventionally, as the Re powder, a fine powder has been used in order to improve the reactivity with W. Therefore, the half width of the main peak of the conventional Re powder by X-ray diffraction is 1
It was a large value over degrees. The present inventor has proposed that the conventional R
It was presumed that the poor moisture resistance of the e powder was due to the low crystallinity of the Re powder. Therefore, in order to improve the moisture resistance of the Re powder, the crystal size of the Re powder was increased, that is, the half width of the X-ray diffraction peak was reduced.

【0021】Re粉末の半価幅を低減する手法として
は、Re粉末製造時の熱処理温度を上昇させるか、もし
くは最高温度保持時間を延長する事が有効である。
As a method of reducing the half width of the Re powder, it is effective to increase the heat treatment temperature during the production of the Re powder or to extend the maximum temperature holding time.

【0022】しかし、このような処理をすると、Re粉
末の粒径が大きくなり、W粉末との反応性が劣化し、発
熱体の抵抗温度係数を目標のレベルに調整できないばか
りか発熱体の焼結性が低下し、耐久性が悪くなる問題が
生じる。この点について、本発明者等が検討した結果、
粉末の平均粒径を0.5〜3.0μm、好ましくは、
0.8〜2.0μmにすると、焼結性の良好な粉末が得
られる事が判った。
However, when such a treatment is performed, the particle size of the Re powder increases, the reactivity with the W powder deteriorates, and the resistance temperature coefficient of the heating element cannot be adjusted to a target level, and the firing of the heating element does not occur. There is a problem in that the bondability decreases and the durability deteriorates. In this regard, the present inventors have studied,
The average particle size of the powder is 0.5 to 3.0 μm, preferably
It was found that a powder having a good sinterability was obtained when the thickness was 0.8 to 2.0 μm.

【0023】このように、Re原料のX線回折によるメ
インピークの半価幅の調整について、半価幅が0.6°
を超えるとRe原料の吸湿性が大きくなり、焼成時のセ
ラミックス体16中へのReの拡散距離が0.2mm以
上になってしまうので好ましくない。また、Re原料の
熱処理温度を上昇させると半価幅は減少するが、熱処理
温度を上昇させ過ぎると粒径が大きくなり過ぎ、平均粒
径が3μmを越えるとW粉末との反応性が低下し、目標
としている発熱体の抵抗温度係数の低減効果が得られな
い。さらに、Re粉末の半価幅が0.6°を超えると、
粉末の粒径が小さくなりWとの反応性が向上し抵抗温度
係数は小さくなるが、Reの吸湿性が大きく焼成時にセ
ラミックス体16が変色してしまう。
As described above, regarding the adjustment of the half width of the main peak of the Re raw material by X-ray diffraction, the half width was 0.6 °.
Exceeding the range is not preferable because the hygroscopicity of the Re raw material increases and the diffusion distance of Re into the ceramic body 16 during firing becomes 0.2 mm or more. Further, when the heat treatment temperature of the Re raw material is increased, the half width is reduced. However, when the heat treatment temperature is excessively increased, the particle size becomes too large, and when the average particle size exceeds 3 μm, the reactivity with the W powder is reduced. However, the effect of reducing the target temperature coefficient of resistance of the heating element cannot be obtained. Further, when the half width of the Re powder exceeds 0.6 °,
Although the particle size of the powder becomes smaller, the reactivity with W is improved and the temperature coefficient of resistance is reduced, the hygroscopicity of Re is large, and the ceramic body 16 discolors during firing.

【0024】また、上記Reの拡散を少なくするために
は、温度40℃×湿度90%の雰囲気で24時間処理し
た場合の重量増加率が1%以下であるRe粉末を用いれ
ば良いことが判った。
It has been found that in order to reduce the diffusion of Re, it is sufficient to use a Re powder having a weight increase rate of 1% or less when treated in an atmosphere at a temperature of 40 ° C. and a humidity of 90% for 24 hours. Was.

【0025】なお、上記重量増加率による評価方法は、
以下の通りである。
The evaluation method based on the weight increase rate is as follows.
It is as follows.

【0026】まず、ガラスのプレパラート上にRe粉末
を乗せ、無水イソプロピルアルコール(IPA)を粉末
上に滴下し、80℃の乾燥機中で乾燥させ、粉末をプレ
パラート上に固定した状態で、プレパラートの風袋状量
を差し引いて、粉末重量を計量する。
First, Re powder was placed on a glass preparation, anhydrous isopropyl alcohol (IPA) was dropped on the powder, dried in a dryer at 80 ° C., and the powder was fixed on the preparation. Subtract the tare weight and weigh the powder.

【0027】次に、Re粉末を乗せたプレパラートを4
0℃×90%湿度の恒温恒湿槽に24時間放置し、放置
前後の粉末重量の変化率を測定すれば良い。
Next, the prepared slide on which the Re powder was
The powder may be left in a thermo-hygrostat at 0 ° C. × 90% humidity for 24 hours, and the change rate of the powder weight before and after the standing may be measured.

【0028】この重量増加が1%を超えるRe粉末を用
いると、焼成時に発熱抵抗体14付近のセラミックス体
16が黒色に変色し、絶縁性の低下をもたらしてしま
う。これに対し、上記重量変化率が1%以下であるよう
なRe粉末を用いると、Reの拡散を防止することがで
き、上記拡散距離を0.2mm以下として、変色や絶縁
性の低下を防止することができる。
If the Re powder whose weight increase exceeds 1% is used, the ceramic body 16 near the heating resistor 14 turns black during firing, resulting in a decrease in insulation. On the other hand, when the Re powder having the weight change rate of 1% or less is used, the diffusion of Re can be prevented, and the diffusion distance is set to 0.2 mm or less to prevent discoloration and decrease in insulation. can do.

【0029】また、上記のような恒温恒湿槽中に放置し
た前後での重量増加を測定する手法は、Re原料の耐酸
化性の評価方法としても有用である。
The method of measuring the weight increase before and after standing in a thermo-hygrostat as described above is also useful as a method for evaluating the oxidation resistance of the Re raw material.

【0030】なお、ここでは恒温恒湿槽の条件を40℃
×90%湿度に固定したが、これに関しては任意の条件
を設定することが可能である。また、Re粉末重量を測
定する為に、粉末固定用の溶剤として無水IPAを使用
したが、水分を含まないものであれば他の溶剤を用いて
もかまわない。さらに、粉末の乾燥重量測定のための乾
燥機の温度について、今回、80℃としたが、常に条件
を一定にすれば、他の温度にする事も可能である。粉末
を乗せる担体として、今回ガラスのプレパラートを用い
たが、それ自体が吸湿性がなく取り扱いに耐える強度が
あれば、例えば、アルミナの基板のようなものを用いて
もかまわない。
Here, the condition of the thermo-hygrostat is 40 ° C.
Although the humidity was fixed at 90% humidity, any condition can be set for this. In order to measure the Re powder weight, anhydrous IPA was used as a solvent for fixing the powder, but other solvents may be used as long as they do not contain water. Furthermore, the temperature of the dryer for measuring the dry weight of the powder was 80 ° C. in this case, but other temperatures can be used if the conditions are always kept constant. As the carrier on which the powder is placed, a glass preparation was used this time. However, as long as the substrate itself has no hygroscopicity and has strength enough to withstand handling, a substrate such as an alumina substrate may be used.

【0031】[0031]

【実施例】以下本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0032】Re化合物粉末(例えば蓚酸レニウム)を
平均粒径1μm以下に乾式粉砕し、さらに、還元雰囲気
中300℃で2時間熱処理して、粉末のX線回折による
メインピークの半価幅を0.5°程度にする。この粉末
をさらに平均粒径1μmまでボールミルで粉砕する。こ
うして得られたRe粉末を25重量%、平均粒径1μm
のW粉末75重量%と3重量%のセルロース系バインダ
ーと適宜の溶剤を加え24時間ミル混合し、さらに3本
ロールで混練して発熱抵抗体14を成すペーストを調製
する。
The Re compound powder (for example, rhenium oxalate) is dry-pulverized to an average particle diameter of 1 μm or less, and further heat-treated at 300 ° C. for 2 hours in a reducing atmosphere to reduce the half width of the main peak of the powder by X-ray diffraction to 0%. About 5 °. This powder is further pulverized with a ball mill to an average particle size of 1 μm. 25% by weight of the Re powder thus obtained, average particle size 1 μm
Then, 75% by weight of W powder and 3% by weight of a cellulosic binder and an appropriate solvent are added, and the mixture is mill-mixed for 24 hours, and further kneaded with three rolls to prepare a paste forming the heat generating resistor 14.

【0033】このペーストを純度92%のアルミナのグ
リーンシート上にプリントして、発熱部、リード部を形
成する。さらに、リード取り出し部・スルーホール加工
・スルーホール埋込処理をした後、アルミナロッド上に
上記グリーンシートを密着する。その後1600℃で還
元雰囲気焼成してセラミックヒータを得る。
This paste is printed on a green sheet of alumina having a purity of 92% to form a heating portion and a lead portion. Further, after the lead take-out part, through-hole processing, and through-hole embedding processing, the green sheet is adhered to the alumina rod. Thereafter, firing is performed at 1600 ° C. in a reducing atmosphere to obtain a ceramic heater.

【0034】必要に応じて、外部電極上にNiメッキを
施し、NiリードをAu−CuロウやAg−Cuロウに
よりロウ付けし、ヒータに通電する際は、このNi線を
介して通電する。
If necessary, Ni plating is applied to the external electrodes, and the Ni leads are brazed with Au-Cu brazing or Ag-Cu brazing. When power is supplied to the heater, power is supplied through this Ni wire.

【0035】上記のRe粉末は、40℃×90%湿度下
で24時間放置する加湿試験において、Re粉末の重量
増加が1%以内であり、また得られたセラミックヒータ
のセラミックス体16の変色がほとんど発生しなかっ
た。また、Reのセラミックス体16への拡散距離は発
熱抵抗体14の端部から0.2mm以内であった。
In a humidification test in which the above-mentioned Re powder was left at 40 ° C. × 90% humidity for 24 hours, the weight increase of the Re powder was within 1%, and the discoloration of the ceramic body 16 of the obtained ceramic heater was reduced. Almost never occurred. The diffusion distance of Re into the ceramic body 16 was within 0.2 mm from the end of the heating resistor 14.

【0036】なお、拡散距離の測定は、ヒータを平面研
磨して発熱抵抗体14を露出させ、EPMAによりRe
の拡散領域を確認した。すなわち、発熱抵抗体14付近
の100倍のSEM写真を撮影し、EPMAによるRe
の濃度分布を線分析もしくは面分析により測定し、発熱
抵抗体14のRe濃度に対し、Re濃度が1/20に減
少するセラミックス体16中の点と発熱抵抗体14の端
部間の距離をReの拡散距離とした。
The diffusion distance is measured by exposing the heating resistor 14 by polishing the heater to a flat surface,
Was confirmed. That is, a 100-fold SEM photograph of the vicinity of the heating resistor 14 was taken, and the Re
Is measured by line analysis or surface analysis, and the distance between the point in the ceramic body 16 where the Re concentration decreases to 1/20 and the end of the heating resistor 14 with respect to the Re concentration of the heating resistor 14 is determined. The diffusion distance of Re was used.

【0037】例えば、図3に示すように、従来のセラミ
ックヒータでは、発熱抵抗体14の幅(点線部分)に対
し、外側までReが拡散しており、その拡散距離rが
0.2mmを超えているのに対し、図2に示すように、
本発明のセラミックヒータでは、Reの拡散距離を0.
2mm以下とできることがわかる。
For example, as shown in FIG. 3, in the conventional ceramic heater, Re diffuses to the outside with respect to the width (dotted line) of the heating resistor 14, and the diffusion distance r exceeds 0.2 mm. In contrast, as shown in FIG.
In the ceramic heater of the present invention, the diffusion distance of Re is set to 0.1.
It turns out that it can be set to 2 mm or less.

【0038】ここで、恒温恒室槽に放置する加湿試験に
よる重量増加が激しいRe粉末を用いた場合は、Reの
拡散によるセラミックス体16の変色域(拡散距離)が
0.5〜1.0mmに及ぶものもある。このReの拡散
による変色は、外観上商品価値が劣るのみならず、セラ
ミックヒータの耐久性が劣化するため好ましくない。
Here, in the case where Re powder having a large weight increase by a humidification test left in a constant temperature and constant temperature chamber is used, the discoloration range (diffusion distance) of the ceramic body 16 due to the diffusion of Re is 0.5 to 1.0 mm. There are also things that extend. This discoloration due to the diffusion of Re is not preferable because not only is the commercial value inferior in appearance but also the durability of the ceramic heater is deteriorated.

【0039】また、Re粉末のX線回折による半価幅の
測定方法については、今回リント社製の装置を使用した
が、これに限定されるものではない。今回条件として
は、加速電圧200kV×電流5mA、スキャン速度2
°/分で測定した。半価幅の測定については、チャート
上のメインピーク高さの半分の位置の幅を2θの幅で評
価し、一般的に使用されている手法に従った。昨今は、
半価幅をX回折チャートデータのコンピュータ処理によ
り半価幅を自動測定する手法が提供されているが、この
手法を用いてもかまわない。
The method of measuring the half-value width of the Re powder by X-ray diffraction is as follows, although the apparatus manufactured by Lint was used this time, but is not limited thereto. The conditions were as follows: acceleration voltage 200 kV × current 5 mA, scan speed 2
Measured in ° / min. Regarding the measurement of the half-value width, the width at a position half the height of the main peak on the chart was evaluated by a width of 2θ, and a method generally used was used. These days,
A method has been provided for automatically measuring the half width by computer processing of the X-ray diffraction chart data, but this method may be used.

【0040】次に、表1に示すようにRe粉末の粒径,
半価幅の異なるものを用いて、セラミックヒータを作製
し、耐熱性評価と抵抗温度係数の測定を行った。耐久性
評価は、発熱部の最高温度部が1200℃になるように
印可電圧を調整して耐久時間を測定した。耐久時間は、
抵抗値が初期抵抗に対し10%大きくなるか、もしくは
断線した時間で評価し、10個の平均時間を測定した。
Next, as shown in Table 1, the particle size of the Re powder,
Ceramic heaters were manufactured using different half-value widths, and the heat resistance was evaluated and the temperature coefficient of resistance was measured. In the durability evaluation, the applied voltage was adjusted so that the highest temperature portion of the heat generating portion was 1200 ° C., and the durability time was measured. The endurance time is
The resistance value was evaluated by the time at which the resistance value was increased by 10% with respect to the initial resistance, or the time at which the wire was disconnected, and the average time of ten pieces was measured.

【0041】発熱抵抗体の抵抗温度係数に関しては、室
温(20℃)の抵抗値R20と、発熱体を1000℃に加
熱した際の抵抗値R1000を測定し、数1に代入して抵抗
温度係数を算出した。
[0041] With respect to the resistance temperature coefficient of the heating resistor, and the measured resistance value R 20 of the room temperature (20 ° C.), the resistance value R 1000 upon heating the heating element 1000 ° C., resistance by substituting the number 1 The temperature coefficient was calculated.

【0042】[0042]

【数1】 (Equation 1)

【0043】結果を表1、2に示したように、Re粉末
の半価幅を0.6°以下とし、且つ平均粒径を0.5〜
3.0μmとしたもの(Re−3〜9)は、恒温恒湿槽
に放置する加湿試験後の重量増加が1%以下であり、R
eの拡散距離(焼成後の変色域幅)を0.2mm以上に
低減し、耐久性を向上させることができた。
As shown in Tables 1 and 2, the half width of the Re powder was set to 0.6 ° or less, and the average particle size was 0.5 to 0.5.
In the case of 3.0 μm (Re-3 to 9), the weight increase after the humidification test left in a thermo-hygrostat was 1% or less, and R
The diffusion distance of e (discoloration area width after firing) was reduced to 0.2 mm or more, and the durability was improved.

【0044】なお、Reの含有量を10〜50重量%の
範囲内で変化させて実験を行ったところ、上記と同様の
結果であった。
When an experiment was conducted by changing the content of Re within the range of 10 to 50% by weight, the same result as described above was obtained.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】以上のように本発明によれば、W−Re
系の発熱抵抗体を用いたセラミックヒータにおいて、セ
ラミックス体の変色や絶縁不良を防止し、耐久性の良好
なセラミックヒータを安定して得る事が可能となった。
As described above, according to the present invention, W-Re
In a ceramic heater using a series heating resistor, discoloration and insulation failure of the ceramic body can be prevented, and a ceramic heater having good durability can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックヒータの構成を示した図で
あり、(a)は分解斜視図、(b)は組み合わせた後の
斜視図である。
FIG. 1 is a view showing a configuration of a ceramic heater according to the present invention, in which (a) is an exploded perspective view and (b) is a perspective view after being combined.

【図2】本発明のセラミックヒータのRe拡散を示した
EPMA線分析データである。
FIG. 2 is EPMA line analysis data showing Re diffusion of the ceramic heater of the present invention.

【図3】従来のセラミックヒータのRe拡散を示したE
PMA線分析データである。
FIG. 3 shows E showing the Re diffusion of a conventional ceramic heater.
It is PMA line analysis data.

【符号の説明】[Explanation of symbols]

11:セラミックロッド 12:第1のセラミックグリーンシート 121:スルーホール 122:端子接続部 123:端子部 13:第2のセラミックグリーンシート 14:発熱抵抗体 16:セラミックス体 11: Ceramic rod 12: First ceramic green sheet 121: Through hole 122: Terminal connection part 123: Terminal part 13: Second ceramic green sheet 14: Heating resistor 16: Ceramic body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セラミックス体中にReとWの混合物から
なる発熱抵抗体を内蔵してなるセラミックヒータにおい
て、結晶子の大きなRe粉末を用いて発熱抵抗体を形成
することによって、発熱抵抗体に含有されるReのセラ
ミックス体中への拡散距離を0.2mm以下としたこと
を特徴とするセラミックヒータ。
1. A ceramic heater in which a heating resistor made of a mixture of Re and W is incorporated in a ceramic body, wherein the heating resistor is formed using Re powder having a large crystallite. A ceramic heater, characterized in that the diffusion distance of contained Re into the ceramic body is 0.2 mm or less.
【請求項2】上記Re粉末の粒径が0.5〜3μmであ
り、X線回折によるメインピークの半価幅が2θ=0.
6°以下であることを特徴とする請求項1に記載のセラ
ミックヒータ。
2. The particle size of the Re powder is 0.5 to 3 μm, and the half width of the main peak by X-ray diffraction is 2θ = 0.
The ceramic heater according to claim 1, wherein the angle is 6 ° or less.
【請求項3】上記Re粉末が、40℃×90%湿度下で
24時間放置した際の重量増加が1%以下であることを
特徴とする請求項1記載のセラミックヒータ。
3. The ceramic heater according to claim 1, wherein the weight increase of said Re powder when left at 40 ° C. × 90% humidity for 24 hours is 1% or less.
【請求項4】Re粉末を恒温恒湿雰囲気中に一定時間放
置し、放置前後の重量増加量を測定してRe粉末の耐酸
化性を評価することを特徴とするRe粉末の評価方法。
4. A method for evaluating Re powder, which comprises leaving Re powder in a constant-temperature and constant-humidity atmosphere for a certain period of time, measuring the weight increase before and after standing, and evaluating the oxidation resistance of Re powder.
JP15044398A 1998-05-29 1998-05-29 Ceramic heater and evaluating method for re powder used for it Pending JPH11339935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15044398A JPH11339935A (en) 1998-05-29 1998-05-29 Ceramic heater and evaluating method for re powder used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15044398A JPH11339935A (en) 1998-05-29 1998-05-29 Ceramic heater and evaluating method for re powder used for it

Publications (1)

Publication Number Publication Date
JPH11339935A true JPH11339935A (en) 1999-12-10

Family

ID=15497055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15044398A Pending JPH11339935A (en) 1998-05-29 1998-05-29 Ceramic heater and evaluating method for re powder used for it

Country Status (1)

Country Link
JP (1) JPH11339935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190016275A (en) * 2017-08-08 2019-02-18 에스케이씨 주식회사 Plane-type heater for manufacturing semiconductor, and preparation method thereof
KR20190019370A (en) * 2017-08-17 2019-02-27 에스케이씨 주식회사 Plane-type heater for manufacturing semiconductor and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190016275A (en) * 2017-08-08 2019-02-18 에스케이씨 주식회사 Plane-type heater for manufacturing semiconductor, and preparation method thereof
KR20190019370A (en) * 2017-08-17 2019-02-27 에스케이씨 주식회사 Plane-type heater for manufacturing semiconductor and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH07302510A (en) Conductive paste composition
EP0844466A1 (en) Temperature sensor element and temperature sensor including the same
KR100516759B1 (en) Aluminum nitride sintered body and metallized substrate manufactured therefrom
KR0130831B1 (en) Thick film resistor composition
JP2970713B2 (en) Thick film resistor composition
JPH11339935A (en) Ceramic heater and evaluating method for re powder used for it
RU2086027C1 (en) Method for manufacturing of thick-film resistors
JP3253121B2 (en) Thick film resistor composition
JP2777206B2 (en) Manufacturing method of thick film resistor
US6190790B1 (en) Resistor material, resistive paste and resistor using the resistor material, and multi-layered ceramic substrate
JP4475330B2 (en) Iridium oxide powder, method for producing the same, and thick film resistor paste using the same
JPS60137847A (en) Composition for forming thick film
KR100213420B1 (en) Resistance material and resistance paste and resistor comprising material
JP5098203B2 (en) Iridium oxide powder, method for producing the same, and thick film resistor forming paste using the same
KR100284785B1 (en) Memory data processing system and method and communication system having system
JPH0799101A (en) Thick film thermistor and its composition
JPH0572162A (en) Gas sensor
JP2000048939A (en) Current-carrying device and its manufacture
JPH07111205A (en) Composition for thick film resistor and thick film resistor
JPH0436561B2 (en)
KR800001624B1 (en) Air firable base metal condoctors
JP3516033B2 (en) Carbon dioxide sensor material
JP4153112B2 (en) Conductive sintered body and manufacturing method thereof
JPH0590005A (en) Composition for thick-film resistor paste for electric resistance element using it and their manufacture
JPH0850806A (en) Composition for thick film conductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A02 Decision of refusal

Effective date: 20051025

Free format text: JAPANESE INTERMEDIATE CODE: A02