JPH11339627A - Lightning failure protective method and device - Google Patents

Lightning failure protective method and device

Info

Publication number
JPH11339627A
JPH11339627A JP14550398A JP14550398A JPH11339627A JP H11339627 A JPH11339627 A JP H11339627A JP 14550398 A JP14550398 A JP 14550398A JP 14550398 A JP14550398 A JP 14550398A JP H11339627 A JPH11339627 A JP H11339627A
Authority
JP
Japan
Prior art keywords
lightning
communication device
communication
communication line
commercial power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14550398A
Other languages
Japanese (ja)
Inventor
Masahito Mizukami
雅人 水上
Hidefumi Ohashi
英史 大橋
Kazuo Murakawa
一雄 村川
Toru Kishimoto
亨 岸本
Hiroo Nose
博夫 能勢
Takahiro Kobayashi
敬博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14550398A priority Critical patent/JPH11339627A/en
Publication of JPH11339627A publication Critical patent/JPH11339627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Breakers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high lightning protection reliability at a relatively low cost by physically cutting off a communication line and a commercial power line with a prescribed circuit breaker when the detected lightning current or voltage exceeds the threshold predetermined in consideration of the tolerable overcurrent or overvoltage of a communication apparatus. SOLUTION: A lightning protective device 20 is inserted between a communication line connecting terminal 11 and a communication line 51. When a lightning current generated appears on the communication line 51, a voltage V1 is induced on the secondary winding by a lightning current flowing in the primary winding of a current transformer 21, and the voltage V1 is applied to an integrating circuit 22. An integrated output voltage Vc proportional to the peak level of the lightning current is obtained by integration. A relay 24 is operated to physically cut off the communication line connecting terminal 11 and the communication line 51 only when the peak of the lightning current wave-form exceeds the threshold set in a comparator 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば家庭用電話
機,ファクシミリ,コンピュータネットワーク機器,構
内用交換機などの通信線及び商用電源線の両方が接続さ
れる各種通信機器を落雷による故障から防護するための
雷害故障防護方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to protect various communication devices, such as home telephones, facsimile machines, computer network equipment, private branch exchanges, to which both communication lines and commercial power lines are connected, from failures due to lightning strikes. The present invention relates to a lightning damage protection method and device.

【0002】[0002]

【従来の技術】近年、インターネット等を利用した各種
情報サービスが、企業や家庭に急速に普及し始めてお
り、通信事業者が敷設するネットワークだけでなく、企
業内LANや家庭内などのユーザ系の情報通信ネットワ
ークの構築が盛んに進められている。
2. Description of the Related Art In recent years, various information services using the Internet and the like have begun to spread rapidly to companies and homes. The construction of information and communication networks is being actively pursued.

【0003】そのようなネットワーク上では、家庭用電
話機,コンピュータ,モデム機器,コンピュータネット
ワーク機器,構内用交換機などのように通信線と商用電
源線の両方が接続される通信機器が多く利用される。ま
た、一般家庭の電話機,ファクシミリなども機器自体の
高機能化のために比較的大きな電力を消費するIC,L
SI等の電子回路を多数搭載する必要があり、商用電源
を利用するものが大部分となっている。
[0003] On such a network, communication devices to which both a communication line and a commercial power line are connected, such as a home telephone, a computer, a modem device, a computer network device, and a private branch exchange, are often used. In addition, telephones, facsimile machines, and the like of ordinary households also use ICs, L
A large number of electronic circuits such as SI must be mounted, and most of them use a commercial power supply.

【0004】上記のような通信線と商用電源線の両方が
接続される各種通信機器においては、落雷などにより発
生するサージが通信線または商用電源線から侵入する。
そしてサージ電圧が通信機器の耐圧を超えると、通信機
機内の回路を破壊しながら侵入ルートの反対側に抜けて
いくので通信機器に故障が発生する。例えば、通信線か
らサージが侵入する場合、通信機器内の一部分で絶縁を
破壊してサージは商用電源線側に抜ける。また、商用電
源線からサージが侵入する場合、通信機器内の一部分で
絶縁を破壊してサージは通信線側に抜ける。
In various communication devices to which both the communication line and the commercial power line are connected, a surge generated by a lightning strike or the like intrudes from the communication line or the commercial power line.
If the surge voltage exceeds the withstand voltage of the communication device, the circuit breaks down the circuit inside the communication device and moves to the opposite side of the intrusion route, so that a failure occurs in the communication device. For example, when a surge enters from a communication line, insulation is broken in a part of the communication device, and the surge escapes to the commercial power line side. Further, when a surge enters from a commercial power supply line, insulation is broken in a part of the communication device, and the surge escapes to the communication line side.

【0005】このため、従来より通信機器の雷防護技術
が各種検討されてきた。従来の雷防護技術について、図
4を参照して説明する。図4の(a)はバイパスアレス
タ法と呼ばれる技術を示している。この技術では、雷電
流によって生じる過電圧により通信線と商用電源線に取
付けたバイパスアレスタが動作し、通信線と商用電源線
間の電圧を機器の破壊電圧以下におさえるため、通信機
器に対する過電圧印加が防止される。バイパスアレスタ
としては、避雷管やバリスタが用いられる。
For this reason, various types of lightning protection technology for communication devices have been conventionally studied. A conventional lightning protection technique will be described with reference to FIG. FIG. 4A shows a technique called a bypass arrester method. In this technology, the bypass arrester attached to the communication line and the commercial power line operates due to the overvoltage caused by the lightning current, and the voltage between the communication line and the commercial power line is kept below the breakdown voltage of the device. Is prevented. As a bypass arrester, a lightning arrester or a varistor is used.

【0006】図4の(b)は共通接地法と呼ばれる技術
を示している。この技術では、通信線の接地側ラインと
商用電源線の接地側ラインとを大地アースに共通に接続
する。従って、通信線と商用電源線との間に大きな電位
差が生じないので、通信機器に過電圧が印加されるのを
防止できる。図4の(c),(d)は絶縁法と呼ばれる
技術を示している。この技術では、通信線又は商用電源
線と通信機器との間に絶縁トランスを挿入することによ
り、通信機器と通信線又は商用電源線とを電気的に確実
に絶縁し、通信機器に過電圧が印加されるのを防止す
る。
FIG. 4B shows a technique called a common grounding method. In this technique, the ground line of the communication line and the ground line of the commercial power line are commonly connected to ground. Therefore, since a large potential difference does not occur between the communication line and the commercial power line, it is possible to prevent an overvoltage from being applied to the communication device. 4C and 4D show a technique called an insulation method. According to this technology, an insulation transformer is inserted between a communication line or a commercial power line and a communication device to reliably electrically insulate the communication device from the communication line or the commercial power line, and an overvoltage is applied to the communication device. To prevent it from being done.

【0007】[0007]

【発明が解決しようとする課題】上記のバイパスアレス
タ法においては、落雷発生時に通信線または商用電源線
から侵入した電流がバイパスアレスタに流れる場合であ
っても、通信線と商用電源線との間には当然電位差が発
生し、機器の破壊電圧近傍まで電圧が機器に印加される
ことが本質的に避けられない。
In the above-mentioned bypass arrester method, even if a current intruding from a communication line or a commercial power line flows into the bypass arrester when a lightning strike occurs, the communication between the communication line and the commercial power line is prevented. Naturally generates a potential difference, and it is essentially unavoidable that a voltage is applied to the device up to near the breakdown voltage of the device.

【0008】また、既存住宅で利用される通信機器に上
記共通接地法を適用しようとすると、住宅の改修工事を
必要とするため高いコストが必要になる。さらに、絶縁
トランスを用いる絶縁法については、絶縁トランス自体
が高価であるし、比較的大きな設置スペースが必要にな
るため、一般住宅の通信機器には導入が困難である。
Further, if the common grounding method is applied to a communication device used in an existing house, a high cost is required because the house needs to be repaired. Furthermore, with regard to the insulation method using an insulation transformer, the insulation transformer itself is expensive and a relatively large installation space is required, so that it is difficult to introduce the insulation method into communication equipment in ordinary houses.

【0009】本発明は、雷害故障防護方法及び装置にお
いて、雷害故障防護の高信頼化を比較的低コストで実現
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and apparatus for protecting against lightning damage, which realizes high reliability of lightning damage protection at a relatively low cost.

【0010】[0010]

【課題を解決するための手段】請求項1の雷害故障防護
方法は、通信線及び商用電源線が接続される通信機器の
雷害故障防護方法において、通信機器に接続された通信
線及び商用電源線の少なくとも一方から前記通信機器に
侵入する雷電流又は雷電圧を検出し、検出された雷電流
又は雷電圧を、前記通信機器の過電圧耐力又は過電流耐
力を考慮して予め定められたしきい値と比較し、検出さ
れた雷電流又は雷電圧が前記しきい値を超えた場合に、
前記通信線及び商用電源線の少なくとも一方を所定の遮
断器を用いて前記通信機器から物理的に切り離すことを
特徴とする。
According to a first aspect of the present invention, there is provided a lightning protection method for a communication device to which a communication line and a commercial power supply line are connected. A lightning current or a lightning voltage that enters the communication device from at least one of the power supply lines is detected, and the detected lightning current or lightning voltage is determined in advance in consideration of the overvoltage tolerance or the overcurrent tolerance of the communication device. Compared to the threshold, if the detected lightning current or lightning voltage exceeds the threshold,
At least one of the communication line and the commercial power line is physically separated from the communication device using a predetermined circuit breaker.

【0011】この発明によれば、通信機器にしきい値を
超える雷電流又は雷電圧が侵入すると、遮断器によって
通信線及び商用電源線の少なくとも一方が通信機器から
物理的に切離される。従って、通信線又は商用電源線に
現れる雷電流から通信機器を確実に防護できる。請求項
2の雷害故障防護装置は、通信線及び商用電源線が接続
される通信機器の雷害故障防護装置において、通信機器
に接続された通信線及び商用電源線の少なくとも一方か
ら前記通信機器に侵入する雷電流のレベル及び波形に応
じた信号を検出する雷電流検出回路と、前記雷電流検出
回路が検出した信号を、前記通信機器の過電圧耐力又は
過電流耐力を考慮して予め定められるしきい値と比較す
る比較回路と、前記比較回路の比較結果に応じて、前記
通信機器に接続された通信線及び商用電源線の少なくと
も一方を前記通信機器から切り離すスイッチ回路とを設
けたことを特徴とする。
According to the present invention, when a lightning current or a lightning voltage exceeding a threshold enters a communication device, at least one of the communication line and the commercial power line is physically disconnected from the communication device by the circuit breaker. Therefore, the communication device can be reliably protected from the lightning current appearing on the communication line or the commercial power line. 3. The lightning protection device according to claim 2, wherein the communication device is connected to at least one of a communication line and a commercial power line connected to the communication device. A lightning current detection circuit that detects a signal corresponding to a level and a waveform of a lightning current that intrudes into the communication device; and a signal detected by the lightning current detection circuit, which is predetermined in consideration of an overvoltage tolerance or an overcurrent tolerance of the communication device. A comparison circuit for comparing with a threshold value, and a switch circuit for disconnecting at least one of a communication line and a commercial power line connected to the communication device from the communication device according to a comparison result of the comparison circuit. Features.

【0012】この発明によれば、通信機器にしきい値を
超える雷電流が侵入すると、スイッチ回路が作動して通
信線及び商用電源線の少なくとも一方が通信機器から切
り離される。従って、通信線又は商用電源線に現れる雷
電流から通信機器を確実に防護できる。また、雷電流検
出回路が侵入する雷電流のレベル及び波形に応じた信号
を検出するので、雷電流とそれ以外のノイズとの区別が
可能であり、誤動作が生じにくい。更に、通信線と商用
電源線のアースを共通化する必要がなく、絶縁トランス
も不要であるため比較的低コストで実現できる。
According to the present invention, when a lightning current exceeding a threshold value enters the communication device, the switch circuit operates to disconnect at least one of the communication line and the commercial power line from the communication device. Therefore, the communication device can be reliably protected from the lightning current appearing on the communication line or the commercial power line. In addition, since the lightning current detection circuit detects a signal corresponding to the level and waveform of the intruding lightning current, it is possible to distinguish between the lightning current and other noise, and a malfunction does not easily occur. Further, it is not necessary to use a common ground for the communication line and the commercial power supply line, and it is not necessary to use an insulating transformer.

【0013】請求項3は、請求項2記載の雷害故障防護
装置において、前記雷電流検出回路に積分回路を設け、
前記比較回路が前記積分回路の出力する信号を前記しき
い値と比較することを特徴とする。
According to a third aspect of the present invention, in the lightning damage protection device according to the second aspect, an integration circuit is provided in the lightning current detection circuit.
The comparison circuit compares a signal output from the integration circuit with the threshold value.

【0014】積分回路を用いることにより、雷電流以外
の高周波ノイズや高周波信号などに反応して誤動作する
のを防止できる。また、実際に通信機器を雷電流から防
護する必要がある場合だけ前記スイッチ回路を遮断でき
る。
By using the integration circuit, malfunction can be prevented in response to high-frequency noise and high-frequency signals other than the lightning current. Further, the switch circuit can be cut off only when it is necessary to actually protect the communication device from lightning current.

【0015】[0015]

【発明の実施の形態】実施の形態の雷故障防護装置20
について、図1〜図3を参照して説明する。この形態は
全ての請求項に対応する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Lightning fault protection device 20 of the embodiment
Will be described with reference to FIGS. This form corresponds to all claims.

【0016】図1はこの形態の雷故障防護装置20の構
成を示すブロック図である。図2は雷故障防護装置20
の積分回路22の特性を測定する回路の構成を示す電気
回路図である。図3は雷故障防護装置20の積分回路2
2の特性測定結果を示すグラフである。この形態では、
請求項2の雷電流検出回路,比較回路及びスイッチ回路
は、それぞれ変流器21,コンパレータ23及びリレー
24に対応し、請求項3の積分回路は積分回路22に対
応する。
FIG. 1 is a block diagram showing the configuration of a lightning fault protection device 20 of this embodiment. FIG. 2 shows the lightning fault protection device 20.
FIG. 3 is an electric circuit diagram showing a configuration of a circuit for measuring characteristics of the integrating circuit 22 of FIG. FIG. 3 shows the integration circuit 2 of the lightning fault protection device 20.
6 is a graph showing the characteristic measurement results of Example 2. In this form,
The lightning current detection circuit, the comparison circuit, and the switch circuit according to claim 2 correspond to the current transformer 21, the comparator 23, and the relay 24, respectively, and the integration circuit according to claim 3 corresponds to the integration circuit 22.

【0017】図1を参照すると、通信機器10の通信線
接続端子11及び商用電源線接続端子12には、それぞ
れ通信線51及び商用電源線52が接続されている。ま
た、この例では通信線接続端子11と通信線51との間
に雷故障防護装置20が挿入してある。雷故障防護装置
20は、変流器21,積分回路22,コンパレータ23
及びリレー24を備えている。また、コンパレータ23
にはしきい値調整器25が接続されている。
Referring to FIG. 1, a communication line 51 and a commercial power line 52 are connected to a communication line connection terminal 11 and a commercial power line connection terminal 12 of a communication device 10, respectively. In this example, a lightning fault protection device 20 is inserted between the communication line connection terminal 11 and the communication line 51. The lightning fault protection device 20 includes a current transformer 21, an integration circuit 22, and a comparator 23.
And a relay 24. The comparator 23
Is connected to a threshold adjuster 25.

【0018】リレー24の電気接点は通常は閉じている
ので、通常は通信線51が通信機器10の通信線接続端
子11と接続されている。落雷などによって生じた雷電
流が通信線51に現れると、変流器21の一次側巻線に
流れる雷電流によって変流器21の二次側巻線に電圧V
1が誘起される。この電圧V1が積分回路22に印加さ
れる。
Since the electrical contacts of the relay 24 are normally closed, the communication line 51 is normally connected to the communication line connection terminal 11 of the communication device 10. When a lightning current generated by a lightning strike or the like appears on the communication line 51, a voltage V is applied to the secondary winding of the current transformer 21 by the lightning current flowing through the primary winding of the current transformer 21.
1 is induced. This voltage V1 is applied to the integration circuit 22.

【0019】この例では、積分回路22は抵抗R1とコ
ンデンサC1とで構成されている。積分回路22が出力
する積分出力電圧Vcは、コンデンサC1の端子間電圧
である。コンパレータ23は、しきい値調整器25によ
って予め調整されたしきい値電圧と積分出力電圧Vcと
のレベルを比較して、その結果を示す2値信号を出力す
る。
In this example, the integrating circuit 22 comprises a resistor R1 and a capacitor C1. The integrated output voltage Vc output by the integration circuit 22 is a voltage between terminals of the capacitor C1. Comparator 23 compares the level of the threshold voltage adjusted in advance by threshold adjuster 25 with the level of integrated output voltage Vc, and outputs a binary signal indicating the result.

【0020】コンパレータ23が出力する2値信号によ
ってリレー24がオン/オフ制御される。すなわち、積
分出力電圧Vcがしきい値を超えると、リレー24に内
蔵された駆動コイルに通電され、リレー24の電気接点
が開く。これにより、通信線接続端子11と通信線51
とが物理的に遮断される。雷故障防護装置20は、通信
線51に現れる雷電流の電流波形を積分回路で平滑化し
て検出するため、通信線51に現れる高周波電流や誘導
ノイズなどに反応して誤動作しないという特長がある。
The relay 24 is turned on / off by the binary signal output from the comparator 23. That is, when the integrated output voltage Vc exceeds the threshold value, the drive coil built in the relay 24 is energized, and the electrical contact of the relay 24 opens. Thereby, the communication line connection terminal 11 and the communication line 51 are connected.
Are physically shut off. Since the lightning fault protection device 20 detects the current waveform of the lightning current appearing on the communication line 51 by smoothing it with an integrating circuit, it has a feature that it does not malfunction in response to a high-frequency current or induction noise appearing on the communication line 51.

【0021】すなわち、変流器21の二次側巻線に現れ
る電圧V1を積分回路22で積分することにより、雷電
流のピークレベルに比例する積分出力電圧Vcが得られ
る。通信線51に通常現れる高周波電流や誘導ノイズな
どに対しては、積分出力電圧Vcはほとんど0である。
そして、雷電流波形のピーク値がコンパレータ23にセ
ットされたしきい値を超えた場合にのみ、リレー24が
作動して通信線接続端子11と通信線51とを物理的に
遮断する。
That is, by integrating the voltage V1 appearing on the secondary winding of the current transformer 21 by the integration circuit 22, an integrated output voltage Vc proportional to the peak level of the lightning current is obtained. The integrated output voltage Vc is almost zero for a high-frequency current or induction noise that normally appears on the communication line 51.
Only when the peak value of the lightning current waveform exceeds the threshold value set in the comparator 23, the relay 24 operates to physically disconnect the communication line connection terminal 11 from the communication line 51.

【0022】なお、積分回路22のコンデンサC1に蓄
積された電荷は、抵抗R1及び変流器21の二次側巻線
を通って放電するので、通信線51に雷電流が現れなく
なると積分出力電圧Vcは徐々に低下する。そして、時
間の経過によりリレー24の電気接点が自動的に閉じる
ので、遮断状態は解除される。
Since the electric charge accumulated in the capacitor C1 of the integrating circuit 22 is discharged through the resistor R1 and the secondary winding of the current transformer 21, when the lightning current no longer appears on the communication line 51, the integrated output is obtained. Voltage Vc gradually decreases. Then, the electric contact of the relay 24 is automatically closed as time passes, so that the cutoff state is released.

【0023】図2(a)に示す回路を用いて、図1の積
分回路22の特性をシミュレーションにより測定した。
抵抗R1の抵抗値が10KΩの場合の測定結果を図3に
示す。図2(a)の回路においては、電圧V1を発生す
るために雷サージ発生回路30を用いた。この雷サージ
発生回路30は、図2(b)に示すような波形の電圧V
1を発生する。具体的には、電圧V1のピークレベルは
約100[V]、立ち上がり時間は0.1[μs]、立ち下が
り時間は40[μs]である。これは、約60[A]の雷電流
が流れたことに相当する状態を模擬したものである。
Using the circuit shown in FIG. 2A, the characteristics of the integration circuit 22 shown in FIG. 1 were measured by simulation.
FIG. 3 shows a measurement result when the resistance value of the resistor R1 is 10 KΩ. In the circuit of FIG. 2A, a lightning surge generating circuit 30 is used to generate the voltage V1. This lightning surge generating circuit 30 has a voltage V having a waveform as shown in FIG.
Generates 1. Specifically, the peak level of the voltage V1 is about 100 [V], the rise time is 0.1 [μs], and the fall time is 40 [μs]. This simulates a state corresponding to a lightning current of about 60 [A] flowing.

【0024】図3に示す特性に基づいて、コンデンサC
1の容量を0.11[μF]に定めれば、図2の電圧V1に対
して約3[V]の積分出力電圧Vcが得られる。その場
合、コンパレータ23のしきい値レベルを3[V]より少
し低いレベルに定めれば、60[A]程度の雷電流を検出
したときにリレー24を制御して、通信線51を通信線
接続端子11から切り離すことができる。
Based on the characteristics shown in FIG.
If the capacitance of 1 is set to 0.11 [μF], an integrated output voltage Vc of about 3 [V] with respect to the voltage V1 of FIG. 2 can be obtained. In that case, if the threshold level of the comparator 23 is set to a level slightly lower than 3 [V], the relay 24 is controlled when a lightning current of about 60 [A] is detected, and the communication line 51 is connected to the communication line. It can be disconnected from the connection terminal 11.

【0025】実際には、通信機器10の耐圧などを考慮
してコンパレータ23のしきい値レベルを調整すること
により、通信機器10は雷電流による故障から確実に保
護される。リレー24を用いて通信線51を通信線接続
端子11から物理的に切り離すので、通信線51から侵
入した雷電流が商用電源線52側に漏れることはない。
In practice, by adjusting the threshold level of the comparator 23 in consideration of the withstand voltage of the communication device 10, the communication device 10 is reliably protected from a failure due to a lightning current. Since the communication line 51 is physically separated from the communication line connection terminal 11 using the relay 24, the lightning current that has entered through the communication line 51 does not leak to the commercial power supply line 52 side.

【0026】図1に示す雷故障防護装置20を実際に試
作して実験を行った結果、シミュレーションと同様の結
果が得られた。つまり、本発明の方法及び装置により、
雷電流発生時に通信線側を物理的に切り離すことがで
き、通信機器側に過電圧がかからず、雷故障の防護が可
能なことが確認できた。なお、図1に示す雷故障防護装
置20においては、電気接点が1つのリレー24を用い
て、単一の通信線51の遮断を制御する場合を説明した
が、複数の信号線が通信線51に含まれている場合に
は、複数の電気接点を備えるリレーをリレー24の代わ
りに用いて、それぞれの信号線を同時に遮断すれば良
い。
The lightning fault protection device 20 shown in FIG. 1 was actually manufactured as a trial and an experiment was carried out. As a result, the same result as the simulation was obtained. That is, according to the method and apparatus of the present invention,
It was confirmed that the communication line side could be physically disconnected when a lightning current occurred, and that overvoltage was not applied to the communication device side, and protection from lightning failure was possible. In the lightning fault protection device 20 shown in FIG. 1, the case where the electrical contact uses one relay 24 to control the interruption of the single communication line 51 has been described. In this case, a relay having a plurality of electrical contacts may be used in place of the relay 24 to simultaneously cut off the respective signal lines.

【0027】また、図1に示す雷故障防護装置20にお
いては通信線51の雷電流を検出するために変流器21
を用いたが、非接触の電流プローブを変流器21の代わ
りに用いても良い。また、図1の実施の形態では通信線
51と通信線接続端子11との間に雷故障防護装置20
を挿入する場合を示したが、商用電源線52と商用電源
線接続端子12との間に雷故障防護装置20を挿入して
も良いし、2つの雷故障防護装置20を用いて、一方の
雷故障防護装置20を図1のように接続し、他方の雷故
障防護装置20を商用電源線52と商用電源線接続端子
12との間に雷故障防護装置20を挿入しても良い。
Further, in the lightning fault protection device 20 shown in FIG.
However, a non-contact current probe may be used instead of the current transformer 21. In the embodiment shown in FIG. 1, the lightning failure protection device 20 is provided between the communication line 51 and the communication line connection terminal 11.
Is shown, the lightning fault protection device 20 may be inserted between the commercial power supply line 52 and the commercial power supply line connection terminal 12, or one of the two lightning fault protection devices 20 may be used. The lightning fault protection device 20 may be connected as shown in FIG. 1 and the other lightning fault protection device 20 may be inserted between the commercial power line 52 and the commercial power line connection terminal 12.

【0028】[0028]

【発明の効果】以上説明したように、請求項1の雷故障
防護方法によれば、雷電流を検出してそれを遮断するの
で、通信線から商用電源線へ抜ける雷電流、又は商用電
源線から通信線へ抜ける雷電流が阻止され、通信機器の
雷故障防護の高信頼化が実現する。
As described above, according to the lightning fault protection method according to the first aspect, since the lightning current is detected and cut off, the lightning current flowing from the communication line to the commercial power supply line or the commercial power supply line is detected. This prevents lightning currents from flowing into the communication line, thereby realizing highly reliable lightning protection for communication equipment.

【0029】また、請求項2の雷故障防護装置によれ
ば、請求項1の効果を達成する装置を安価に実現できる
ので、実用化に際して極めて効果的である。更に、請求
項3の雷故障防護装置によれば、積分回路を設けるので
雷電流とそれ以外のノイズとが区別され誤動作の発生が
防止される。
Further, according to the lightning fault protection device of the second aspect, the device achieving the effect of the first aspect can be realized at low cost, which is extremely effective for practical use. Furthermore, according to the lightning fault protection device of the third aspect, the integration circuit is provided, so that the lightning current and other noises are distinguished from each other, thereby preventing malfunction from occurring.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態の雷故障防護装置20の構成を示す
ブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a lightning fault protection device 20 according to an embodiment.

【図2】雷故障防護装置20の積分回路22の特性を測
定する回路の構成を示す電気回路図である。
FIG. 2 is an electric circuit diagram showing a configuration of a circuit for measuring characteristics of an integration circuit 22 of the lightning fault protection device 20.

【図3】雷故障防護装置20の積分回路22の特性測定
結果を示すグラフである。
FIG. 3 is a graph showing characteristics measurement results of the integration circuit 22 of the lightning fault protection device 20.

【図4】従来の雷防護技術の構成を示すブロック図であ
る。
FIG. 4 is a block diagram showing a configuration of a conventional lightning protection technology.

【符号の説明】[Explanation of symbols]

10 通信機器 11 通信線接続端子 12 商用電源線接続端子 20 雷故障防護装置 21 変流器 22 積分回路 23 コンパレータ 24 リレー 25 しきい値調整器 30 雷サージ発生回路 51 通信線 52 商用電源線 R0,R1 抵抗 C1 コンデンサ V1 電圧 Vc 積分出力電圧 DESCRIPTION OF SYMBOLS 10 Communication equipment 11 Communication line connection terminal 12 Commercial power line connection terminal 20 Lightning fault protection device 21 Current transformer 22 Integration circuit 23 Comparator 24 Relay 25 Threshold adjuster 30 Lightning surge generation circuit 51 Communication line 52 Commercial power line R0, R1 resistance C1 capacitor V1 voltage Vc integral output voltage

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月9日[Submission date] September 9, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】[0010]

【課題を解決するための手段】請求項1の雷害故障防護
方法は、通信線及び商用電源線が接続される通信機器の
雷害故障防護方法において、通信機器に接続された通信
線及び商用電源線の両者において前記通信機器に侵入す
る雷電流又は雷電圧を検出し、検出された雷電流又は雷
電圧を、前記通信機器の過電圧耐力又は過電流耐力を考
慮して予め定められたしきい値と比較し、検出された雷
電流又は雷電圧が前記しきい値を超えた場合に、前記通
信線及び商用電源線の少なくとも一方を所定の遮断器を
用いて前記通信機器から物理的に切り離すことを特徴と
する。
According to a first aspect of the present invention, there is provided a lightning protection method for a communication device to which a communication line and a commercial power supply line are connected. A lightning current or a lightning voltage entering the communication device is detected on both of the power supply lines, and the detected lightning current or the lightning voltage is determined in advance by taking into account the overvoltage tolerance or the overcurrent tolerance of the communication device. When the detected lightning current or lightning voltage exceeds the threshold, at least one of the communication line and the commercial power line is physically disconnected from the communication device using a predetermined circuit breaker. It is characterized by the following.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】この発明によれば、通信機器にしきい値を
超える雷電流又は雷電圧が侵入すると、遮断器によって
通信線及び商用電源線の少なくとも一方が通信機器から
物理的に切離される。従って、通信線又は商用電源線に
現れる雷電流から通信機器を確実に防護できる。請求項
2の雷害故障防護装置は、通信線及び商用電源線が接続
される通信機器の雷害故障防護装置において、通信機器
に接続された通信線及び商用電源線の両者から前記通信
機器に侵入する雷電流のレベル及び波形に応じた信号を
検出する雷電流検出回路と、前記雷電流検出回路が検出
した信号を、前記通信機器の過電圧耐力又は過電流耐力
を考慮して予め定められるしきい値と比較する比較回路
と、前記比較回路の比較結果に応じて、前記通信機器に
接続された通信線及び商用電源線の少なくとも一方を前
記通信機器から切り離すスイッチ回路とを設けたことを
特徴とする。
According to the present invention, when a lightning current or a lightning voltage exceeding a threshold enters a communication device, at least one of the communication line and the commercial power line is physically disconnected from the communication device by the circuit breaker. Therefore, the communication device can be reliably protected from the lightning current appearing on the communication line or the commercial power line. A lightning damage protection device according to claim 2 is a lightning protection device for a communication device to which a communication line and a commercial power line are connected, wherein the communication device is connected to the communication device from both the communication line and the commercial power line connected to the communication device. A lightning current detection circuit that detects a signal corresponding to the level and waveform of the intruding lightning current, and a signal detected by the lightning current detection circuit is determined in advance in consideration of the overvoltage tolerance or the overcurrent tolerance of the communication device. A comparison circuit for comparing with a threshold value, and a switch circuit for disconnecting at least one of a communication line and a commercial power line connected to the communication device from the communication device according to a comparison result of the comparison circuit. And

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸本 亨 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 能勢 博夫 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 小林 敬博 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toru Kishimoto Nippon Telegraph and Telephone Corporation 3-9-1-2 Nishishinjuku, Shinjuku-ku, Tokyo (72) Inventor Hiroo Nose 3-192-1, Nishishinjuku, Shinjuku-ku, Tokyo No. Within Nippon Telegraph and Telephone Corporation (72) Inventor Takahiro Kobayashi Within Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 通信線及び商用電源線が接続される通信
機器の雷害故障防護方法において、 通信機器に接続された通信線及び商用電源線の少なくと
も一方から前記通信機器に侵入する雷電流又は雷電圧を
検出し、 検出された雷電流又は雷電圧を、前記通信機器の過電圧
耐力又は過電流耐力を考慮して予め定められたしきい値
と比較し、 検出された雷電流又は雷電圧が前記しきい値を超えた場
合に、前記通信線及び商用電源線の少なくとも一方を所
定の遮断器を用いて前記通信機器から物理的に切り離す
ことを特徴とする雷害故障防護方法。
A lightning protection method for a communication device to which a communication line and a commercial power supply line are connected, wherein a lightning current or at least one of a communication line and a commercial power supply line connected to the communication device enters the communication device. Detecting a lightning voltage, comparing the detected lightning current or lightning voltage with a predetermined threshold value in consideration of the overvoltage tolerance or overcurrent tolerance of the communication device, and determining whether the detected lightning current or lightning voltage is When the threshold value is exceeded, at least one of the communication line and the commercial power line is physically separated from the communication device using a predetermined circuit breaker.
【請求項2】 通信線及び商用電源線が接続される通信
機器の雷害故障防護装置において、 通信機器に接続された通信線及び商用電源線の少なくと
も一方から前記通信機器に侵入する雷電流のレベル及び
波形に応じた信号を検出する雷電流検出回路と、 前記雷電流検出回路が検出した信号を、前記通信機器の
過電圧耐力又は過電流耐力を考慮して予め定められるし
きい値と比較する比較回路と、 前記比較回路の比較結果に応じて、前記通信機器に接続
された通信線及び商用電源線の少なくとも一方を前記通
信機器から切り離すスイッチ回路とを設けたことを特徴
とする雷害故障防護装置。
2. A lightning protection device for a communication device to which a communication line and a commercial power supply line are connected, wherein a lightning current of at least one of the communication line and the commercial power supply line connected to the communication device is transmitted to the communication device. A lightning current detection circuit for detecting a signal corresponding to a level and a waveform, and comparing the signal detected by the lightning current detection circuit with a predetermined threshold value in consideration of an overvoltage tolerance or an overcurrent tolerance of the communication device. A lightning fault, comprising: a comparison circuit; and a switch circuit that disconnects at least one of a communication line and a commercial power line connected to the communication device from the communication device according to a comparison result of the comparison circuit. Protective equipment.
【請求項3】 請求項2記載の雷害故障防護装置におい
て、前記雷電流検出回路に積分回路を設け、前記比較回
路が前記積分回路の出力する信号を前記しきい値と比較
することを特徴とする雷害故障防護装置。
3. The lightning damage protection device according to claim 2, wherein an integration circuit is provided in the lightning current detection circuit, and the comparison circuit compares a signal output from the integration circuit with the threshold value. And lightning damage protection device.
JP14550398A 1998-05-27 1998-05-27 Lightning failure protective method and device Pending JPH11339627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14550398A JPH11339627A (en) 1998-05-27 1998-05-27 Lightning failure protective method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14550398A JPH11339627A (en) 1998-05-27 1998-05-27 Lightning failure protective method and device

Publications (1)

Publication Number Publication Date
JPH11339627A true JPH11339627A (en) 1999-12-10

Family

ID=15386774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14550398A Pending JPH11339627A (en) 1998-05-27 1998-05-27 Lightning failure protective method and device

Country Status (1)

Country Link
JP (1) JPH11339627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116359597A (en) * 2023-02-01 2023-06-30 珠海博威电气股份有限公司 Method and device for measuring lightning parameters by medium-voltage switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116359597A (en) * 2023-02-01 2023-06-30 珠海博威电气股份有限公司 Method and device for measuring lightning parameters by medium-voltage switch
CN116359597B (en) * 2023-02-01 2024-04-16 珠海博威电气股份有限公司 Method and device for measuring lightning parameters by medium-voltage switch

Similar Documents

Publication Publication Date Title
US8295017B2 (en) Electrical wiring device
CA2236283C (en) Ground fault circuit interrupter system with uncommitted contacts
US6188557B1 (en) Surge suppressor
US5654857A (en) Ground fault circuit interrupt system including auxiliary surge suppression ability
USRE39446E1 (en) Power filter circuit responsive to supply system fault conditions
US6798628B1 (en) Arc fault circuit detector having two arc fault detection levels
US8878396B2 (en) Continuous uninterruptable AC grounding system for power system protection
US6229682B1 (en) Transient voltage surge suppressor
US7283340B1 (en) Electrical wiring device
US6775121B1 (en) Power line surge protection device
US20050180080A1 (en) Protection and indication apparatus
US6778375B1 (en) Hybrid MOV/gas-tube AC surge protector for building entrance
WO2002017458A1 (en) Ground fault interrupter
US7239491B1 (en) Protective device with miswire protection
CZ42298A3 (en) Separating device for voltage discharge gap
JP2000503516A (en) Connection devices, especially plug-ins for TT and TN networks
JPH11339627A (en) Lightning failure protective method and device
JP4196026B2 (en) Lightning strike detection circuit
CA1097731A (en) Hazardous voltage protector for telephone line
KR102042379B1 (en) Electrical equipment panel with surge protection apparatus
JP2000011845A (en) Lightning protecting method and device
JP2001197679A (en) Uninterruptible power supply with lighting protecting function
JP2000076984A (en) Breaker circuit for protection against lightning failures
JP2004194409A (en) Lightning damage protection system
JPS6345807Y2 (en)